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ABSTRACT

The efforts made in the dissertation are to understand strongly continuous quantum
dynamical semigroups(QDS) by yielding examples of Lindbladians which could generate
Markov semigroups. Such semigroups come into picture when one studies the dynamics of
open quantum systems. The QDS, which are non-commutative analogue of the expectation
semigroup of Markov processes in the classical case, are the semigroups of completely
positive maps on C*-algebras or von Neumann algebras satisfying continuity conditions.
The uniformly continuous QDS are completely characterized on hyperfinite von Neumann
algebras by Lindblad and on C*-algebras by Christensen, Evans by a bounded generator
known as Lindbladian.

However, for the case of a strongly continuous QDS, structure of the generator is
not well understood. Davies, Kato, Chebotarev, Fagnola showed that under certain
assumptions, unbounded generators have a similar Lindblad form. Conversely, in various
attempts, given a Lindblad like unbounded operators, the QDS were generated but these
QDS need not be Markov(Conservative).

Here, we study a class of Lindbladians expressed as bilinear forms on a GNS space
of a UHF algebra. Using quantum stochastic dilations it was proved that the Hudson-
Parthasarathy (HP) type quantum differential equation associated with Lindblad form
exhibits unique unitary solution. The QDS thus constructed by taking the vacuum
expectation semigroup of the homomorphic co-cycle is conservative, therefore is the unique
Cp-contraction semigroup associated with the given form.

Next, for a class of Lindbladians on UHF algebra, existence of associated Evans-Hudson
flows was proved. The expectation semigroup associated with the given Lindbladian is
Markov. The arguments used here to solve stochastic differential equations associated
with the Lindbladian reveal that the local structure of the UHF algebra is immensely
helpful.
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Chapter 1

Introduction

In this thesis the main objects of study are quantum dynamical semigroups. Quantum
dynamical semigroups (QDS) are the semigroups of completely positive maps on nice
algebras of operators satisfying some continuity conditions. Let H be a separable Hilbert
space and B(H) denotes the von Neumann algebra of bounded linear operators on H.

Definition. A quantum dynamical semigroup on a von Neumann algebra A C B(H) is a

semigroup 7 = (T¢)¢>0 of completely positive maps on A with the following properties:
(1) Te(I) < I, for allt > 0.
(79) T¢ is a ultra-weakly continuous operator i.e. normal for all ¢ > 0.

(7i7) for each a € A, the map t — T¢(a) is continuous with respect to the ultra-weak

topology on A.

A QDS is called Markov or Conservative if T;(I) = I for every t. QDS appear naturally
when one studies the evolution of irreversible open quantum systems describing the time
evaluation. The notion of QDS extends the semigroups of probability transition maps for
classical Markov processes.

The generator of a semigroup (7;)¢>0 on a Banach space is defined as the limit of operators

7;_

as t tends to 0 and write {7; = e/* : t € R}. For a uniformly continuous (or



norm continuous) semigroup on C* or von Neumann algebras, the generator is bounded,
conditionally completely positive map. In [25], Lindblad proved that for hyper-finite
von Neumann algebras, which includes the case of B(#), that a bounded operator L is
a generator of a uniformly continuous QDS if and only if £ can be written as £(X) =
?(X)+G*X + XG, where ¢ is completely positive. In the same year, Gorini, Kosaakowski
and Sudarshan [17] proved the similar result for finite-dimensional Hilbert spaces.
Theorem. [25, 17] A bounded map £ on the von Neumann algebra B(#) is the infinites-
imal generator of a uniformly continuous QDS (7;)¢>0 if and only if it can be written
as

LX) =) LiXL,+GX + XG, for all X € B(H),

n=1
where L,’s and G are in B(H) and the series on the right side converges strongly, with G

generator of a contraction semigroup in H. The QDS is Markov if and only if
1 o0
Re(G) = — > LiLn.
n=1

In [8] Christensen and Evans proved that for general C*-algebras, the generator of a uni-
formly continuous QDS exhibits the similar structure. More precisely, if A is a C*-algebra
acting on a Hilbert space H and suppose that {7; = e** : t € R} is a norm continuous
semigroup of completely positive maps of A into A, then there exists a completely positive
map 6 from A into the ultraweak closure A of A and an operator k in A such that the
generator L is given by L(a) = 0(a) + k*a + ak. However, often the QDS governing the
dynamics of physical system are not uniformly continuous, rather strongly continuous.

For the case of a strongly continuous QDS, structure of the generator is not well un-
derstood. The problem of constructing QDS with an unbounded generator £, could
be handled using Hille-Yosida theorem as it is done by Matsui in [27] for certain class
of semigroups on UHF algebras. In general, the infinitesimal generator £ is not given

explicitily (with some manifold as a domain), but it is given formally which is called
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formal Lindbladian with unbounded coefficients. Kato [22] and Davies [11] studied some
unbounded operators or forms similar to the Lindblad form on B(H) and gave a con-
struction of one-parameter semigroups, so-called minimal semigroup. However, these
semigroups need not preserve the identity, that is need not be Markov. In [5], Chebotarev
listed out some sufficient conditions for a QDS to be conservative. Later on these conditions
are simplified in [7, 6] by Chebotarev and Fagnola. Generally such unbounded operator
or form referred as Lindbladian. Under certain assumptions, Davies in [12] showed that
the unbounded generator have a similar form as for the bounded case, thus extends the
Lindblad’s result to strongly continuous QDS. Holevo in [19] investigated the structure of
covariant QDS. An expository article giving the development of QDS theory is written
by Fagnola [16]. In [2], Bahn, Ko and Park discuss conservative QDS generated by
noncommutative unbounded elliptic operators. Recently, in [I] authors give a structure
theorem for ultra-weakly continuous QDS on B(H) under the assumption of existence of
rank one projection in the domain of generator.

In this thesis, we have considered Hudson-Parthasarathy (HP) and Evans-Hudson (EH)
quantum stochastic differential equations associated with unbounded Lindbladians and
construct the QDS by taking vacuum expectation of homomorphic cocycles. There are
various attempts to study quantum stochastic differential equations with unbounded co-
efficients, for example see [16}, 36] and references therein.

In this introductory chapter, we have given a historical background of the development
of the theory of Markov semigroups and their dilations. The main results of the thesis is
discussed briefly.

In chapter second, the more basic theory which are the results from Hilbert space theory,
von Neumann algebras, C*-algebras, main results as well as characterization of Completely
positive maps on von Neumann algebras are included and general semigroup theory on
Banach spaces are given to make the thesis self-contained.

In the third chapter of the thesis, then the notion of QDS, characterization of uniform
continuous QDS are given. The theory of strongly continuous QDS is presented. As the



last section of this chapter, the theory of quantum stochastic calculus developed by Hudson
and Parthasarathy [20] is discussed briefly.

In the fourth chapter, the results proved in [34] are explained. Briefly, a class of unbounded
Lindblad form are defined on the GNS space of UHF C*-algebra and properties of structure
maps are studied. Finally, exploring the local structure of UHF algebra, it is shown that
the associated HP equation admits a unitary solution. This implies that the expectation
semigroup of the homomorphic co-cycle implemented by this unitary is conservative and
therefore the unique (also minimal) Cy-contraction semigroup associated with the given

form.

Main Results

Before listing the main results, we shall introduce some notions and give important
observations for sake of clarity.
For a separable Hilbert space H, let I'yyn,(#H) denotes the symmetric Fock space over H.

For any u € H, we denote by e(u), the exponential vector in I'sy,, (#H) associated with u:

_ 1  en

e(u) ?Q) \/mu .
Given a contraction T" on H, the second quantization I'(T") on I'yym(#) is defined by
I'(T)e(u) = e(T'u) and extends to a contraction on Iy, (#H). Moreover, if T is an isometry
(respectively unitary), then so is I'(T).
Let us write sy, for the symmetric Fock space gy (L*(Ry,k)), where k is a Hilbert
space with an orthonormal basis {e; : 1 <1 < m}.
Let us consider the UHF C*-algebra A, the C*-inductive limit of the infinite tensor product
of the matrix algebra My (C),

A= MN((C)C*.

. _rpd
]EZ
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For x € My (C) and j € Z%, () denotes an element of A with z in the j%* component and
N ( J : J p
(J4)

identity everywhere else. We shall call the elements of the form Hizl x;”" to be simple
tensor elements in A. For a simple tensor element z in A, let ;) be the 4t component of .
Support ‘supp(z)’ of  is defined to be the subset {j € Z%; x(jy # I}. For a general element
z € A such that © = > | cpx, with simple tensor elements z,, and complex coefficients
Cn, define supp(z) = Unzl supp(zy). For any A C Z4, let Aa denotes the x-sub algebra
generated by the elements of A with support in A. For j = (41,72, ,Jd) € 7%, define
lj| = maz{|ji| ; 1 <i < d} and set A, = {j € Z%|j| < n}, 0A, = {j € 2% |j| = n}.
We say an element z € A is local if x € Aa, for some p > 1. Denote by A, the dense
x-algebra generated by local elements. Consider the unique normalized trace tr on A. The
algebra elements in A are represented as vectors in the Hilbert space hg = L?(A, tr), the
GNS Hilbert space for (A, ¢r), and as a bounded operator on hy by left multiplication.

Consider a formal element of the type
oo oo
roi= ZWn such that Z |Wh| = oo,
n=1 n=1

where each W,, belongs to Apa,, . Let us denote formally

i Wy by r*.
n=1

Now, if we set C,(z) = [r,z] = i [Wh,z] for @ € Aj,e, clearly it is well defined since
[Wy,z] = 0 for all n > m when aT:L :1; in finite dimensional algebra Aa,, C Aj,.. We have
observed that the operator (C,,.Aj.) is densely defined, closable operator along with its
adjoint. Furthermore, the operator G := —%C;TC_T generates a Cy-contraction semigroup
S; in hyg.

Now consider the Lindblad form, £(X), where X € B(hg) with the domain Ay X Ajpe C



Dom(G) x Dom(G) given by
(u, L(X)v) = (u, XGv) + (Gu, Xv) + (Cru, XCpv). (1.1)

By definition of G, it is clear that (u, L(I)v) = (u, Gv) + (Gu,v) + (Cru,Cv) = 0. Let
Ajoe @€ be the linear span of {x®e(f) : € Aje, f € L*(R4,C)}. Then the set Ao ®E
is a dense subspace of hg & I'sy,.
Main Results.

1. Consider the HP type QSDE in Ao ® €

t t ¢
U; =I+/U5Gd8+/USC_TaT(dS) —/USC:a(ds), (1.2)
0 0 0

where a',a are creation and annihilation processes respectively. The QSDE admits a
unitary solution Uy. Moreover, the expectation semigroup (Ti)i>0 on B(hg) of the ho-
momorphic co-cycle Ji(X) = U (X ® I)Uy is the unique (minimal) semigroup associated
with the formal Lindbladian L in and is conservative.

Next,we deal with the structure maps on Aj,. in the UHF algebra. In this section, we
deal with the structure maps on Aj,. in the UHF algebra. For W), € Apa,, define the
operators:

Su(X) = [X, Wi,  SH(X) = (6:(X¥)* = [Wy, X],

for every X € A;j,.. Consider the Lindbladian:

L(X) = %Z{ngk(X) + 0L (X)W}, for all X € Ay (1.3)
k=1

Though each component W; 0y (.) + 5};(, )W}, are bounded maps, £ is unbounded due to
presence of infinitely many components (like in [27]). For n > 1, define a bounded map

LON(X) = LS {Widp(X) 401 (X)Wy}, for all X € A. Note that for X € Aa,,5(X) =
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5,1(X) =0 and £L®)(X) = £ (X) for every k > n.

2. The associated HP equation to does not make sense. However, there exist a
homomorphic co-cycle Jp : A — A" ® B(T'sym) satisfying the Evans-Hudson equation, for
X € Ao,

¢ o ¢ o L
J(X)=X ®I+/JS(E(X))ds + Z/Js(aj(X))a}(ds) + Z/Js(aj(X))aj(ds).
0 =19 =19
The expectation semigroup (T¢)i>0 of the homomorphic co-cycle J; is conservative minimal

semigroup associated with the Lindbladian (|1.3)).

Remark. The main differences between the classes of Lindbladian considered in and
and the one considered in [27] is lack of translation invariance, which considerably
affect the physical relevance of the semigroups. Indeed,to show HP or EH dilations of
semigroups, the local structure of the algebra is exploited in such a way that importance
of approximations by finite dimensional algebras is clearly recognized. Second difference is
unlike the existence of only EH dilations of semigroups in [27], both HP and EH dilations
are possible for the semigroup generated by the Lindbladian in , which makes these

class of semigroups more interesting.






Chapter 2

Preliminaries

In this chapter, we review some of the result and concepts regarding operators on Hilbert
spaces, in particular unbounded operators which are essential to understand semigroups
and their generators, for detail we refer to [32, [9] B9, 41}, B3], 38| 24, 23]. We also discuss
the basic notions of operator algebras: C*-algebras and von Neumann algebras, the details
can be seen in [13] 14}, [3] 10, 21I]. Important properties of completely positive maps are
discussed, for more details refer to [29, 37, B0]. In the last section, brief introduction
to semigroup theory on Banach spaces is given. Most of the material can be found in

[15, 31, @1].

2.1 Hilbert Space Theory

Let H be a Hilbert space with inner-product (-, -), which is conjugate linear in first and
linear in second coordinate and || - || be the norm on H. For a linear subspace M of H,

define orthogonal complement M+ = {h € H; (g,h) =0, V g € M}.
Remark 2.1.1. M is dense in H if and only if M+ = 0.

Suppose Hj, Ha, - are Hilbert spaces and let H = {(hp)n>1 : hy € Hn,zn21 |hn|? <
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oo}. For h = (hy)n>1 and g = (gn)n>1 in H, define

(hg) = (hn,gn) -
n>1
Then (-,-) is an inner-product on H and H is called the direct sum of #;’s and is written
o0
as H = @ H;. We denote the Banach space of bounded linear operators from a Hilbert
i=1
space H to K by B(#H,K) and B(H) is a Banach space of bounded linear operators on H.

Definition 2.1.2. An operator T € B(H) is called positive if (Bh,h) > 0 for all h € H.
We write T > 0 if T is positive and S > T, if S —T > 0.

Definition 2.1.3. An operator T € B(H) is called compact if the closure of the image
of the unit ball under T is compact. Equivalently T is compact if and only if for every

bounded sequence {hy,} in H, {Thy} has convergent subsequence.

The set of all compact operators form a closed maximal ideal of the ring B(#). Denote

this ideal by By(H).

Example 2.1.4. (Finite rank operators) Suppose the range of T is finite dimensional.
Since in a finite dimensional Hilbert space every closed and bounded set is compact, and
the image of a unit ball is bounded. We see that T is compact. In particular, for u,v € H,

the rank one operators on H defined by |u)(v|(w) := (v, w)u are compact.

In fact, every compact operator is the uniform limit of finite rank operators. We now give

the statement of the spectral theorem for compact normal operators.

Theorem 2.1.5. Let T' € By(H) be a compact normal operator, then the set of eigenvalues
of T is countable. Suppose (An)n>1 is a sequence of eigenvalues of T' then the eigenspace
M, associated to A, is a finite dimensional Hilbert space. The sequence A, — 0 if there

are infinitely many eigenvalues. If P, is the orthonormal projection of H onto M, =
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Ker((T — M\)I), then P,P,, =0= P, P, if m=mn and

T=> MP,

n>1

where the series converges in the norm topology on B(H). In addition, if T is self-adjoint,

An’s can be ordered in a decreasing sequence, |\1| > |A2| > - -+ which converges to 0.

Let T be a compact operator. For a self-adjoint compact operator T*T, let (\,)n>1 be the
decreasing sequence of eigenvalues in the above sense. We define the n singular value
of T' to be the positive square-root of the nth eigenvalue of the operator T*T. Denote by
$n(T): the nth singular value of T.

Definition 2.1.6. A compact operator T is said to be a trace class operator if the
series Zn21 sn(T) is convergent. The set of all trace-class operators is denoted by Bi(H).
For T € Bi(H), define the trace of T to be trT = 3, -, (en, Teyn), where (en)n>1 is a
orthonormal basis for H and the trace norm || - [|1 on Bi(H) by [|Allx = 32,51 sn(T). The

space B1(H) is a Banach space with respect to the trace norm.

It is easy to see that the series Zn21 (én, Tey) converges and the sum is independent of
the choice of basis. There is an interesting relation between the classes By(#), B1(H) and

B(H) which is shown in the following theorem.
Theorem 2.1.7. For the spaces Bo(H), Bi(H) and B(H) the following is true:

(1) Bi(H) = Bo(H)*. That is, the map K — tr(K -) is an isometric isomorphism of
81(7’[) on 80(7'[)*

(19) B(H) = Bi(H)*. That is, the map A — tr(A -) is an isometric isomorphism of
B(H) on Bi(H)*.
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2.1.1 Unbounded Operators

Most of the operators which we come across while solving problems arising from the
physical significance are not bounded. We introduce some basic concepts and results
concerning unbounded operators, necessary to understand the semigroup theory. The
closed graph theorem states that an operator which is everywhere defined and whose
graph is closed must be bounded, suggesting that a nice unbounded operator will only be
defined on dense linear subset of the Hilbert space . An operator(unbounded) T is a
linear map with its domain, a linear subspace which is usually dense into H. We denote

by Dom(T'), the domain of the operator T

Definition 2.1.8. The graph of a linear operator T is the set I'(T) := {(h,Th) :
h € Dom(T)} and is denoted by T'(T). The dual of the graph T is given by I'*(T) :=
{(=Th,h) ; h € Dom(T)}.

An operator T is closed if I'(T) is a closed subset of H x H. Let T} and T be operators
on H. If I'(Th) C I'(T3), then T» is said to be an extension of 71 and we write 71 C T.

Definition 2.1.9. An operator T is closable if it has a closed extension. The smallest

closed extension which exists, is called the closure of T, denoted by T.

Definition 2.1.10. Let T be a densely defined linear operator on H. For a fired h €
Dom(T), if the linear map ®p(g) = (h,Tg) with domain Dom(T) can be extended to a
bounded linear functional given by (f, g) on H, then we say h € Dom(T™*) and T*(h) = f.

The operator T* is called adjoint of T'.

It is easy to see that

D(T*) = [T*(T)]*,

where S+ := {u € H : (u,s) = 0}. If the domain of T* is dense, then we can define
T** = (T*)*. There is a simple relationship between the adjoint and closure of an operator

T.
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Theorem 2.1.11. Let T be a densely defined operator on H. Then the following holds:
(1) T* is closed.
(ii) T is closable if and only if Dom(T*) is dense, in that case T = T**.

(i13) If T is closable, (T)* = T*.

Proposition 2.1.12. Let H and K are Hilbert spaces and T : H — K is densely defined,
then
(Range T)* = Ker T*.

If T is also closed then
(Range T*)* = Ker T.

Now we define the resolvent of an operator. The knowledge of a resolvent helps us to

understand the nature of semigroups.

Definition 2.1.13. Let T be a closed operator on H. A compler number A is in the
resolvent set, denoted by p(T), if \I — T is a bijection from Dom(T) onto the dense
range of (\I —T) with a bounded inverse. For \ € p(T), R(A\,T) = R(T) := (A - T)~!
1s called the resolvent of T at \.

Definition 2.1.14. A densely defined operator T on H is called symmetric if T C T*.
Equivalently, T is symmetric if and only if (Th,g) = (h,Tg) for all h,g € Dom(T). An
operator T is called self-adjoint if T is symmetric and Dom(T*) = Dom(T).

The adjoint T™ of a symmetric densely defined T is an extension of 7', but is not symmetric
always. The Symmetry of T™ requires T* = T**. We recall that T** is the closure of T’

and generally all that can be true is:

TCcT*CcT*
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for densely-defined, symmetric T. Since T™* is the closure of T', it is symmetric. The
distinction between closed symmetric operators and self-adjoint operators is significant.
For self-adjoint operators, the spectral theorem holds and they generates a one-parameter

unitary groups.

Definition 2.1.15. A symmetric operator T is called essentially self-adjoint if its
closure T is self-adjoint. If T is closed, subset D C Dom(T) is called core for T if closure

of the restriction T [ D =T.

In general, symmetric densely defined operators do not possess unique self-adjoint exten-
sion. In contrast, an essentially self-adjoint operator has a unique self-adjoint extension.
So for a self-adjoint operator 7', one need not to give exact domain of 7', but just some core
for T'. The following results show equivalence conditions for an operator to be self-adjoint

or essentially self-adjoint.

Theorem 2.1.16. LetT be a symmetric operator on H. Then the following are equivalent:
(i) T is self-adjoint.
(i3) T is closed and Ker(T* £iI) = {0}.

(#i7) Range(T* +il) = H.

Theorem 2.1.17. LetT be a symmetric operator on H. Then the following are equivalent:
(1) T is essentially self-adjoint.
(ii) Ker(T* +4l) = {0}.

(7i1) Range(T* £1I) is dense in H.

Here we state spectral theorem for the self-adjoint operators.
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Theorem 2.1.18. Spectral Theorem Let (T,D(T)) be a self-adjoint operator on H,
then there exists a right continuous projection valued function E : R — P(H), where P(H)

is the space of orthogonal projections on H, such that T is

T= /)\ E(d)). (2.1)
R

The above function E : R — P(H) satisfies the following:

(7) lim E(t) = I strongly.

t—o00

(79) lim E(t) = 0 strongly.

t——o0

(7i1) E(s)E(t) =E(sAt), s At =min{s,t}

and is called spectral measure for 7. The spectral integration in (2.1)) is in the sense
that

(u, Tv) = /t P (dt),

where p,, , is the complex measure given by fiy,,((—00,t]) = (u, E(t)v) .
Polar decomposition for closed operators
There exists a special decomposition for operators on a Hilbert space which is analogous

tar8 2 for complex numbers. An arbitrary bounded operator

to the decomposition z = |z|e
T can be written as T = U|T| uniquely, where |T'| is positive self-adjoint and U is a
partial isometry. We discuss the polar decomposition in case of unbounded operators.
For the bounded case, polar decomposition is easy to construct since we can set |T| =
VT*T in view of the existence of positive square root. In case of unbounded operators

the following theorem helps us to generalize the existence of polar decomposition for

unbounded operators.

Theorem 2.1.19. (von Neumann) Let T be a closed, densely defined operator on H.
Then the operator T*T is self-adjoint operator on H and Dom(T*T) is a core for T.
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T*T is positive self-adjoint operator on H. As we can define |T| = VT*T by spectral
theorem and the polar decomposition can be constructed the same way as in case of

bounded operators.

Theorem 2.1.20. Let T be a closed, densely defined operator on H. Then, there is
a positive self-adjoint operator |T| = VT*T, with Dom(|T|) = Dom(T) and a partial
isometry U with domain (Ker T)* and co-domain Range T, so that T = U|T|. |T| and U

are uniquely determined by these properties together with the property Ker(|T|) = Ker(T).

2.2 (" and von Neumann Algebras

2.2.1 (*-algebras

Here we give a brief introduction to C*-algebras and von Neumann algebra on which QDS

are discussed in the next chapter.

Definition 2.2.1. A complete normed algebra A is said to be Banach algebra if the
norm satisfies ||zy| < ||z||||y|| for z,y € A. It is called C*- algebra if it has a *-structure

and ||z*z| = ||z||* holds.

Example 2.2.2. Let X be a locally compact Hausdorff space, the space Co(X) of all
complex valued continuous functions on X, vanishing at infinity, with supremum norm
and with complex conjugation as the x-operation forms a commutative C*-algebra under

point-wise addition and multiplication.

The algebra is called unital or non-unital according to whether it has identity or not.
However every C*-algebra can be made unital by adjoining the identity to it. Example
is important in the way that every commutative C*-algebra is essentially of this form.

Explicitly, the following result gives the characterization of commutative C*-algebras.
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Theorem 2.2.3. (Gelfand Naimark) Every commutative C*-algebra A is isometrically
isomorphic to Co(X) for some locally compact Hausdorff space X. In case A is unital, X

18 compact.

Let A be a C*-algebra. A linear functional ¢ : A — C is said to be positive if ¥ (x*z) > 0
for all x € A. It can be seen that element of A is positive if and only if ¢ (x) is positive
for all positive functionals ¢ on A. A positive linear functional ¢ for which ¢ (1) = 1 is
called a state on A. It can be shown that positivity implies boundedness. A state 1 is
called tracial if ¢(zy) = ¢ (yz) for all z,y € A. It is called faithful if )(2*2) = 0 implies

x = 0.

Definition 2.2.4. A representation of a C*-algebra is a pair (w,H), where H is a
Hilbert space and w: A — B(H) is a *-homomorphism. If A is unital, it is assumed that
m(l) =1.

Theorem 2.2.5. (Gelfand-Naimark-Segal Construction) For a given state ¢ on a
C*-algebra A, there exists a Hilbert space Hy, a representation my, of A into B(Hy) and
a vector &, € My which is cyclic in the sense that the set {my(x)&y ; © € A} is total in
Hy, satisfying

(@) = (§ys Ty (2)Ey) -

This triple (Hy, 7y, &y) is called the GNS triple for (A, 1) and H, is called GNS Hilbert
space for the pair (A4,) and it is denoted by L?(A, ).

2.2.2 UHF (*-algebra

The construction of quantum dynamical semigroups, obtained in this thesis, is carried out
on the GNS space of a UHF C*-algebra. In this section we discuss some of the results.
Before that let us introduce a special class of C*-algebras, namely approximately finite
dimensional C*-algebras (in short AF C*-algebra). The following theorem classifies all

the finite dimensional algebras.
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Theorem 2.2.6. Every finite dimensional C*-algebra A is x-isomorphic to the direct sum

of full matriz algebras, that is:

In particular, every non-zero finite dimensional C*-algebra is unital.

Definition 2.2.7. Let {A,}aer be a directed family of C*-algebras, that is for any o <
B in the directed set I, there is an isometric isomorphism iq g from Aq into Ag and
ia,8 = ivy,8(la,y), whenever a <y < fB. Then there exists a universal C*-algebra A, called
Inductive Limit of the directed family (Aq,iq,8) and isometric isomorphism i from Aq
into A such that i, = ig(iap) and A =J,cria(Aa). The Inductive Limit has universal
property that for any C*-algebra B with isometric isomorphisms jo from A into B such

that jo = j3(iap), there exists an isometric isomorphism k : A — B and following diagram

k

A B

commautes.

Definition 2.2.8. A C*-algebra A is said to be an AF C*-algebra if it is the Inductive
Limit of a family of C*-subalgebra {Ap}n>0 with isometric embeddings in, : Ap — Ani1
forn >0. Here Ag = CI in case of A is unital and A = m with the norm closure.
A particular class of AF C*-algebras is called Uniformly hyper-finite C*-algebras or UHF
C*-algebras if it is an increasing union of unital subalgebras which are isomorphic to full

matriz algebras { M, (C)} for some sequence of positive integers {ny}.
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A unital embedding of M, (C) into M, (C) requires ny divides n; (ng|n;), thus we get
an increasing sequence nj|nz|---. For a prime number p there exists a unique number
€y € {1,2,--- 00}, given by €, = sup{l ; p!|nk as k — co}. Now we define a number §(A)
associated with the UHF C*-algebra A, known as supernatural number, by a formal

product:

s(A) = [ »r™

p:prime
This number gives a complete invariant for the class of UHF C*-algebra by the following

result of Glimm:

Theorem 2.2.9. Let A and B be two UHF C*-algebras. Then A is isomorphic to B if
and only if 6(A) = 4(B).

In particular, we are interested in the class of N°° UHF (C*-algebras obtained as infinite
tensor product of finite dimensional matrix algebra My (C). More explicit, for a fixed

pair of positive integers d and N, consider the infinite lattice Z¢, then we are interested in

A= My (C)

. d
jel,

A can be interpreted as inductive limit of N by N matrix algebras My (C) using embed-
ding of My (C) to Mp2(C) as A - A® I. For details we refer [22], 37, 36].

2.2.3 Locally Convex Topologies in B(H)

For a Hilbert space H, the Banach space of all bounded linear operators B(#), is usually
equipped with the operator-norm topology. There are many other important topologies
with respect to which B(#) is a locally convex topological vector space such as weak,
strong, ultra-weak and ultra-strong topologies. The algebra of operators B(H) is complete
in each of these topologies. Here we give the details of these topologies:

Norm Topology: The norm of a bounded operator defines a topology on B(#) called
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the norm topology. The function ' — ||T'|| is a semi-norm on B(#H) and give rise to the
topology of uniform convergence over bounded sets of H.

Strong (Operator) Topology: For every h € H, the function T' — ||T'h|| is a semi-norm
on B(H). The collection of all these semi-norms determine the Hausdorff locally convex
topology is called the topology of strong point-wise convergence. A base of neighborhoods

around origin for this topology is obtained by taking subsets
{T € B(H) ; |[Thi|]| <e, 1<i<n},

for each finite sequence (h;)}; of elements of H and € > 0. We can also define the strong
topology as the coarsest topology on B(H) such that the maps ' — Th from B(#) into
‘H are continuous.

Weak (Operator) Topology: For h,g € H, the collection of the semi-norms T —
| (Th,g) | determine the Hausdorff locally convex topology know as weak topology or the
topology of weak convergence. In view of polarization identity, we see that the semi-norms
T — | (Th, h) | are enough to define weak topology. A base of neighborhoods around origin
for this topology is obtained by taking subsets

for each pair of finite sequences (h;)}_;; (g:)i_, of elements of H, e > 0. We can also define
the weak topology as the coarsest topology on B(#) such that the maps 17" — (T'h, g) from
B(H) into C are continuous.

o0
Ultra-Strong Topology: Let (h;)2; be a sequence of elements of H such that >_ ||h;]|? <
i=1

1
00 00 2
oo. Since the series Y || Th;||? is convergent, the map T — (Z |Th;]|?) , defines a semi-
i= i=1
norm on B(H). The collection of all these semi-norms determine the Hausdorff locally

convex topology called ultra-strong topology. A base of neighborhoods around origin for
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this topology is obtained by taking subsets

{TGB(H); SOITRP <e, 1§k§n},
i=1
for each € > 0 and for every finite family of sequences {(h})2,, (h3)2,, -+, ()2} of

elements of H such that for all k : 1 < k < n,

oo
DI < oo
i=1

This is the topology for which the maps, T — (Thy,Ths,---) from B(H) into direct sum
@ H; : H; = H for all i, are continuous.
Ultra-Weak Topology: In view of Cauchy-Schwarz inequality and Hoélder’s inequality

we see that, for each pair of sequences (h;):°; (gi)72; in H such that
o¢] o
Do lhill? < oo, Y llgill* < oo
i=1 i=1

o0

the map 7" — | > (Thi, g;) | defines a semi-norm on B(#). The collection of these semi-
i=1

norms determine the Hausdorff locally convex topology called ultra-weak topology. A base

around origin for this topology is given by taking subsets

{TGB(H>; > (Thkgl) | <€, 1§k§n},

=1

for each € > 0 and for every finite family of pair of sequences
{((R)15 (91)20), ()45 (97)520), -+ 5 (h)345 (97)321) } of elements of # such that for

every k:1 <k <n,

oo

oo
k k
D IBEP < o0, D llgE|? < oo
i=1

i=1
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[e.9]

This topology is also coarsest for which the maps T'— > (T'h;, g;) from B(H) into C are
i=1

continuous.

The above topologies are compared to give the following diagram, where the symbol <

means “finer than”:

Norm topology < Ultra-strong topology < Strong topology
A A

Ultra-weak topology < Weak topology

For infinite dimensional Hilbert space, the symbol < can be taken to mean ”strictly finer
than”. The strong(respectively weak) and ultra-strong(respectively ultra-weak) topologies

coincide on bounded subsets of B(H).

2.2.4 von Neumann Algebras

For a Hilbert space H, we have discussed many important topologies on B(H) with respect
to which it is a locally convex topological vector space. B(#) is complete in each of these
topologies but a general C*- subalgebra A of B(#) need not be so. It is known that
A is complete in all of the locally convex topologies except norm topology if and only
if it is complete in any one of them and in that case A is said to be a von Neumann
algebra. Furthermore, the strong(respectively weak) and ultra-strong(respectively ultra-
weak) topologies coincide on norm bounded convex subsets of A.

For a von Neumann algebra A, denote by A’, the commutant of A which is the set
{a € B(H) such that ax = za, V z € A} and we have A” = (A’)’. The following result

due to von Neumann is of fundamental importance in the study of von Neumann algebras.

Theorem 2.2.10. (Double commutant theorem) Let A be a non-degenerate C*-
algebra in B(H). Then A" = A = A°, where A” and A” are closure of A in weak and
strong operator topologies of B(H) respectively.

In particular, any unital C*-algebra A is a von Neumann algebra if and only if A" = A.
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A state ¥ on a von Neumann algebra A is said to be normal if ¢)(x,) increases to
¥ (x) whenever z, increases to = for a net {z,} of positive elements in 4. We call a
linear map ¥ : A — B, where B is a von Neumann algebra, to be normal if whenever z,
increases to « for a net {x,} of positive elements in .4, we have ¥(z, ) increases to ¥(z) in
B. It can be seen that a positive linear map is normal if and only if it is continuous with
respect to the ultra-weak topology. In view of this fact, we shall say that a bounded linear
map between two von Neumann algebras is normal if it is continuous with respect to the
ultra-weak topologies. Normal states and more generally normal positive linear maps like
normal *- homomorphisms play a important role in the study of von Neumann algebras.

The following result describes the structure of a normal state.

Theorem 2.2.11. A state 1) on a von Neumann algebra A C B(H) is normal if and only

if there is a positive trace-class operator p on H such that ¥(x) = tr(pzx) for all z € A.

For a von Neumann algebra A C B(#), A Banach space A, is called the predual of A
if the Banach dual (A,)* with norm topology coincides with A and with respect to weak-x
topology it coincides with ultra-weak topology of A. In fact, Sakai [35] showed that a
von Neumann algebra can be characterized in the class of C*-algebras by the property of
having a predual as a Banach space.

We give the explicit description of the predual of A C B(H). Since from a Theorem
we see that A, is the some quotient space of By (H). Let B5%(H) and Bj* (H) stand
for the real linear space of all bounded self-adjoint operators and all trace-class self-adjoint
operators on H respectively. Denote by A%% the subset of all self-adjoint elements in .A.
Let A$% be the predual of A%%. We define an equivalence relation ~ on Bj(H) by saying
p1 ~ pz if and only if tr(pz) = tr(pez) for all 2 € A. We denote by A+ the closed
subspace {p € Bi(H) ; p ~ 0}. For p € Bi(H), we denote by p its equivalence class with
respect to ~ and ||5|| = inf,,||n[/1. By (A)*% we shall denote the set of all self-adjoint
elements in A*. Clearly (A1) is a closed subspace of B{®(#) and so one can make

sense of the quotient space B (H)/(AL)%®.
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The following theorem determines the predual explicitly.

Theorem 2.2.12. (i) There exists an isometric isomorphism

Bi(H)

= Qy,

where Q4 denotes the space of all normal complex linear bounded functional on A.

(ii) There exists an isometric isomorphism

sa. ~ BI"(H) o
A* = W = S)_A&w7

where Q gs.a. denotes the space of all normal complex linear bounded functional on

As.a.‘

The canonical identification between A and (Bj(H)/AL)* is given by, © — 1, where
V5(p) = tr(pz). Moreover, an element j of By (H)/AL is canonically associated with v
in Q4 where ¢;(x) = tr(pz),z € A.

For quantum dynamical semigroups the condition of complete positivity is fundamental
and it has very important mathematical and physical consequences. We give the brief

introduction to completely positive maps.

2.3 Completely Positive Maps

Recall that a linear map 7T between two unital x-algebras A and B is said to be positive
if T'(z*x) > 0in B for all z € A. A general element z € A® M,,(C) can be written in the

form

n
Z Tij & Ez‘j,

ij=1
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where E;; is the n x n matrix with all entries 0 except 1 at the (ij)™ place.

For n > 1, 1 <4,j < n, define the linear operator

T : A® My (C) — B® M, (C)
(2.2)

It is not necessary that 7" be positive.

Definition 2.3.1. Let A and B be x-algebras. A map T : A — B is called n-positive
if T as defined above is positive. If T™ is positive for all n > 1 then T is called

completely positive.

Proposition 2.3.2. Let T : A — B be a completely positive linear map. Then for all

n>1, (x;)i, C A, (yi)i—; C B, we have

n
>y T(ajzy)y; > 0.

ij=1

Proposition 2.3.3. Let (1,)n>1 be a sequence of completely positive maps T, : A —
B(H). Suppose for every x € A, the sequence (T, (x))n>1 converges weakly. Then the map
T, : A— B(H) defined by

T(a) = lim T),(a)

n—o0

18 completely positive.

Any x-homomorphism is a completely positive map, but converse is not true. The following
theorem by Stinespring shows that completely positive maps essentially come from x*-

homomorphisms.

Theorem 2.3.4. (Stinespring) For a C*-algebra A, let T : A — B(H) be a completely

positive map. Then there exists another Hilbert space K, a representation m : A — B(K)
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and V€ B(H,K) such that the set {m(x)Vu : z € A, ue H} is total in K and the map
T has the form
T(x) =V*r(x)V, forall ze A

Such a triple (K, 7, V) is called Stinespring’s triple associated with 7" and is unique
in the sense that if (K',7’,V’) is another such triple then there is a unitary operator
I': K — K’ such that 7/(z) = I'm(a)"* and V' = T'V. Furthermore, if A is a von Neumann
algebra and T is normal, 7 can be chosen to be normal. Any positive map T': A — B
is completely positive if either of A or B is abelian. We conclude on completely positive
maps by stating the characterization theorem by K. Kraus for ultra-weakly continuous

(i.e. normal) completely positive maps.

Theorem 2.3.5. (Kraus) A linear map T : B(H) — B(K) is normal and completely

positive if and only if it can be expressed in the form

T(z) = i V>aV,
n=1

o0
where (V)22 is a sequence in B(K,H) such that the series Yy, V¥xV,, converges strongly.
n=1

In the semigroup theory, a class of operators called conditionally completely positive maps
play an important role. We now introduce this notion, which is related to completely

positivity.

Definition 2.3.6. A linear map T on a *-algebra A is called conditionally completely

positive (CCP) map if the map T defined as in (2.2)) satisfies the following inequality

T (%) — *T™ (z) — T () z + 2*T™ (1)z > 0, (2.3)
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for everyn >1 and x € A® M, (C).
The following proposition shows that every completely positive map is CCP.

Proposition 2.3.7. A map T : A — A is CCP if and only if for each pair of finite

sequences (z;)ly, (yi)i~y in A, we have

n n
> yiT(xfz))y; > 0, whenever Y xyy; = 0.
i,j=1 i,j=1

In chapter 3, we shall see that bounded CCP maps are the generator of uniformly contin-

uous completely positive semigroups and the converse is also true.

2.4 Semigroups on Banach Spaces

For this section, X stands for a complex Banach space. The notion of semigroup of
bounded linear operators has its roots in the basic observation that the Cauchy functional
equation f(t+s) = f(t)f(s) : £(0) = 1 has only continuous solutions of the form €', a € R.
In general, the theory was developed by taking into account the Cauchy problem in infinite
dimensional framework, that is find all the maps 7 : R, — B(X) satisfying the functional
equation

Tirs(a) = Te(Ts(a)) for alla € X',V ¢,5 >0, (2.4

To(a) = a.
Definition 2.4.1. A family T = (T¢)i>0 of bounded linear operators on a Banach space

X is called one-parameter semigroup or simply semigroup on X if it satisfies the

functional equation (2.4).
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Definition 2.4.2. The infinitesimal generator or simply generator of a semigroup

(Tt)t>0 1is the linear operator G : X — X defined by

1
Dom(G) = {x € X ; such that ltif(r)l 2(72 — Dz e:m'sts}

1 d
and Gz = 1}&)1 ;(7} — DNz, x € Dom(G). We write T; = €' and G = T
G generates T .

T¢, whenever
t=0

Definition 2.4.3. A semigroup (T;)i>0 on X is called uniformly continuous (norm

continuous) semigroup if the map
Ry 2 t—=T € B(X)

is continuous with respect to the norm topology on B(X).

Theorem 2.4.4. A semigroup (T¢)i>0 on X is uniformly continuous if and only if the

generator G is bounded.

2.4.1 Strongly Continuous (Cj)-Semigroups

To describe many important physical processes we come across unbounded operators and
thus to describe the dynamics of these physical systems, uniform continuity is too strong

requirement. So we study the semigroups with some weak continuity conditions.

Definition 2.4.5. A semigroup (T;)i>0 on a Banach space X is called strongly contin-
uous semigroup if the maps

Ryst—T(x)e X

are continuous for every x € X. Equivalently, we can say if the map t — T; is continuous

with respect to the strong operator topology on B(X).
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Every strongly continuous semigroups (7;):>0 is quasi-bounded, that is there exists

constants w € R and M > 1 such that for all ¢ > 0
(T < Me.

A Semigroup (7;)¢>0 is called isometric or contractive if each 7; is so. For a strongly
continuous contraction semigroup (7;)+>0, resolvent of the generator G is given by Laplace

transform of the semigroup, that is for ReA > 0,

o0

R\ G) = / e MTi(x) dt.

0

Lemma 2.4.6. For the generator G of a strongly continuous semigroup (Ti)i>0, the

following properties hold:

(1) For everyt >0 and x € Dom(G), we have Ti(x) € Dom(G) and

Ti() = Ti(G) = G(Ti)). (25)

Ts(x) ds € Dom(G) and

o o

(1) For everyt >0 and z € X, we have
t t

Tow) -z = G(/E(x) ds) = /7;((}3:) ds, if © € Dom(G).  (2.6)
0 0

Theorem 2.4.7. For a strongly continuous semigroup (T;)¢>0, the generator G is a closed

and densely defined linear operator that determines the semigroup uniquely.

It is often seen that the results which are true for the generator, it is sufficient if we could

prove the same for some core for the generator. So life becomes easy if we are able to
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identify a nice core for the generator. Proving a set D to be a core for G it is equivalent

to prove that D is dense in Dom(G) in the graph norm
[lr = [lz]] + |G-

Nelson in [28] gave a useful criteria for a subspace to be a core for the generator G.

Proposition 2.4.8. (Nelson) Let G be the generator of the strongly continuous semi-
group (T¢)e>0 on X. A subspace D of Dom(G) which is dense in X and invariant under

the semigroup (T¢)i>0 is a core for G.

We now state the most important theorem in the theory of strongly continuous semigroups,
which characterize the strongly continuous semigroups in terms of the generator. Hille-
Yosida in [I8], [40] proved it for the contraction semigroups, which then extended for the
general case by Feller-Miyadera-Phillips. Lumer-Phillips in [26] reformulated this result

in terms of dissipative operators.

Theorem 2.4.9. (Hille-Yosida) A linear operator G is a generator of a strongly con-
tinuous contraction semigroup (T¢)i>0 on a Banach space X if and only if G is closed,
densely defined and for every X > 0, we have A € p(G) and the resolvent of G at \
satisfies: ||R(A, G)|| < %

The Lumer-Phillips characterization of strongly continuous semigroups in terms of dissipa-
tive operator is important because it does not require the explicit knowledge of resolvent.
For the completion of hierarchy of generation theorems similar to Theorem [2.4.9] we are
incorporating the following results.

Let X* be the Banach dual of X. Denote by (z,z*) or (z*,z), the value z*(z), where
x € X and z* € X™*. For every x € X, define the dual set F(x) C X* of z by

F(z):={z" € X*; (z,2%) = |2"|* = ||z[*}
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Definition 2.4.10. A linear operator G is called dissipative if for each x € X there
exists * € F(x) such that Re(Gz,z*) < 0.

Remark 2.4.11. In particular, when X is a Hilbert space, then F(x) = x and a linear
operator G is dissipative if for each x € Dom(G), we have (x,Gx) <0, that is if —G is a

positive operator.

Theorem 2.4.12. A linear operator G is dissipative if and only if for each x € Dom(G)
and A > 0, we have
(AL = G)z|| = Alj].

Theorem 2.4.13. (Lumer-Phillips) A linear operator G is a generator of a strongly
continuous contraction semigroup (T;)i>0 on a Banach space X if and only if G is closed,

densely defined, dissipative and for all A > 0, Range(A] — G) is dense in X.

Following theorems tells the important fact that how the convergence of strongly continu-
ous semigroups is related to the convergence of generators as well as with the convergence

of their resolvents.

Theorem 2.4.14. Suppose (ﬁ(n))tzo and (T¢)i=0 are strongly continuous contraction

semigroups on a Banach space X with generators G™ and G respectively, then (7;(71))@0

converges strongly to (T;)¢>o if and only if (A —G™) ™1 converges strongly to (\I —G) ™.

Theorem 2.4.15. (Chernoff) Let (ﬁ(n))tzg and (T¢)e>0 are strongly continuous con-
traction semigroups on a Banach space X with generators G and G respectively with a

common core D such that Gz — Gz for all z € D. Then (ﬁ(n))tzg converges strongly
to (ﬁ)tZO-
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Chapter 3

Quantum Dynamical Semigroups and

Quantum Stochastic Calculus

In the first part of this chapter we will discuss about quantum dynamical semigroups
on C*-algebra or von Neumann algebras. The possible structure of the generator of such
semigroups has been completely characterized for norm-continuous semigroups in [25], [17]
and [§]. Kato [22] and Davies [12], under some assumption showed that the generator of
stongly continuous quantum dynamical semigroups on B(H) is of similar form. There are
various attempts to understand the generator of strongly continuous quantum dynamical
semigroups but still it is not well understood. We give the Chebotarev’s construction of
quantum dynamical semigroups from Lindbladian form which was developed in [4] and
discuss the Chebotarev-Fagnola conditions [6] for such semigroups to be conservative.
Details can seen in the expositroy article [16]. In the second part we briefly discuss theory
of quantum stochastic calculus developed by Hudson and Parthasarthy and present the
quantum stochastic dilations of completely positive semigroups. The details can be seen

in [36] 29] and reference there in.

33
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3.1 Quantum Dynamical Semigroups

In this section, we give the introduction to semigroups of completely positive maps and
also discuss the sufficient conditions [6] for the semigroup to be identity preserving (i.e.
conservative). Let H be a separable Hilbert space and B(H) denotes the von Neumann

algebra of bounded linear operators on H.

Definition 3.1.1. A quantum dynamical semi-group (QDS) on a C*-algebra A C
B(H) is a semi-group T = (T¢)i>0 of completely positive maps on A with the following

properties:
(1) To(z) =z, for all x € A.
(13) Te(I) <1, for allt > 0.
(#i2) Ty is strongly continuous for all t > 0.
(v) for each a € A, the map t — Ti(x) is continuous with respect to strong topology on

A.

In case of von Neumann algebra, the continuity conditions (iii) and (iv) change to ultra-
weak continuity that is 7; are normal maps and for each a € A the maps ¢t — T;(a) must
be continuous with respect to ultra-weak topology on A. A QDS is called Markov or
Conservative if 7;(I) = I for every t > 0. The generator of a QDS defined similarly as
in the Definition with existence of limit in respective topologies.

Example 3.1.2. Let (S)t>0 be a strongly continuous contraction semigroup on H. The

family of linear operators Ty defined by
Ti(z) = SfxS;

forms a quantum dynamical semigroup. All the continuity properties of T follow from the

strong continuity of S; and the result [2.3.5,
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We call a QDS uniformly continuous (norm-continuous) if in addition to the con-
ditions (¢) and (i%), in (4i7) maps are continuous with respect to the norm topology. For
uniformly continuous QDS, the generator is bounded conditionally completely positive
map and has nice structure. The structure of uniformly continuous QDS on hyper-finite
von Neumann algebras was characterized by Lindblad in [25] in term of the generator.

The generator is called ”Lindbladian” by many authors.

Theorem 3.1.3. (Lindblad) A bounded operator L on a von Neumann algebra B(H) is
the infinitesimal generator of a uniformly continuous QDS (T¢)i>o0 if and only if it can be
written as

L(x) =Y LyxLy+ Gz + G for all x € B(H),

n=1
where Ly, ’s and G are the elements of B(H). The series on the right side converges strongly
and —Re(G) generates a contraction semigroup.

In case QDS is unital, we have

1 o0
Re(G) = —3 > LiLn.
n=1

We state the structure theorem for uniform continuous QDS on C*-algebras which was

proved by Christensen-Evens in [g].

Theorem 3.1.4. (Christensen-Evans) Let (7;);>0 be a uniformly continuous QDS on a
C*-algebra A C B(H) with L as its generator. Then there exist a completely positive map
U of A into the ultra-weak closure A” and an operator k in A" such that the generator is
given by

L(z)=Y(z)+ k*z + zk.
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Since W is completely positive, by Stinespring Theorem there exists a Hilbert space
K, a unital x-representation 7 : A — B(K), L € B(H,K) and a self-adjoint element H of

A" such that the generator £ is given by
1 1
L(z) = L*r(x)L — Q(L*L —L(1))x — ix(L*L — L(1)) +i[H,x], forallz € A. (3.1)

This representation is minimal in the sense that {(Lz — w(z)L){ : £ € H ,x € A} is total
in K.

Strongly Continuous Quantum Dynamical Semigroups:

There is no complete characterization of the generator of a general strongly continuous
QDS. The problem of constructing strongly continuous QDS with unbounded generator
could be treated with the Theorem [2.4.9] at least in the case when the domain of the
generator is an algebra so that conditional complete positivity makes sense. However in
general the infinitesimal generator £ may not makes sense but can be understood as an
unbounded quadratic form on the Hilbert space H.

The predual semigroup of a QDS 7 on A is the semigroup (S;)¢>0 of operators in A,
defined by (Si(z4))(z) = x«(T(z)) for every x € A and every z, € A..

Davies in [I1] constructed the minimal predual semigroup on the space of positive trace-
class operators (density matrices) in some Hilbert space #H, a method similar to that of
Kato, Chebotarev in [4] constructed the minimal QDS on B(H) by an iteration method.
The only assumption on the G and L, is the following:

Assumption: The operator G is the infinitesimal generator of a Cjy contraction semigroup
S = (St)i>0 on H. The domain of operators (Ly)22, contains a core D of G. For all

u,v € D, we have

(u, Gv) + (Gu, v) + i(Lnu, Lyv) =0. (3.2)

n=1
Theorem 3.1.5. For all x € B(H), Consider the sesquilinear form L(x) on H with the

domain D x D given by
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(u, L(z)v) = (u, zGv) + (Gu, zv) + Z(Lnu,anv>

n=1

Suppose the above assumption (3.2)) holds, then there exists a minimal QDS (ﬁ(mm))tzo

associated with this form, in the sense :
t
(u,ﬁ(mm) (z)v) = (u, zv —l—/ T (2))o)ds (3.3)
0

forallt > 0,u,v € D and all x € B(H). The QDS (ﬁ(min))tzo is minimal in the sense
that for any QDS (T;)i>0 which satisfies equatz’on we have

ﬁ(min) (z) < Ti(z) for all z € B(H), t > 0.

Sketch of the proof:
Equivalent condition for the semigroup 7 = (7¢):>0 to satisfy the equation is that for
all t > 0,u,v € D and all x € B(H),

0o ¢

(1 Ti(w)e) = (S 80) + 3 [ (LuSimat, Tla) L) ds.
=1 0

Moreover, there exist a sequence (7;(71))@0 of linear contractions on B(#) defined by

(u, ’7;(0) (z)v) = (Sru, 2Sv)

o ¢
<u77;(n+1)( ) = (Spu, xSpv) +Z/<LnSt—su7ﬂ(n))(l‘)LnSt—s@dS
n=1j

for all t > 0,u,v € D and all x € B(H).
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(n))tzo are completely positive and normal and satisfy 7;(71) (I) <

Furthermore the maps (7;
I for every n,t > 0. The sequence (ﬁ(n) (x))e>0 is non-decreasing for every positive
x € B(H). Since the (7;("))@0 are contractive, the limn_mo(u,’ﬁ(n) (x)v) exists. Setting
<u,’7;(mm) (x)v) = limn_wo(u,ﬁ(n)(x)i)), the family (7;)}% satisfies the equation It

can be checked that for any QDS (7;):>0 which satisfies equation we have
T (@) < Tile)

for all t > 0.

Corollary 3.1.6. Suppose the minimal QDS ((ﬁ(mm))tzo constructed in the theorem
is conservative (Markov). Then it is the unique solution to the equation .

Conservative Quantum dynamical semigroup:

In view of the corollary one can give reasons to be interested in understanding
the conservative property of a QDS. In a series of papers [5] [7, 6], Chebotarev and
Fagnola simplified the sufficient conditions for the quantum dynamical semigroup to be

conservative. We give the one of these conditions which appeared in [6].

Theorem 3.1.7. In addition to assumption[3.3, suppose there exists a self-adjoint opera-
tor C with domain coinciding with the domain of G and a core D for G with the following

properties:

(i) For allu € Dom(G), there ezists a sequence (uy)n>0 of elements of D such that both

(Gup)n>0 and (Cuy)n>0 converge strongly.
(1) The subspace L,(D) C Dom(C) for alln > 1.
(7i1) There exists a positive self-adjoint operator ®, with Dom(G) C Dom(®) such that

for allu € D, we have

— 2Re(u, Gu) = Y _ || Lyu||* = (u, du) < (u, Cu). (3.4)
n=1
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(iv) There exists a positive constant k, such that for all w € D, we have

2Re(Cu, Gu) —{—Z Lyu,CLyu)y <k (u,Cuy) . (3.5)
n=1

Then the QDS (ﬁ(min))tzo constructed in theorem 18 conservative.

The second way to understand the conservativity of QDS is by getting the knowledge
about resolvent of the minimal QDS (ﬁ(mm})tzg. Recall from Definition that for
A € p(T), the resolvent of T at A : Ry(T) = (M — T)~!. The resolvent of the minimal
QDS (ﬁ(mm))tzo is characterized by the equation:

(u, R (2)0) = / e (o, TLm) (V) ds (3.6)
0

with € B(H) and u,v € H.

3.2 Quantum Stochastic Calculus on Symmetric

Fock Space

In this section we discuss about the quantum stochastic calculus on Boson Fock space
developed by Hudson and Parthasarathy [20]. This gives a very powerful tool to study

QDS on open systems by incorporating the noise in the Fock space.

3.2.1 Tensor Product of Infinitely Many Hilbert Spaces

Let {#H; : i € Z} be the collection of Hilbert spaces indexed by Z and {enz} be an
orthonormal basis for H;. Let S be a set of all sequences i = {n;} of positive integers,

that is the k' term in any sequence is the suffix of a basis vector of Hj. Consider the
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vector space W which is spanned by the finite linear combinations of the elements from
the set
Wo={en=eV@eP e o ... : acs}.

ni ng ns

Here, uw € W if u = Y n(n)es such that n(n) : S — C is a map taking value zero for

all sequences but finitely many. Define the inner-product between any two vectors of W,

u=> n(n)es and v => ((n)es as
(u,v) =Y _n(@)¢(n)

Definition 3.2.1. The completion of the vector space W with respect to the metric given
by above inner-product is the tensor product of Hilbert spaces {H; :i € Z}. It is denoted

by @ Hi and the vector ey is denoted by @) e;")
iel iel

The set Wy = {ez : n € S} forms an orthonormal basis for (X) #H;. The tensor product of
el

infinite many Hilbert spaces defined above is in general non-separable. The other definition

which has comparatively vast applications requires the choice of distinguished unit vectors

u; in each H;. Let us choose an orthonormal basis {e,(f} : i € I} for H; such that egi) = Uu;

forall7 e I.

Definition 3.2.2. Let us consider the inner-product subspace W' spanned by the orthonor-

mal vectors ey € Q H; such that n; = 1 i.e. eﬁf} = wu; for all but finitely many i € I.

i€l
The completion of the inner-product space W' is called infinite tensor product of the
Hilbert spaces {H; : i € I} with respect to the stabilizing unit vectors {u;}. Convention:

HE =C, H® =H.

Symmetric Tensor Product
In a given physical system of n identical particles which are indistinguishable from one
another, a transition may happen resulting in interchange of some physical properties, like

position or momentum and such a change may not be possible to detect by any of the
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observable. Since the events concerning n indistinguishable particles are described by the

projection in H®". Such transitions when occur in i** and j** particle then we should not
n

distinguish between ® P,and PIQPR---QP,_4 ®FJJ ®Pi+1 . -®Pj_1 