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ABSTRACT

The efforts made in the dissertation are to understand strongly continuous quantum

dynamical semigroups(QDS) by yielding examples of Lindbladians which could generate

Markov semigroups. Such semigroups come into picture when one studies the dynamics of

open quantum systems. The QDS, which are non-commutative analogue of the expectation

semigroup of Markov processes in the classical case, are the semigroups of completely

positive maps on C∗-algebras or von Neumann algebras satisfying continuity conditions.

The uniformly continuous QDS are completely characterized on hyperfinite von Neumann

algebras by Lindblad and on C∗-algebras by Christensen, Evans by a bounded generator

known as Lindbladian.

However, for the case of a strongly continuous QDS, structure of the generator is

not well understood. Davies, Kato, Chebotarev, Fagnola showed that under certain

assumptions, unbounded generators have a similar Lindblad form. Conversely, in various

attempts, given a Lindblad like unbounded operators, the QDS were generated but these

QDS need not be Markov(Conservative).

Here, we study a class of Lindbladians expressed as bilinear forms on a GNS space

of a UHF algebra. Using quantum stochastic dilations it was proved that the Hudson-

Parthasarathy (HP) type quantum differential equation associated with Lindblad form

exhibits unique unitary solution. The QDS thus constructed by taking the vacuum

expectation semigroup of the homomorphic co-cycle is conservative, therefore is the unique

C0-contraction semigroup associated with the given form.

Next, for a class of Lindbladians on UHF algebra, existence of associated Evans-Hudson

flows was proved. The expectation semigroup associated with the given Lindbladian is

Markov. The arguments used here to solve stochastic differential equations associated

with the Lindbladian reveal that the local structure of the UHF algebra is immensely

helpful.
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Chapter 1

Introduction

In this thesis the main objects of study are quantum dynamical semigroups. Quantum

dynamical semigroups (QDS) are the semigroups of completely positive maps on nice

algebras of operators satisfying some continuity conditions. Let H be a separable Hilbert

space and B(H) denotes the von Neumann algebra of bounded linear operators on H.

Definition. A quantum dynamical semigroup on a von Neumann algebra A ⊆ B(H) is a

semigroup T = (Tt)t≥0 of completely positive maps on A with the following properties:

(i) Tt(I) ≤ I, for all t ≥ 0.

(ii) Tt is a ultra-weakly continuous operator i.e. normal for all t ≥ 0.

(iii) for each a ∈ A, the map t → Tt(a) is continuous with respect to the ultra-weak

topology on A.

A QDS is called Markov or Conservative if Tt(I) = I for every t. QDS appear naturally

when one studies the evolution of irreversible open quantum systems describing the time

evaluation. The notion of QDS extends the semigroups of probability transition maps for

classical Markov processes.

The generator of a semigroup (Tt)t≥0 on a Banach space is defined as the limit of operators
Tt − I
t

as t tends to 0 and write {Tt = etL : t ∈ R}. For a uniformly continuous (or

1
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norm continuous) semigroup on C∗ or von Neumann algebras, the generator is bounded,

conditionally completely positive map. In [25], Lindblad proved that for hyper-finite

von Neumann algebras, which includes the case of B(H), that a bounded operator L is

a generator of a uniformly continuous QDS if and only if L can be written as L(X) =

φ(X)+G∗X+XG, where φ is completely positive. In the same year, Gorini, Kosaakowski

and Sudarshan [17] proved the similar result for finite-dimensional Hilbert spaces.

Theorem. [25, 17] A bounded map L on the von Neumann algebra B(H) is the infinites-

imal generator of a uniformly continuous QDS (Tt)t≥0 if and only if it can be written

as

L(X) =

∞∑
n=1

L∗nXLn +G∗X +XG, for all X ∈ B(H),

where Ln’s and G are in B(H) and the series on the right side converges strongly, with G

generator of a contraction semigroup in H. The QDS is Markov if and only if

Re(G) = −1

2

∞∑
n=1

L∗nLn.

In [8] Christensen and Evans proved that for general C∗-algebras, the generator of a uni-

formly continuous QDS exhibits the similar structure. More precisely, if A is a C∗-algebra

acting on a Hilbert space H and suppose that {Tt = etL : t ∈ R} is a norm continuous

semigroup of completely positive maps of A into A, then there exists a completely positive

map θ from A into the ultraweak closure Ā of A and an operator k in Ā such that the

generator L is given by L(a) = θ(a) + k∗a + ak. However, often the QDS governing the

dynamics of physical system are not uniformly continuous, rather strongly continuous.

For the case of a strongly continuous QDS, structure of the generator is not well un-

derstood. The problem of constructing QDS with an unbounded generator L, could

be handled using Hille-Yosida theorem as it is done by Matsui in [27] for certain class

of semigroups on UHF algebras. In general, the infinitesimal generator L is not given

explicitily (with some manifold as a domain), but it is given formally which is called
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formal Lindbladian with unbounded coefficients. Kato [22] and Davies [11] studied some

unbounded operators or forms similar to the Lindblad form on B(H) and gave a con-

struction of one-parameter semigroups, so-called minimal semigroup. However, these

semigroups need not preserve the identity, that is need not be Markov. In [5], Chebotarev

listed out some sufficient conditions for a QDS to be conservative. Later on these conditions

are simplified in [7, 6] by Chebotarev and Fagnola. Generally such unbounded operator

or form referred as Lindbladian. Under certain assumptions, Davies in [12] showed that

the unbounded generator have a similar form as for the bounded case, thus extends the

Lindblad’s result to strongly continuous QDS. Holevo in [19] investigated the structure of

covariant QDS. An expository article giving the development of QDS theory is written

by Fagnola [16]. In [2], Bahn, Ko and Park discuss conservative QDS generated by

noncommutative unbounded elliptic operators. Recently, in [1] authors give a structure

theorem for ultra-weakly continuous QDS on B(H) under the assumption of existence of

rank one projection in the domain of generator.

In this thesis, we have considered Hudson-Parthasarathy (HP) and Evans-Hudson (EH)

quantum stochastic differential equations associated with unbounded Lindbladians and

construct the QDS by taking vacuum expectation of homomorphic cocycles. There are

various attempts to study quantum stochastic differential equations with unbounded co-

efficients, for example see [16, 36] and references therein.

In this introductory chapter, we have given a historical background of the development

of the theory of Markov semigroups and their dilations. The main results of the thesis is

discussed briefly.

In chapter second, the more basic theory which are the results from Hilbert space theory,

von Neumann algebras, C∗-algebras, main results as well as characterization of Completely

positive maps on von Neumann algebras are included and general semigroup theory on

Banach spaces are given to make the thesis self-contained.

In the third chapter of the thesis, then the notion of QDS, characterization of uniform

continuous QDS are given. The theory of strongly continuous QDS is presented. As the
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last section of this chapter, the theory of quantum stochastic calculus developed by Hudson

and Parthasarathy [20] is discussed briefly.

In the fourth chapter, the results proved in [34] are explained. Briefly, a class of unbounded

Lindblad form are defined on the GNS space of UHF C∗-algebra and properties of structure

maps are studied. Finally, exploring the local structure of UHF algebra, it is shown that

the associated HP equation admits a unitary solution. This implies that the expectation

semigroup of the homomorphic co-cycle implemented by this unitary is conservative and

therefore the unique (also minimal) C0-contraction semigroup associated with the given

form.

Main Results

Before listing the main results, we shall introduce some notions and give important

observations for sake of clarity.

For a separable Hilbert space H, let Γsym(H) denotes the symmetric Fock space over H.

For any u ∈ H, we denote by e(u), the exponential vector in Γsym(H) associated with u:

e(u) =
⊕
n≥0

1√
n!
u⊗

n
.

Given a contraction T on H, the second quantization Γ(T ) on Γsym(H) is defined by

Γ(T )e(u) = e(Tu) and extends to a contraction on Γsym(H). Moreover, if T is an isometry

(respectively unitary), then so is Γ(T ).

Let us write Γsym for the symmetric Fock space Γsym(L2(R+,k)), where k is a Hilbert

space with an orthonormal basis {el : 1 ≤ l ≤ m}.

Let us consider the UHF C∗-algebraA, the C∗-inductive limit of the infinite tensor product

of the matrix algebra MN (C),

A =
⊗
j∈Zd

MN (C)
c∗

.
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For x ∈MN (C) and j ∈ Zd, x(j) denotes an element of A with x in the jth component and

identity everywhere else. We shall call the elements of the form
∏
i≥1 x

(ji)
i to be simple

tensor elements inA. For a simple tensor element x inA, let x(j) be the jth component of x.

Support ‘supp(x)’ of x is defined to be the subset {j ∈ Zd;x(j) 6= I}. For a general element

x ∈ A such that x =
∑∞

n=1 cnxn with simple tensor elements xn and complex coefficients

cn, define supp(x) =
⋃
n≥1 supp(xn). For any ∆ ⊂ Zd, let A∆ denotes the ∗-sub algebra

generated by the elements of A with support in ∆. For j = (j1, j2, · · · , jd) ∈ Zd, define

|j| = max{|ji| ; 1 ≤ i ≤ d} and set ∆n = {j ∈ Zd; |j| ≤ n}, ∂∆n = {j ∈ Zd; |j| = n}.

We say an element x ∈ A is local if x ∈ A∆p for some p ≥ 1. Denote by Aloc, the dense

∗-algebra generated by local elements. Consider the unique normalized trace tr on A. The

algebra elements in A are represented as vectors in the Hilbert space h0 = L2(A, tr), the

GNS Hilbert space for (A, tr), and as a bounded operator on h0 by left multiplication.

Consider a formal element of the type

r :=

∞∑
n=1

Wn such that

∞∑
n=1

‖Wn‖ =∞,

where each Wn belongs to A∂∆n . Let us denote formally

∞∑
n=1

W ∗n by r∗.

Now, if we set Cr(x) = [r, x] =
∞∑
n=1

[Wn, x] for x ∈ Aloc, clearly it is well defined since

[Wn, x] = 0 for all n > m when x is in finite dimensional algebra A∆m ⊆ Aloc. We have

observed that the operator (Cr,Aloc) is densely defined, closable operator along with its

adjoint. Furthermore, the operator G := −1

2
C∗r C̄r generates a C0-contraction semigroup

St in h0.

Now consider the Lindblad form, L(X), where X ∈ B(h0) with the domain Aloc ×Aloc ⊆
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Dom(G)×Dom(G) given by

〈u,L(X)v〉 ≡ 〈u,XGv〉+ 〈Gu,Xv〉+ 〈C̄ru,XC̄rv〉. (1.1)

By definition of G, it is clear that 〈u,L(I)v〉 = 〈u,Gv〉 + 〈Gu, v〉 + 〈C̄ru, C̄rv〉 = 0. Let

Aloc⊗E be the linear span of {x⊗e(f) : x ∈ Aloc, f ∈ L2(R+,C)}. Then the set Aloc⊗E

is a dense subspace of h0 ⊗ Γsym.

Main Results.

1. Consider the HP type QSDE in Aloc ⊗ E

Ut = I +

t∫
0

UsGds+

t∫
0

UsC̄ra†(ds)−
t∫

0

UsC∗ra(ds), (1.2)

where a†, a are creation and annihilation processes respectively. The QSDE admits a

unitary solution Ut. Moreover, the expectation semigroup (Tt)t≥0 on B(h0) of the ho-

momorphic co-cycle Jt(X) = U∗t (X ⊗ I)Ut is the unique (minimal) semigroup associated

with the formal Lindbladian L in (1.1) and is conservative.

Next,we deal with the structure maps on Aloc in the UHF algebra. In this section, we

deal with the structure maps on Aloc in the UHF algebra. For Wk ∈ A∂∆k
, define the

operators:

δk(X) = [X,Wk], δ†k(X) = (δk(X
∗))∗ = [W ∗k , X],

for every X ∈ Aloc. Consider the Lindbladian:

L(X) =
1

2

∞∑
k=1

{W ∗k δk(X) + δ†k(X)Wk}, for all X ∈ Aloc. (1.3)

Though each component W ∗k δk(.) + δ†k(, )Wk are bounded maps, L is unbounded due to

presence of infinitely many components (like in [27]). For n ≥ 1, define a bounded map

L(n)(X) = 1
2

∑n
k=1{W ∗k δk(X)+δ†k(X)Wk}, for all X ∈ A. Note that for X ∈ A∆n , δk(X) =
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δ†k(X) = 0 and L(k)(X) = L(n)(X) for every k ≥ n.

2. The associated HP equation to (1.3) does not make sense. However, there exist a

homomorphic co-cycle Jt : A → A′′ ⊗ B(Γsym) satisfying the Evans-Hudson equation, for

X ∈ Aloc,

Jt(X) = X ⊗ I +

t∫
0

Js(L(X))ds+
∞∑
j=1

t∫
0

Js(δj(X))a†j(ds) +
∞∑
j=1

t∫
0

Js(δ
†
j(X))aj(ds).

The expectation semigroup (Tt)t≥0 of the homomorphic co-cycle Jt is conservative minimal

semigroup associated with the Lindbladian (1.3).

Remark. The main differences between the classes of Lindbladian considered in (4.4) and

(1.3) and the one considered in [27] is lack of translation invariance, which considerably

affect the physical relevance of the semigroups. Indeed,to show HP or EH dilations of

semigroups, the local structure of the algebra is exploited in such a way that importance

of approximations by finite dimensional algebras is clearly recognized. Second difference is

unlike the existence of only EH dilations of semigroups in [27], both HP and EH dilations

are possible for the semigroup generated by the Lindbladian in (4.4), which makes these

class of semigroups more interesting.
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Chapter 2

Preliminaries

In this chapter, we review some of the result and concepts regarding operators on Hilbert

spaces, in particular unbounded operators which are essential to understand semigroups

and their generators, for detail we refer to [32, 9, 39, 41, 33, 38, 24, 23]. We also discuss

the basic notions of operator algebras: C∗-algebras and von Neumann algebras, the details

can be seen in [13, 14, 3, 10, 21]. Important properties of completely positive maps are

discussed, for more details refer to [29, 37, 30]. In the last section, brief introduction

to semigroup theory on Banach spaces is given. Most of the material can be found in

[15, 31, 41].

2.1 Hilbert Space Theory

Let H be a Hilbert space with inner-product 〈·, ·〉, which is conjugate linear in first and

linear in second coordinate and ‖ · ‖ be the norm on H. For a linear subspace M of H,

define orthogonal complement M⊥ = {h ∈ H; 〈g, h〉 = 0, ∀ g ∈M}.

Remark 2.1.1. M is dense in H if and only if M⊥ = 0.

Suppose H1,H2, · · · are Hilbert spaces and let H = {(hn)n≥1 : hn ∈ Hn,
∑

n≥1 ‖hn‖2 <

9
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∞}. For h = (hn)n≥1 and g = (gn)n≥1 in H, define

〈h, g〉 =
∑
n≥1

〈hn, gn〉 .

Then 〈·, ·〉 is an inner-product on H and H is called the direct sum of Hi’s and is written

as H =
∞⊕
i=1
Hi. We denote the Banach space of bounded linear operators from a Hilbert

space H to K by B(H,K) and B(H) is a Banach space of bounded linear operators on H.

Definition 2.1.2. An operator T ∈ B(H) is called positive if 〈Bh, h〉 ≥ 0 for all h ∈ H.

We write T ≥ 0 if T is positive and S ≥ T , if S − T ≥ 0.

Definition 2.1.3. An operator T ∈ B(H) is called compact if the closure of the image

of the unit ball under T is compact. Equivalently T is compact if and only if for every

bounded sequence {hn} in H, {Thn} has convergent subsequence.

The set of all compact operators form a closed maximal ideal of the ring B(H). Denote

this ideal by B0(H).

Example 2.1.4. (Finite rank operators) Suppose the range of T is finite dimensional.

Since in a finite dimensional Hilbert space every closed and bounded set is compact, and

the image of a unit ball is bounded. We see that T is compact. In particular, for u, v ∈ H,

the rank one operators on H defined by |u〉〈v|(w) := 〈v, w〉u are compact.

In fact, every compact operator is the uniform limit of finite rank operators. We now give

the statement of the spectral theorem for compact normal operators.

Theorem 2.1.5. Let T ∈ B0(H) be a compact normal operator, then the set of eigenvalues

of T is countable. Suppose (λn)n≥1 is a sequence of eigenvalues of T then the eigenspace

Mn associated to λn is a finite dimensional Hilbert space. The sequence λn → 0 if there

are infinitely many eigenvalues. If Pn is the orthonormal projection of H onto Mn =
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Ker((T − λn)I), then PnPm = 0 = PmPn if m = n and

T =
∑
n≥1

λnPn,

where the series converges in the norm topology on B(H). In addition, if T is self-adjoint,

λn’s can be ordered in a decreasing sequence, |λ1| ≥ |λ2| ≥ · · · which converges to 0.

Let T be a compact operator. For a self-adjoint compact operator T ∗T , let (λn)n≥1 be the

decreasing sequence of eigenvalues in the above sense. We define the nth singular value

of T to be the positive square-root of the nth eigenvalue of the operator T ∗T . Denote by

sn(T ): the nth singular value of T .

Definition 2.1.6. A compact operator T is said to be a trace class operator if the

series
∑

n≥1 sn(T ) is convergent. The set of all trace-class operators is denoted by B1(H).

For T ∈ B1(H), define the trace of T to be trT =
∑

n≥1 〈en, T en〉, where (en)n≥1 is a

orthonormal basis for H and the trace norm ‖ · ‖1 on B1(H) by ‖A‖1 =
∑

n≥1 sn(T ). The

space B1(H) is a Banach space with respect to the trace norm.

It is easy to see that the series
∑

n≥1 〈en, T en〉 converges and the sum is independent of

the choice of basis. There is an interesting relation between the classes B0(H),B1(H) and

B(H) which is shown in the following theorem.

Theorem 2.1.7. For the spaces B0(H),B1(H) and B(H) the following is true:

(i) B1(H) ∼= B0(H)∗. That is, the map K 7→ tr(K ·) is an isometric isomorphism of

B1(H) on B0(H)∗.

(ii) B(H) ∼= B1(H)∗. That is, the map A 7→ tr(A ·) is an isometric isomorphism of

B(H) on B1(H)∗.
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2.1.1 Unbounded Operators

Most of the operators which we come across while solving problems arising from the

physical significance are not bounded. We introduce some basic concepts and results

concerning unbounded operators, necessary to understand the semigroup theory. The

closed graph theorem states that an operator which is everywhere defined and whose

graph is closed must be bounded, suggesting that a nice unbounded operator will only be

defined on dense linear subset of the Hilbert space H. An operator(unbounded) T is a

linear map with its domain, a linear subspace which is usually dense into H. We denote

by Dom(T ), the domain of the operator T .

Definition 2.1.8. The graph of a linear operator T is the set Γ(T ) := {(h, Th) :

h ∈ Dom(T )} and is denoted by Γ(T ). The dual of the graph Γ is given by Γ∗(T ) :=

{(−Th, h) ; h ∈ Dom(T )}.

An operator T is closed if Γ(T ) is a closed subset of H×H. Let T1 and T2 be operators

on H. If Γ(T1) ⊆ Γ(T2), then T2 is said to be an extension of T1 and we write T1 ⊆ T2.

Definition 2.1.9. An operator T is closable if it has a closed extension. The smallest

closed extension which exists, is called the closure of T , denoted by T .

Definition 2.1.10. Let T be a densely defined linear operator on H. For a fixed h ∈

Dom(T ), if the linear map Φh(g) = 〈h, Tg〉 with domain Dom(T ) can be extended to a

bounded linear functional given by 〈f, g〉 on H, then we say h ∈ Dom(T ∗) and T ∗(h) = f .

The operator T ∗ is called adjoint of T .

It is easy to see that

Γ(T ∗) = [Γ∗(T )]⊥,

where S⊥ := {u ∈ H : 〈u, s〉 = 0}. If the domain of T ∗ is dense, then we can define

T ∗∗ = (T ∗)∗. There is a simple relationship between the adjoint and closure of an operator

T .
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Theorem 2.1.11. Let T be a densely defined operator on H. Then the following holds:

(i) T ∗ is closed.

(ii) T is closable if and only if Dom(T ∗) is dense, in that case T = T ∗∗.

(iii) If T is closable, (T )∗ = T ∗.

Proposition 2.1.12. Let H and K are Hilbert spaces and T : H → K is densely defined,

then

(Range T )⊥ = Ker T ∗.

If T is also closed then

(Range T ∗)⊥ = Ker T.

Now we define the resolvent of an operator. The knowledge of a resolvent helps us to

understand the nature of semigroups.

Definition 2.1.13. Let T be a closed operator on H. A complex number λ is in the

resolvent set, denoted by ρ(T ), if λI − T is a bijection from Dom(T ) onto the dense

range of (λI − T ) with a bounded inverse. For λ ∈ ρ(T ), R(λ, T ) = Rλ(T ) := (λI − T )−1

is called the resolvent of T at λ.

Definition 2.1.14. A densely defined operator T on H is called symmetric if T ⊆ T ∗.

Equivalently, T is symmetric if and only if 〈Th, g〉 = 〈h, Tg〉 for all h, g ∈ Dom(T ). An

operator T is called self-adjoint if T is symmetric and Dom(T ∗) = Dom(T ).

The adjoint T ∗ of a symmetric densely defined T is an extension of T , but is not symmetric

always. The Symmetry of T ∗ requires T ∗ = T ∗∗. We recall that T ∗∗ is the closure of T

and generally all that can be true is:

T ⊂ T ∗∗ ⊂ T ∗
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for densely-defined, symmetric T . Since T ∗∗ is the closure of T , it is symmetric. The

distinction between closed symmetric operators and self-adjoint operators is significant.

For self-adjoint operators, the spectral theorem holds and they generates a one-parameter

unitary groups.

Definition 2.1.15. A symmetric operator T is called essentially self-adjoint if its

closure T is self-adjoint. If T is closed, subset D ⊆ Dom(T ) is called core for T if closure

of the restriction T � D = T .

In general, symmetric densely defined operators do not possess unique self-adjoint exten-

sion. In contrast, an essentially self-adjoint operator has a unique self-adjoint extension.

So for a self-adjoint operator T , one need not to give exact domain of T , but just some core

for T . The following results show equivalence conditions for an operator to be self-adjoint

or essentially self-adjoint.

Theorem 2.1.16. Let T be a symmetric operator on H. Then the following are equivalent:

(i) T is self-adjoint.

(ii) T is closed and Ker(T ∗ ± iI) = {0}.

(iii) Range(T ∗ ± iI) = H.

Theorem 2.1.17. Let T be a symmetric operator on H. Then the following are equivalent:

(i) T is essentially self-adjoint.

(ii) Ker(T ∗ ± iI) = {0}.

(iii) Range(T ∗ ± iI) is dense in H.

Here we state spectral theorem for the self-adjoint operators.
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Theorem 2.1.18. Spectral Theorem Let (T,D(T )) be a self-adjoint operator on H,

then there exists a right continuous projection valued function E : R→ P(H), where P(H)

is the space of orthogonal projections on H, such that T is

T =

∫
R

λ E(dλ). (2.1)

The above function E : R→ P(H) satisfies the following:

(i) lim
t→∞

E(t) = I strongly.

(ii) lim
t→−∞

E(t) = 0 strongly.

(iii) E(s)E(t) = E(s ∧ t), s ∧ t = min{s, t}

and is called spectral measure for T . The spectral integration in (2.1) is in the sense

that

〈u, Tv〉 =

∫
t µu,v(dt),

where µu,v is the complex measure given by µu,v((−∞, t]) = 〈u,E(t)v〉 .

Polar decomposition for closed operators

There exists a special decomposition for operators on a Hilbert space which is analogous

to the decomposition z = |z|ei arg z for complex numbers. An arbitrary bounded operator

T can be written as T = U |T | uniquely, where |T | is positive self-adjoint and U is a

partial isometry. We discuss the polar decomposition in case of unbounded operators.

For the bounded case, polar decomposition is easy to construct since we can set |T | =
√
T ∗T in view of the existence of positive square root. In case of unbounded operators

the following theorem helps us to generalize the existence of polar decomposition for

unbounded operators.

Theorem 2.1.19. (von Neumann) Let T be a closed, densely defined operator on H.

Then the operator T ∗T is self-adjoint operator on H and Dom(T ∗T ) is a core for T .
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T ∗T is positive self-adjoint operator on H. As we can define |T | =
√
T ∗T by spectral

theorem and the polar decomposition can be constructed the same way as in case of

bounded operators.

Theorem 2.1.20. Let T be a closed, densely defined operator on H. Then, there is

a positive self-adjoint operator |T | =
√
T ∗T , with Dom(|T |) = Dom(T ) and a partial

isometry U with domain (Ker T )⊥ and co-domain Range T , so that T = U |T |. |T | and U

are uniquely determined by these properties together with the property Ker(|T |) = Ker(T ).

2.2 C∗ and von Neumann Algebras

2.2.1 C∗-algebras

Here we give a brief introduction to C∗-algebras and von Neumann algebra on which QDS

are discussed in the next chapter.

Definition 2.2.1. A complete normed algebra A is said to be Banach algebra if the

norm satisfies ‖xy‖ ≤ ‖x‖‖y‖ for x, y ∈ A. It is called C∗- algebra if it has a ∗-structure

and ‖x∗x‖ = ‖x‖2 holds.

Example 2.2.2. Let X be a locally compact Hausdorff space, the space C0(X) of all

complex valued continuous functions on X, vanishing at infinity, with supremum norm

and with complex conjugation as the ∗-operation forms a commutative C∗-algebra under

point-wise addition and multiplication.

The algebra is called unital or non-unital according to whether it has identity or not.

However every C∗-algebra can be made unital by adjoining the identity to it. Example

2.2.2 is important in the way that every commutative C∗-algebra is essentially of this form.

Explicitly, the following result gives the characterization of commutative C∗-algebras.
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Theorem 2.2.3. (Gelfand Naimark) Every commutative C∗-algebra A is isometrically

isomorphic to C0(X) for some locally compact Hausdorff space X. In case A is unital, X

is compact.

Let A be a C∗-algebra. A linear functional ψ : A → C is said to be positive if ψ(x∗x) ≥ 0

for all x ∈ A. It can be seen that element of A is positive if and only if ψ(x) is positive

for all positive functionals ψ on A. A positive linear functional ψ for which ψ(1) = 1 is

called a state on A. It can be shown that positivity implies boundedness. A state ψ is

called tracial if ψ(xy) = ψ(yx) for all x, y ∈ A. It is called faithful if ψ(x∗x) = 0 implies

x = 0.

Definition 2.2.4. A representation of a C∗-algebra is a pair (π,H), where H is a

Hilbert space and π : A → B(H) is a ∗-homomorphism. If A is unital, it is assumed that

π(1) = 1.

Theorem 2.2.5. (Gelfand-Naimark-Segal Construction) For a given state ψ on a

C∗-algebra A, there exists a Hilbert space Hψ, a representation πψ of A into B(Hψ) and

a vector ξψ ∈ Hψ which is cyclic in the sense that the set {πψ(x)ξψ ; x ∈ A} is total in

Hψ, satisfying

ψ(x) = 〈ξψ, πψ(x)ξψ〉 .

This triple (Hψ, πψ, ξψ) is called the GNS triple for (A, ψ) and Hψ is called GNS Hilbert

space for the pair (A, ψ) and it is denoted by L2(A, ψ).

2.2.2 UHF C∗-algebra

The construction of quantum dynamical semigroups, obtained in this thesis, is carried out

on the GNS space of a UHF C∗-algebra. In this section we discuss some of the results.

Before that let us introduce a special class of C∗-algebras, namely approximately finite

dimensional C∗-algebras (in short AF C∗-algebra). The following theorem classifies all

the finite dimensional algebras.
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Theorem 2.2.6. Every finite dimensional C∗-algebra A is ∗-isomorphic to the direct sum

of full matrix algebras, that is:

A ∼=Mn1 ⊕ · · · ⊕Mnk
.

In particular, every non-zero finite dimensional C∗-algebra is unital.

Definition 2.2.7. Let {Aα}α∈I be a directed family of C∗-algebras, that is for any α <

β in the directed set I, there is an isometric isomorphism iα,β from Aα into Aβ and

iα,β = iγ,β(iα,γ), whenever α < γ < β. Then there exists a universal C∗-algebra A, called

Inductive Limit of the directed family (Aα, iα,β) and isometric isomorphism iα from Aα
into A such that iα = iβ(iα,β) and A =

⋃
α∈I iα(Aα). The Inductive Limit has universal

property that for any C∗-algebra B with isometric isomorphisms jα from Aα into B such

that jα = jβ(iα,β), there exists an isometric isomorphism k : A → B and following diagram

A B

AβAα

k

iα

iα,β

jα iβ jβ

commutes.

Definition 2.2.8. A C∗-algebra A is said to be an AF C∗-algebra if it is the Inductive

Limit of a family of C∗-subalgebra {An}n≥0 with isometric embeddings in : An → An+1

for n ≥ 0. Here A0 = CI in case of A is unital and A =
⋃
n≥0An with the norm closure.

A particular class of AF C∗-algebras is called Uniformly hyper-finite C∗-algebras or UHF

C∗-algebras if it is an increasing union of unital subalgebras which are isomorphic to full

matrix algebras {Mnk
(C)} for some sequence of positive integers {nk}.
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A unital embedding of Mnk
(C) into Mnl

(C) requires nk divides nl (nk|nl), thus we get

an increasing sequence n1|n2| · · · . For a prime number p there exists a unique number

εp ∈ {1, 2, · · ·∞}, given by εp = sup{l ; pl|nk as k →∞}. Now we define a number δ(A)

associated with the UHF C∗-algebra A, known as supernatural number, by a formal

product:

δ(A) =
∏

p:prime

pεp .

This number gives a complete invariant for the class of UHF C∗-algebra by the following

result of Glimm:

Theorem 2.2.9. Let A and B be two UHF C∗-algebras. Then A is isomorphic to B if

and only if δ(A) = δ(B).

In particular, we are interested in the class of N∞ UHF C∗-algebras obtained as infinite

tensor product of finite dimensional matrix algebra MN (C). More explicit, for a fixed

pair of positive integers d and N , consider the infinite lattice Zd, then we are interested in

A =
⊗
j∈Zd

MN (C)
c∗

A can be interpreted as inductive limit of N by N matrix algebras MN (C) using embed-

ding of MN (C) to MN2(C) as A→ A⊗ I. For details we refer [22, 37, 36].

2.2.3 Locally Convex Topologies in B(H)

For a Hilbert space H, the Banach space of all bounded linear operators B(H), is usually

equipped with the operator-norm topology. There are many other important topologies

with respect to which B(H) is a locally convex topological vector space such as weak,

strong, ultra-weak and ultra-strong topologies. The algebra of operators B(H) is complete

in each of these topologies. Here we give the details of these topologies:

Norm Topology: The norm of a bounded operator defines a topology on B(H) called
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the norm topology. The function T → ‖T‖ is a semi-norm on B(H) and give rise to the

topology of uniform convergence over bounded sets of H.

Strong (Operator) Topology: For every h ∈ H, the function T → ‖Th‖ is a semi-norm

on B(H). The collection of all these semi-norms determine the Hausdorff locally convex

topology is called the topology of strong point-wise convergence. A base of neighborhoods

around origin for this topology is obtained by taking subsets

{T ∈ B(H) ; ‖Thi‖ < ε , 1 ≤ i ≤ n},

for each finite sequence (hi)
n
i=1 of elements of H and ε > 0. We can also define the strong

topology as the coarsest topology on B(H) such that the maps T → Th from B(H) into

H are continuous.

Weak (Operator) Topology: For h, g ∈ H, the collection of the semi-norms T →

| 〈Th, g〉 | determine the Hausdorff locally convex topology know as weak topology or the

topology of weak convergence. In view of polarization identity, we see that the semi-norms

T → | 〈Th, h〉 | are enough to define weak topology. A base of neighborhoods around origin

for this topology is obtained by taking subsets

{T ∈ B(H) ; | 〈Thi, gi〉 | < ε , 1 ≤ i ≤ n},

for each pair of finite sequences (hi)
n
i=1; (gi)

n
i=1 of elements of H, ε > 0. We can also define

the weak topology as the coarsest topology on B(H) such that the maps T → 〈Th, g〉 from

B(H) into C are continuous.

Ultra-Strong Topology: Let (hi)
∞
i=1 be a sequence of elements ofH such that

∞∑
i=1
‖hi‖2 <

∞. Since the series
∞∑
i=1
‖Thi‖2 is convergent, the map T →

( ∞∑
i=1
‖Thi‖2

) 1
2

, defines a semi-

norm on B(H). The collection of all these semi-norms determine the Hausdorff locally

convex topology called ultra-strong topology. A base of neighborhoods around origin for
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this topology is obtained by taking subsets{
T ∈ B(H) ;

∞∑
i=1

‖Thki ‖2 < ε , 1 ≤ k ≤ n

}
,

for each ε > 0 and for every finite family of sequences {(h1
i )
∞
i=1, (h

2
i )
∞
i=1, · · · , (hni )∞i=1} of

elements of H such that for all k : 1 ≤ k ≤ n,

∞∑
i=1

‖hki ‖2 <∞.

This is the topology for which the maps, T → (Th1, Th2, · · · ) from B(H) into direct sum⊕
Hi : Hi = H for all i, are continuous.

Ultra-Weak Topology: In view of Cauchy-Schwarz inequality and Hölder’s inequality

we see that, for each pair of sequences (hi)
∞
i=1; (gi)

∞
i=1 in H such that

∞∑
i=1

‖hi‖2 <∞,
∞∑
i=1

‖gi‖2 <∞,

the map T → |
∞∑
i=1
〈Thi, gi〉 | defines a semi-norm on B(H). The collection of these semi-

norms determine the Hausdorff locally convex topology called ultra-weak topology. A base

around origin for this topology is given by taking subsets{
T ∈ B(H) ; |

∞∑
i=1

〈
Thki , g

k
i

〉
| < ε , 1 ≤ k ≤ n

}
,

for each ε > 0 and for every finite family of pair of sequences

{((h1
i )
∞
i=1; (g1

i )
∞
i=1), ((h2

i )
∞
i=1; (g2

i )
∞
i=1), · · · , ((hni )∞i=1; (gni )∞i=1)} of elements of H such that for

every k : 1 ≤ k ≤ n,
∞∑
i=1

‖hki ‖2 <∞,
∞∑
i=1

‖gki ‖2 <∞.
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This topology is also coarsest for which the maps T →
∞∑
i=1
〈Thi, gi〉 from B(H) into C are

continuous.

The above topologies are compared to give the following diagram, where the symbol <

means ”finer than”:

Norm topology < Ultra-strong topology < Strong topology

∧ ∧

Ultra-weak topology < Weak topology

For infinite dimensional Hilbert space, the symbol < can be taken to mean ”strictly finer

than”. The strong(respectively weak) and ultra-strong(respectively ultra-weak) topologies

coincide on bounded subsets of B(H).

2.2.4 von Neumann Algebras

For a Hilbert space H, we have discussed many important topologies on B(H) with respect

to which it is a locally convex topological vector space. B(H) is complete in each of these

topologies but a general C∗- subalgebra A of B(H) need not be so. It is known that

A is complete in all of the locally convex topologies except norm topology if and only

if it is complete in any one of them and in that case A is said to be a von Neumann

algebra. Furthermore, the strong(respectively weak) and ultra-strong(respectively ultra-

weak) topologies coincide on norm bounded convex subsets of A.

For a von Neumann algebra A, denote by A′, the commutant of A which is the set

{a ∈ B(H) such that ax = xa, ∀ x ∈ A} and we have A′′ = (A′)′. The following result

due to von Neumann is of fundamental importance in the study of von Neumann algebras.

Theorem 2.2.10. (Double commutant theorem) Let A be a non-degenerate C∗-

algebra in B(H). Then A′′ = Aw = As, where Aw and As are closure of A in weak and

strong operator topologies of B(H) respectively.

In particular, any unital C∗-algebra A is a von Neumann algebra if and only if A′′ = A.
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A state ψ on a von Neumann algebra A is said to be normal if ψ(xα) increases to

ψ(x) whenever xα increases to x for a net {xα} of positive elements in A. We call a

linear map Ψ : A → B, where B is a von Neumann algebra, to be normal if whenever xα

increases to x for a net {xα} of positive elements in A, we have Ψ(xα) increases to Ψ(x) in

B. It can be seen that a positive linear map is normal if and only if it is continuous with

respect to the ultra-weak topology. In view of this fact, we shall say that a bounded linear

map between two von Neumann algebras is normal if it is continuous with respect to the

ultra-weak topologies. Normal states and more generally normal positive linear maps like

normal ∗- homomorphisms play a important role in the study of von Neumann algebras.

The following result describes the structure of a normal state.

Theorem 2.2.11. A state ψ on a von Neumann algebra A ⊆ B(H) is normal if and only

if there is a positive trace-class operator ρ on H such that ψ(x) = tr(ρx) for all x ∈ A.

For a von Neumann algebra A ⊆ B(H), A Banach space A∗ is called the predual of A

if the Banach dual (A∗)∗ with norm topology coincides with A and with respect to weak-∗

topology it coincides with ultra-weak topology of A. In fact, Sakai [35] showed that a

von Neumann algebra can be characterized in the class of C∗-algebras by the property of

having a predual as a Banach space.

We give the explicit description of the predual of A ⊆ B(H). Since from a Theorem

2.1.7 we see that A∗ is the some quotient space of B1(H). Let Bs.a.(H) and Bs.a.1 (H) stand

for the real linear space of all bounded self-adjoint operators and all trace-class self-adjoint

operators on H respectively. Denote by As.a. the subset of all self-adjoint elements in A.

Let As.a.∗ be the predual of As.a.. We define an equivalence relation ∼ on B1(H) by saying

ρ1 ∼ ρ2 if and only if tr(ρ1x) = tr(ρ2x) for all x ∈ A. We denote by A⊥ the closed

subspace {ρ ∈ B1(H) ; ρ ∼ 0}. For ρ ∈ B1(H), we denote by ρ̃ its equivalence class with

respect to ∼ and ‖ρ̃‖ = infη∼ρ‖η‖1. By (A⊥)s.a. we shall denote the set of all self-adjoint

elements in A⊥. Clearly (A⊥)s.a. is a closed subspace of Bs.a.1 (H) and so one can make

sense of the quotient space Bs.a.1 (H)/(A⊥)s.a..
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The following theorem determines the predual explicitly.

Theorem 2.2.12. (i) There exists an isometric isomorphism

A∗ ∼=
B1(H)

A⊥
∼= ΩA,

where ΩA denotes the space of all normal complex linear bounded functional on A.

(ii) There exists an isometric isomorphism

As.a.∗ ∼=
Bs.a.1 (H)

(A⊥)s.a.
∼= ΩAs.a. ,

where ΩAs.a. denotes the space of all normal complex linear bounded functional on

As.a..

The canonical identification between A and (B1(H)/A⊥)∗ is given by, x → ψx where

ψx(ρ̃) = tr(ρx). Moreover, an element ρ̃ of B1(H)/A⊥ is canonically associated with ψρ̃

in ΩA where ψρ̃(x) = tr(ρx), x ∈ A.

For quantum dynamical semigroups the condition of complete positivity is fundamental

and it has very important mathematical and physical consequences. We give the brief

introduction to completely positive maps.

2.3 Completely Positive Maps

Recall that a linear map T between two unital ∗-algebras A and B is said to be positive

if T (x∗x) ≥ 0 in B for all x ∈ A. A general element x ∈ A⊗Mn(C) can be written in the

form
n∑

i,j=1

xij ⊗ Eij ,
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where Eij is the n× n matrix with all entries 0 except 1 at the (ij)th place.

For n ≥ 1, 1 ≤ i, j ≤ n, define the linear operator

T (n) : A⊗Mn(C)→ B ⊗Mn(C)

T (n)(x⊗ Eij) = T (x)⊗ Eij .
(2.2)

It is not necessary that T (n) be positive.

Definition 2.3.1. Let A and B be ∗-algebras. A map T : A → B is called n-positive

if T (n) as defined above is positive. If T (n) is positive for all n ≥ 1 then T is called

completely positive.

Proposition 2.3.2. Let T : A → B be a completely positive linear map. Then for all

n ≥ 1, (xi)
n
i=1 ⊂ A, (yi)

n
i=1 ⊂ B, we have

n∑
i,j=1

y∗i T (x∗ixj)yj ≥ 0.

Proposition 2.3.3. Let (Tn)n≥1 be a sequence of completely positive maps Tn : A →

B(H). Suppose for every x ∈ A, the sequence (Tn(x))n≥1 converges weakly. Then the map

Tn : A → B(H) defined by

T (a) = lim
n→∞

Tn(a)

is completely positive.

Any ∗-homomorphism is a completely positive map, but converse is not true. The following

theorem by Stinespring shows that completely positive maps essentially come from ∗-

homomorphisms.

Theorem 2.3.4. (Stinespring) For a C∗-algebra A, let T : A → B(H) be a completely

positive map. Then there exists another Hilbert space K, a representation π : A → B(K)
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and V ∈ B(H,K) such that the set {π(x)V u : x ∈ A, u ∈ H} is total in K and the map

T has the form

T (x) = V ∗π(x)V, for all x ∈ A.

Such a triple (K, π, V ) is called Stinespring’s triple associated with T and is unique

in the sense that if (K′, π′, V ′) is another such triple then there is a unitary operator

Γ : K → K′ such that π′(x) = Γπ(a)Γ∗ and V ′ = ΓV . Furthermore, if A is a von Neumann

algebra and T is normal, π can be chosen to be normal. Any positive map T : A → B

is completely positive if either of A or B is abelian. We conclude on completely positive

maps by stating the characterization theorem by K. Kraus for ultra-weakly continuous

(i.e. normal) completely positive maps.

Theorem 2.3.5. (Kraus) A linear map T : B(H) → B(K) is normal and completely

positive if and only if it can be expressed in the form

T (x) =

∞∑
n=1

V ∗n xVn

where (Vn)∞n=1 is a sequence in B(K,H) such that the series
∞∑
n=1

V ∗n xVn converges strongly.

In the semigroup theory, a class of operators called conditionally completely positive maps

play an important role. We now introduce this notion, which is related to completely

positivity.

Definition 2.3.6. A linear map T on a ∗-algebra A is called conditionally completely

positive (CCP) map if the map T (n) defined as in (2.2) satisfies the following inequality

T (n)(x∗x)− x∗T (n)(x)− T (n)(x∗)x+ x∗T (n)(1)x ≥ 0, (2.3)
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for every n ≥ 1 and x ∈ A⊗Mn(C).

The following proposition shows that every completely positive map is CCP.

Proposition 2.3.7. A map T : A → A is CCP if and only if for each pair of finite

sequences (xi)
n
i=1, (yi)

n
i=1 in A, we have

n∑
i,j=1

y∗i T (x∗ixj)yj ≥ 0, whenever
n∑

i,j=1

xiyi = 0.

In chapter 3, we shall see that bounded CCP maps are the generator of uniformly contin-

uous completely positive semigroups and the converse is also true.

2.4 Semigroups on Banach Spaces

For this section, X stands for a complex Banach space. The notion of semigroup of

bounded linear operators has its roots in the basic observation that the Cauchy functional

equation f(t+s) = f(t)f(s) : f(0) = 1 has only continuous solutions of the form eta, a ∈ R.

In general, the theory was developed by taking into account the Cauchy problem in infinite

dimensional framework, that is find all the maps T : R+ → B(X ) satisfying the functional

equation 
Tt+s(a) = Tt(Ts(a)) for all a ∈ X , ∀ t, s ≥ 0,

T0(a) = a.

(2.4)

Definition 2.4.1. A family T = (Tt)t≥0 of bounded linear operators on a Banach space

X is called one-parameter semigroup or simply semigroup on X if it satisfies the

functional equation (2.4).
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Definition 2.4.2. The infinitesimal generator or simply generator of a semigroup

(Tt)t≥0 is the linear operator G : X → X defined by

Dom(G) =

{
x ∈ X ; such that lim

t↓0

1

t
(Tt − I)x exists

}

and Gx = lim
t↓0

1

t
(Tt − I)x, x ∈ Dom(G). We write Tt = etG and G =

d

dt

∣∣∣∣
t=0

Tt, whenever

G generates T .

Definition 2.4.3. A semigroup (Tt)t≥0 on X is called uniformly continuous (norm

continuous) semigroup if the map

R+ 3 t→ Tt ∈ B(X )

is continuous with respect to the norm topology on B(X ).

Theorem 2.4.4. A semigroup (Tt)t≥0 on X is uniformly continuous if and only if the

generator G is bounded.

2.4.1 Strongly Continuous (C0)-Semigroups

To describe many important physical processes we come across unbounded operators and

thus to describe the dynamics of these physical systems, uniform continuity is too strong

requirement. So we study the semigroups with some weak continuity conditions.

Definition 2.4.5. A semigroup (Tt)t≥0 on a Banach space X is called strongly contin-

uous semigroup if the maps

R+ 3 t→ Tt(x) ∈ X

are continuous for every x ∈ X . Equivalently, we can say if the map t→ Tt is continuous

with respect to the strong operator topology on B(X ).
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Every strongly continuous semigroups (Tt)t≥0 is quasi-bounded, that is there exists

constants w ∈ R and M ≥ 1 such that for all t ≥ 0

‖(Tt)‖ ≤Mewt.

A Semigroup (Tt)t≥0 is called isometric or contractive if each Tt is so. For a strongly

continuous contraction semigroup (Tt)t≥0, resolvent of the generator G is given by Laplace

transform of the semigroup, that is for Reλ > 0,

R(λ,G) =

∞∫
0

e−λtTt(x) dt.

Lemma 2.4.6. For the generator G of a strongly continuous semigroup (Tt)t≥0, the

following properties hold:

(i) For every t ≥ 0 and x ∈ Dom(G), we have Tt(x) ∈ Dom(G) and

d

dt
Tt(x) = Tt(Gx) = G(Tt(x)). (2.5)

(ii) For every t ≥ 0 and x ∈ X, we have
t∫

0

Ts(x) ds ∈ Dom(G) and

Tt(x)− x = G(

t∫
0

Ts(x) ds) =

t∫
0

Ts(Gx) ds, if x ∈ Dom(G). (2.6)

Theorem 2.4.7. For a strongly continuous semigroup (Tt)t≥0, the generator G is a closed

and densely defined linear operator that determines the semigroup uniquely.

It is often seen that the results which are true for the generator, it is sufficient if we could

prove the same for some core for the generator. So life becomes easy if we are able to
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identify a nice core for the generator. Proving a set D to be a core for G it is equivalent

to prove that D is dense in Dom(G) in the graph norm

‖x‖Γ := ‖x‖+ ‖Gx‖.

Nelson in [28] gave a useful criteria for a subspace to be a core for the generator G.

Proposition 2.4.8. (Nelson) Let G be the generator of the strongly continuous semi-

group (Tt)t≥0 on X . A subspace D of Dom(G) which is dense in X and invariant under

the semigroup (Tt)t≥0 is a core for G.

We now state the most important theorem in the theory of strongly continuous semigroups,

which characterize the strongly continuous semigroups in terms of the generator. Hille-

Yosida in [18], [40] proved it for the contraction semigroups, which then extended for the

general case by Feller-Miyadera-Phillips. Lumer-Phillips in [26] reformulated this result

in terms of dissipative operators.

Theorem 2.4.9. (Hille-Yosida) A linear operator G is a generator of a strongly con-

tinuous contraction semigroup (Tt)t≥0 on a Banach space X if and only if G is closed,

densely defined and for every λ > 0, we have λ ∈ ρ(G) and the resolvent of G at λ

satisfies: ‖R(λ,G)‖ ≤ 1

λ
.

The Lumer-Phillips characterization of strongly continuous semigroups in terms of dissipa-

tive operator is important because it does not require the explicit knowledge of resolvent.

For the completion of hierarchy of generation theorems similar to Theorem 2.4.9, we are

incorporating the following results.

Let X ∗ be the Banach dual of X . Denote by 〈x, x∗〉 or 〈x∗, x〉, the value x∗(x), where

x ∈ X and x∗ ∈ X ∗. For every x ∈ X , define the dual set F (x) ⊆ X ∗ of x by

F (x) := {x∗ ∈ X ∗ ; 〈x, x∗〉 = ‖x∗‖2 = ‖x‖2}
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Definition 2.4.10. A linear operator G is called dissipative if for each x ∈ X there

exists x∗ ∈ F (x) such that Re〈Gx, x∗〉 ≤ 0.

Remark 2.4.11. In particular, when X is a Hilbert space, then F (x) = x and a linear

operator G is dissipative if for each x ∈ Dom(G), we have 〈x,Gx〉 ≤ 0, that is if −G is a

positive operator.

Theorem 2.4.12. A linear operator G is dissipative if and only if for each x ∈ Dom(G)

and λ > 0, we have

‖(λI −G)x‖ ≥ λ‖x‖.

Theorem 2.4.13. (Lumer-Phillips) A linear operator G is a generator of a strongly

continuous contraction semigroup (Tt)t≥0 on a Banach space X if and only if G is closed,

densely defined, dissipative and for all λ > 0, Range(λI −G) is dense in X .

Following theorems tells the important fact that how the convergence of strongly continu-

ous semigroups is related to the convergence of generators as well as with the convergence

of their resolvents.

Theorem 2.4.14. Suppose (T (n)
t )t≥0 and (Tt)t≥0 are strongly continuous contraction

semigroups on a Banach space X with generators G(n) and G respectively, then (T (n)
t )t≥0

converges strongly to (Tt)t≥0 if and only if (λI−G(n))−1 converges strongly to (λI−G)−1.

Theorem 2.4.15. (Chernoff) Let (T (n)
t )t≥0 and (Tt)t≥0 are strongly continuous con-

traction semigroups on a Banach space X with generators G(n) and G respectively with a

common core D such that G(n)x → Gx for all x ∈ D. Then (T (n)
t )t≥0 converges strongly

to (Tt)t≥0.
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Chapter 3

Quantum Dynamical Semigroups and

Quantum Stochastic Calculus

In the first part of this chapter we will discuss about quantum dynamical semigroups

on C∗-algebra or von Neumann algebras. The possible structure of the generator of such

semigroups has been completely characterized for norm-continuous semigroups in [25], [17]

and [8]. Kato [22] and Davies [12], under some assumption showed that the generator of

stongly continuous quantum dynamical semigroups on B(H) is of similar form. There are

various attempts to understand the generator of strongly continuous quantum dynamical

semigroups but still it is not well understood. We give the Chebotarev’s construction of

quantum dynamical semigroups from Lindbladian form which was developed in [4] and

discuss the Chebotarev-Fagnola conditions [6] for such semigroups to be conservative.

Details can seen in the expositroy article [16]. In the second part we briefly discuss theory

of quantum stochastic calculus developed by Hudson and Parthasarthy and present the

quantum stochastic dilations of completely positive semigroups. The details can be seen

in [36, 29] and reference there in.

33
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3.1 Quantum Dynamical Semigroups

In this section, we give the introduction to semigroups of completely positive maps and

also discuss the sufficient conditions [6] for the semigroup to be identity preserving (i.e.

conservative). Let H be a separable Hilbert space and B(H) denotes the von Neumann

algebra of bounded linear operators on H.

Definition 3.1.1. A quantum dynamical semi-group (QDS) on a C∗-algebra A ⊆

B(H) is a semi-group T = (Tt)t≥0 of completely positive maps on A with the following

properties:

(i) T0(x) = x, for all x ∈ A.

(ii) Tt(I) ≤ I, for all t ≥ 0.

(iii) Tt is strongly continuous for all t ≥ 0.

(iv) for each a ∈ A, the map t → Tt(x) is continuous with respect to strong topology on

A.

In case of von Neumann algebra, the continuity conditions (iii) and (iv) change to ultra-

weak continuity that is Tt are normal maps and for each a ∈ A the maps t→ Tt(a) must

be continuous with respect to ultra-weak topology on A. A QDS is called Markov or

Conservative if Tt(I) = I for every t ≥ 0. The generator of a QDS defined similarly as

in the Definition 2.4.2 with existence of limit in respective topologies.

Example 3.1.2. Let (St)t≥0 be a strongly continuous contraction semigroup on H. The

family of linear operators Tt defined by

Tt(x) = S∗t xSt

forms a quantum dynamical semigroup. All the continuity properties of T follow from the

strong continuity of St and the result 2.3.5.
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We call a QDS uniformly continuous (norm-continuous) if in addition to the con-

ditions (i) and (ii), in (iii) maps are continuous with respect to the norm topology. For

uniformly continuous QDS, the generator is bounded conditionally completely positive

map and has nice structure. The structure of uniformly continuous QDS on hyper-finite

von Neumann algebras was characterized by Lindblad in [25] in term of the generator.

The generator is called ”Lindbladian” by many authors.

Theorem 3.1.3. (Lindblad) A bounded operator L on a von Neumann algebra B(H) is

the infinitesimal generator of a uniformly continuous QDS (Tt)t≥0 if and only if it can be

written as

L(x) =
∞∑
n=1

L∗nxLn +G∗x+ xG for all x ∈ B(H),

where Ln’s and G are the elements of B(H). The series on the right side converges strongly

and −Re(G) generates a contraction semigroup.

In case QDS is unital, we have

Re(G) = −1

2

∞∑
n=1

L∗nLn.

We state the structure theorem for uniform continuous QDS on C∗-algebras which was

proved by Christensen-Evens in [8].

Theorem 3.1.4. (Christensen-Evans) Let (Tt)t≥0 be a uniformly continuous QDS on a

C∗-algebra A ⊂ B(H) with L as its generator. Then there exist a completely positive map

Ψ of A into the ultra-weak closure A′′ and an operator k in A′′ such that the generator is

given by

L(x) = Ψ(x) + k∗x+ xk.
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Since Ψ is completely positive, by Stinespring Theorem 2.3.4, there exists a Hilbert space

K, a unital ∗-representation π : A → B(K), L ∈ B(H,K) and a self-adjoint element H of

A′′ such that the generator L is given by

L(x) = L∗π(x)L− 1

2
(L∗L− L(1))x− 1

2
x(L∗L− L(1)) + i[H,x], for all x ∈ A. (3.1)

This representation is minimal in the sense that {(Lx− π(x)L)ξ : ξ ∈ H , x ∈ A} is total

in K.

Strongly Continuous Quantum Dynamical Semigroups:

There is no complete characterization of the generator of a general strongly continuous

QDS. The problem of constructing strongly continuous QDS with unbounded generator

could be treated with the Theorem 2.4.9 at least in the case when the domain of the

generator is an algebra so that conditional complete positivity makes sense. However in

general the infinitesimal generator L may not makes sense but can be understood as an

unbounded quadratic form on the Hilbert space H.

The predual semigroup of a QDS T on A is the semigroup (St)t≥0 of operators in A∗

defined by (St(x∗))(x) = x∗(Tt(x)) for every x ∈ A and every x∗ ∈ A∗.

Davies in [11] constructed the minimal predual semigroup on the space of positive trace-

class operators (density matrices) in some Hilbert space H, a method similar to that of

Kato, Chebotarev in [4] constructed the minimal QDS on B(H) by an iteration method.

The only assumption on the G and Ln is the following:

Assumption: The operator G is the infinitesimal generator of a C0 contraction semigroup

S = (St)t≥0 on H. The domain of operators (Ln)∞n=1 contains a core D of G. For all

u, v ∈ D, we have

〈u,Gv〉+ 〈Gu, v〉+

∞∑
n=1

〈Lnu, Lnv〉 = 0. (3.2)

Theorem 3.1.5. For all x ∈ B(H), Consider the sesquilinear form L(x) on H with the

domain D ×D given by
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〈u,L(x)v〉 = 〈u, xGv〉+ 〈Gu, xv〉+
∞∑
n=1

〈Lnu, xLnv〉

Suppose the above assumption (3.2) holds, then there exists a minimal QDS (T (min)
t )t≥0

associated with this form, in the sense :

〈u, T (min)
t (x)v〉 = 〈u, xv〉+

t∫
0

〈u,L(T (min)
s (x))v〉ds (3.3)

for all t ≥ 0, u, v ∈ D and all x ∈ B(H). The QDS (T (min)
t )t≥0 is minimal in the sense

that for any QDS (Tt)t≥0 which satisfies equation 3.3, we have

T (min)
t (x) ≤ Tt(x) for all x ∈ B(H), t ≥ 0.

Sketch of the proof:

Equivalent condition for the semigroup T = (Tt)t≥0 to satisfy the equation 3.3 is that for

all t ≥ 0, u, v ∈ D and all x ∈ B(H),

〈u, Tt(x)v〉 = 〈Stu, xStv〉+
∞∑
n=1

t∫
0

〈LnSt−su, Ts(x)LnSt−sv〉ds.

Moreover, there exist a sequence (T (n)
t )t≥0 of linear contractions on B(H) defined by

〈u, T (0)
t (x)v〉 = 〈Stu, xStv〉

〈u, T (n+1)
t (x)v〉 = 〈Stu, xStv〉+

∞∑
n=1

t∫
0

〈LnSt−su, T (n)
s )(x)LnSt−sv〉ds

for all t ≥ 0, u, v ∈ D and all x ∈ B(H).
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Furthermore the maps (T (n)
t )t≥0 are completely positive and normal and satisfy T (n)

t (I) ≤

I for every n, t ≥ 0. The sequence (T (n)
t (x))t≥0 is non-decreasing for every positive

x ∈ B(H). Since the (T (n)
t )t≥0 are contractive, the limn→∞〈u, T (n)

t (x)v〉 exists. Setting

〈u, T (min)
t (x)v〉 = limn→∞〈u, T (n)

t (x)v〉, the family (Tt)mint≥0 satisfies the equation 3.3. It

can be checked that for any QDS (Tt)t≥0 which satisfies equation 3.3, we have

T (min)
t (x) ≤ Tt(x)

for all t ≥ 0.

Corollary 3.1.6. Suppose the minimal QDS ((T (min)
t )t≥0 constructed in the theorem 3.1.5

is conservative (Markov). Then it is the unique solution to the equation 3.3.

Conservative Quantum dynamical semigroup:

In view of the corollary 3.1.6, one can give reasons to be interested in understanding

the conservative property of a QDS. In a series of papers [5, 7, 6], Chebotarev and

Fagnola simplified the sufficient conditions for the quantum dynamical semigroup to be

conservative. We give the one of these conditions which appeared in [6].

Theorem 3.1.7. In addition to assumption 3.2, suppose there exists a self-adjoint opera-

tor C with domain coinciding with the domain of G and a core D for G with the following

properties:

(i) For all u ∈ Dom(G), there exists a sequence (un)n≥0 of elements of D such that both

(Gun)n≥0 and (Cun)n≥0 converge strongly.

(ii) The subspace Ln(D) ⊆ Dom(C) for all n ≥ 1.

(iii) There exists a positive self-adjoint operator Φ, with Dom(G) ⊆ Dom(Φ) such that

for all u ∈ D, we have

− 2Re〈u,Gu〉 =

∞∑
n=1

‖Lnu‖2 = 〈u,Φu〉 ≤ 〈u,Cu〉 . (3.4)
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(iv) There exists a positive constant k, such that for all u ∈ D, we have

2Re〈Cu,Gu〉+

∞∑
n=1

〈Lnu,CLnu〉 ≤ k 〈u,Cu〉 . (3.5)

Then the QDS (T (min)
t )t≥0 constructed in theorem 3.1.5 is conservative.

The second way to understand the conservativity of QDS is by getting the knowledge

about resolvent of the minimal QDS (T (min)
t )t≥0. Recall from Definition 2.1.13 that for

λ ∈ ρ(T ), the resolvent of T at λ : Rλ(T ) = (λI − T )−1. The resolvent of the minimal

QDS (T (min)
t )t≥0 is characterized by the equation:

〈u,R(min)
λ (x)v〉 =

t∫
0

e−λs〈u, T (min)
s (x)v〉ds (3.6)

with x ∈ B(H) and u, v ∈ H.

3.2 Quantum Stochastic Calculus on Symmetric

Fock Space

In this section we discuss about the quantum stochastic calculus on Boson Fock space

developed by Hudson and Parthasarathy [20]. This gives a very powerful tool to study

QDS on open systems by incorporating the noise in the Fock space.

3.2.1 Tensor Product of Infinitely Many Hilbert Spaces

Let {Hi : i ∈ I} be the collection of Hilbert spaces indexed by I and {e(i)
ni } be an

orthonormal basis for Hi. Let S be a set of all sequences n̄ = {ni} of positive integers,

that is the kth term in any sequence is the suffix of a basis vector of Hk. Consider the
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vector space W which is spanned by the finite linear combinations of the elements from

the set

W0 = {en̄ := e(1)
n1
⊗ e(2)

n2
⊗ e(3)

n3
⊗ · · · : n̄ ∈ S}.

Here, u ∈ W if u =
∑
η(n̄)en̄ such that η(n̄) : S → C is a map taking value zero for

all sequences but finitely many. Define the inner-product between any two vectors of W ,

u =
∑
η(n̄)en̄ and v =

∑
ζ(n̄)en̄ as

〈u, v〉 =
∑

η(n̄)ζ(n̄)

Definition 3.2.1. The completion of the vector space W with respect to the metric given

by above inner-product is the tensor product of Hilbert spaces {Hi : i ∈ I}. It is denoted

by
⊗
i∈I
Hi and the vector en̄ is denoted by

⊗
i∈I

e
(i)
ni

The set W0 = {en̄ : n̄ ∈ S} forms an orthonormal basis for
⊗
i∈I
Hi. The tensor product of

infinite many Hilbert spaces defined above is in general non-separable. The other definition

which has comparatively vast applications requires the choice of distinguished unit vectors

ui in each Hi. Let us choose an orthonormal basis {e(i)
ni : i ∈ I} for Hi such that e

(i)
1 = ui

for all i ∈ I.

Definition 3.2.2. Let us consider the inner-product subspace W ′ spanned by the orthonor-

mal vectors en̄ ∈
⊗
i∈I
Hi such that ni = 1 i.e. e

(i)
ni = ui for all but finitely many i ∈ I.

The completion of the inner-product space W ′ is called infinite tensor product of the

Hilbert spaces {Hi : i ∈ I} with respect to the stabilizing unit vectors {ui}. Convention:

H⊗0
= C, H⊗1

= H.

Symmetric Tensor Product

In a given physical system of n identical particles which are indistinguishable from one

another, a transition may happen resulting in interchange of some physical properties, like

position or momentum and such a change may not be possible to detect by any of the
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observable. Since the events concerning n indistinguishable particles are described by the

projection in H⊗n
. Such transitions when occur in ith and jth particle then we should not

distinguish between
n⊗
i=1

Pi and P1⊗P2⊗· · ·⊗Pi−1⊗Pj⊗Pi+1 · · ·⊗Pj−1⊗Pi⊗Pj+1⊗· · ·⊗Pn,

which implies that we must consider projections on a subspace of H⊗n
which is invariant

under the permutations. For a Hilbert space H, consider H⊗n
= H⊗H⊗ · · · ⊗ H︸ ︷︷ ︸

n times

and

an elementary element u ∈ H⊗n
is such that u = u1 ⊗ u2 ⊗ · · · ⊗ un. For σ ∈ Sn, the

symmetric group on n symbols, define a unitary map Uσ : H⊗n → H⊗n
which is the

linear extension of the map Uσ(u) =
n⊗
i=1

uσ−1(i) on elementary elements. For

σ, σ′ ∈ Sn, UσUσ′ = Uσσ′ .

Thus σ → Uσ is a group homomorphism from Sn to U(H⊗n
).

Definition 3.2.3. The closed subspace

H⊗n

sym = {u ∈ H⊗n
: Uσu = u for all σ ∈ Sn}

is called the n-fold symmetric tensor product in H⊗n
.

Proposition 3.2.4. For the operator T =
1

n!

∑
σ∈Sn

Uσ, in H⊗n
, H⊗n

sym is an invariant

subspace. Let {ei : i = 1, 2, 3, · · · } be an orthonormal basis in H, then the set

{( n!

r1 · · · rk!
)

1
2T

k⊗
j=1

e⊗
nj

ij
: i1 < i2 < · · · < ik,

nj ≥ 1 for all 1 ≤ j ≤ k, n1 + n2 + · · ·+ nk = n, k = 1, 2, · · · , n}

is an orthonormal basis in H⊗n

sym. In particular, if dim H = N < ∞, then dim H⊗n

sym =(
N+n−1

n

)
.
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3.2.2 Symmetric Fock Space and Weyl Representation

For a Hilbert space H, let H⊗n

sym be the n-fold symmetric tensor product. The Hilbert

space

Γsym(H) =
∞⊕
n=0

H⊗n

sym

is called symmetric Fock space over H. For u ∈ H, the element

e(u) =
⊕
n≥0

1√
n!
u⊗

n

belongs to Γsym(H) and is said to be the exponential vector associated with u. The

vector e(0) = 1⊕ 0⊕ 0 · · · is called vacuum vector and is denoted by Φ. Given u, v ∈ H,

the exponential vectors satisfy

〈e(u), e(v)〉 = exp〈u, v〉.

Let S be a subset of H, the collection of exponential vectors {e(u) : u ∈ S} is a linearly

independent set in Γsym(H). Let E(S) be the subspace generated by the exponential

vectors associated with vectors in S, then E(S) is dense in Γsym(H) if S is dense in H.

For u ∈ H and U ∈ U(H), the space of unitary operators in H, consider the Euclidean

group E(H) = H× U(H) with composition

(u, U1)(v, U2) = (U1v + u, U1U2).

Define the Weyl operator W : E(H)→ U(Γsym(H)) by setting,

W (u, U)e(v) = exp{−1

2
‖u‖2 − 〈u, Uv〉}e(Uv + u) for all v ∈ H. (3.7)

The above representation is continuous with respect to the product norm topology on

H× U(H) and strong operator topology on U(Γsym(H)).
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Theorem 3.2.5. Let H be a complex separable space and Γsym(H) be the symmetric

Fock space. The representation of the Euclidean group E(H) in B(Γsym(H)) defined by

associated Weyl operator:

W : E(H)→ B(Γsym(H))

(u, U)→W (u, U)

is strongly continuous, irreducible and unitary projective representation.

On substituting W (u) = W (u, I), where I is the identity operator and for u, v ∈ H

following are true:

W (u)W (v) = exp(−i Im〈u, v〉)W (u+ v)

W (u)W (v) = exp(−2i Im〈u, v〉)W (v)W (u)

W (su)W (tv) = W ((s+ t))u) for all s, t ∈ R.

The last equation shows that every u ∈ H yields a one parameter unitary group {W (tu) :

t ∈ R} and hence a bounded self-adjoint Stone generator p(u), that is,

W (tu) = e−itp(u) t ∈ R, u ∈ H.

For U ∈ U(H), the operator Γ(U) := W (0, U) is called the second quantization of U .

For U, V ∈ U(H), u ∈ H, we have

Γ(U)e(v) = e(Uv)

Γ(U)Γ(V ) = Γ(UV )

Γ(U)W (u)Γ(U)−1 = W (Uu).

For every bounded self-adjoint operator H such that {Ut = e−itH : t ∈ R} be a unitary
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group in U(H), there corresponds a unitary group {Γ(Ut) = e−itλ(H) : t ∈ R} in Γsym(H)

and the stone generator λ(H) is called the differential second quantization of H.

Consider the following collection of operators, for u ∈ H

q(u) = −p(iu), a(u) =
1

2
(q(u) + ip(u)), a†(u) =

1

2
(q(u)− ip(u))

and for a bounded operator H in H

λ(H) = λ(
1

2
(H +H∗)) + iλ(

1

2i
(H −H∗)).

The domain of the operators a(u), a†(u) and λ(H) contains the space of exponential

vectors E(H) and the following are true :

(i) a(u)e(v) = 〈u, v〉e(v).

(ii) 〈a†(u)e(v), e(w)〉 = 〈e(v), a(u)e(w)〉 = 〈u,w〉〈e(v), e(w)〉.

The operators a(u), a†(u) are respectively anti-linear and linear in u, λ(H) is linear in H

and the following commutation relations hold:

(i) [a(u), a(v)]e(w) = [a†(u), a†(v)]e(w) = 0.

(ii) [a(u), a†(v)]e(w) = 〈u, v〉e(w).

(iii) [λ(H1), λ(H2)]e(u) = λ([H1, H2])e(u).

(iv) [a(u), λ(H)]e(v) = a∗(H∗u)e(v).

(v) [a†(u), λ(H)]e(v) = −a†(Hu)e(v).

Proposition 3.2.6. Let u ∈ H and H ∈ B(H), then the operators a(u), a†(u), λ(H)

satisfy the following relations:

(i) a†(u)e(v) =
d

dt
e(v + tu)|t=0.
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(ii) 〈e(v), λ(H)e(w)〉 = 〈v,Hw〉e〈v,w〉.

(iii) 〈a†(u1)e(v), a†(u2)e(w)〉 = {〈u1, w〉〈v, u2〉+ 〈u1, u2〉}e〈v,w〉.

(iv) 〈a†(u)e(v), λ(H)e(w)〉 = {〈u,w〉〈v,Hw〉+ 〈u,Hw〉}e〈v,w〉.

(v) 〈λ(H1)e(v), λ(H2)e(w)〉 = {〈H1v, w〉〈v,H2w〉+ 〈H1u,H2w〉}e〈v,w〉.

In view of the following properties, the operators a(u), a†(u), λ(H) are called annihila-

tion operator associated with u, creation operator associated with u and conservation

operator associated with H respectively.

(i) a(u)e(0) = 0, a(u)v⊗
n

=
√
n〈u, v〉v⊗n−1

, if n ≥ 1.

(ii) a†(u)v⊗
n

=
1√
n+ 1

n∑
k=0

v⊗
k ⊗ u⊗ v⊗n−k

.

(iii) λ(H)v⊗
n

=
n−1∑
k=0

v⊗
k ⊗Hv ⊗ v⊗n−k−1

.

3.2.3 Fundamental Processes

Consider a complex separable Hilbert space k with an orthonormal basis {ei}Ni=1. In

quantum stochastical calculus the Hilbert space k represents the noise space associated

to the physical system. Let H = L2(R+,k) be the space of k-valued square-integrable

maps. This space can be seen as L2(R+)
⊗

k such that u ⊗ ei(t) = u(t)ei. From this

onward, Γ(H) means the symmetric Fock space over H = L2(R+,k).

For any partition 0 < s < t <∞, let 1[0,s], 1(s,t] and 1[t,∞)

be the canonical orthogonal projections, where 1 represents the characteristic function.

Let us denote the ranges of projections 1[0,s], 1(s,t] and 1[t,∞) on H by Hs], H(s,t] and H[t

respectively. Thus we have H = Hs] ⊕ H(s,t] ⊕ H[t and any function f in H decomposes

as f = fs] ⊕ f(s,t] ⊕ f[t, where fs] = 1[0,s]f, f(s,t] = 1(s,t]f and f[t = 1[t,∞)f. Therefore for

any partition 0 < s < t < ∞, the symmetric Fock space Γ(H) over H can be written as
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the tensor product

Γ(H) = Γ(Hs])⊗ Γ(H(s,t])⊗ Γ(H[t)

and the vacuum vector in the Fock space Γ(H) can be written as Φ = Φs]⊗Φ(s,t]⊗Φ[t, where

Φs], Φ(s,t] and Φ[t are the vacuum vectors in Γ(Hs]), Γ(H(s,t]) and Γ(H[t) respectively. For

the next subsection H is considered to be L2(R+,k), unless otherwise stated. However,

the result are true for a general Hilbert space.

Let h0 be a Hilbert space and H̃ = h0 ⊗ Γ(H). For 0 < s < t < ∞, let us define the

following notations:

H̃0] = h0, H̃s] = h0 ⊗ Γ(Hs])

H̃(s,t] = Γ(H(s,t]), H̃[t = Γ(H[t).

Let Ps], P(s,t] and P[t be the orthogonal projections such that the ranges of H̃ under

Ps], P(s,t] and P[t are H̃s], H̃(s,t] and H̃[t respectively. Let us consider B = B(H̃) ' B0 ⊗

B(Γ(H)), where B0 denotes the algebra of bounded of operators on h0. For 0 < s < t <∞,

B can be written as B = Bs] ⊗ B(s,t] ⊗ B[t, where Bs] = B0 ⊗ B(Γ(Hs])), B(s,t] = B(H̃(s,t])

and B[t = B(H̃[t). These von Neumann algebras are canonically embedded in B. In other

words, this increasing family of von Neumann algebras forms a filtration Bt.

Let D0 ⊂ h0 and M⊂ H be two dense subspaces. The algebraic tensor product D0 ⊗M

is a dense subspaces of H̃ generated by all the vectors of the form ue(f), u ∈ D0 and

f ∈ M. (We drop the tensor symbol between the elements for the ease of notations and

calculations.)

Definition 3.2.7. A family {Lt}t≥0 of operators on H̃ is said to be an (D0,M)-adapted

process with respect to the filtration Bt if,

(i) D(Lt) ⊃ D0 ⊗ E(M), ∀t ≥ 0.

(ii) For every u ∈ D0 and f ∈ M, we have Ltue(ft]) ∈ H̃t] and Ltue(f) = Ltue(ft]) ⊗

e(f[t) ∀ t ≥ 0.
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It is said to be regular, if in addition, for every u ∈ D0 and f ∈ M, the map t →

Ltue(f) from R+ into H̃ is continuous. An adapted process is called bounded, contractive,

isometric, co-isometric or unitary if the operators Lt ’s are so.

Notice that operators L ∈ B0 and T ∈ Bs] can be identified with L⊗IΓ(Ht]) and T ⊗IΓ(H[s)

on B. Furthermore, given a operator L ∈ Bs], it represents the adapted process given by

Ltue(f) =


Pt]LPt]ue(f) if t ≤ s

Lsue(fs])⊗ e(f[s) if t ≥ s.
(3.8)

Let us introduce the vacuum conditional expectation E0 : B → B0, which is given by

〈E0(X)u, v〉 = 〈uΦ, XvΦ〉, ∀u, v ∈ h0, X ∈ B.

The fundamental processes {Λµν : 0 ≤ µ, ν < ∞} associated with the orthonormal

basis {ej : j ≥ 1} are given by:

Λµν (t) =



tIH̃, if (µ, ν) = (0, 0),

a(1[0,t] ⊗ ej), if (µ, ν) = (0, j),

a†(1[0,t] ⊗ ei), if (µ, ν) = (i, 0),

λ(M1[0,t]
⊗ |ei〉〈ej |), if (µ, ν) = (i, j),

(3.9)

where M1[0,t]
is the multiplication operator on L2(R+) by the characteristic function of

the interval [0, t]. The processes Λµν (t) are defined on the space E(H) and notice that as

earlier, the process Λµν (t) are identified with Ih0 ⊗ 1Γ(Ht]) on H̃.

With the above notations in mind, now we discuss quantum stochastic integration with

respect to the processes defined in (3.9).
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3.2.4 Quantum Stochastic Integration

First the integration of a simple adapted process is defined with respect to the fundamental

process, then as a limiting case it is defined for arbitrary adapted processes.

Definition 3.2.8. An (h0,H)-adapted process L is said to be simple with respect to a

partition P = {0 = t0 < t1 < · · · < t < · · · } of R+, if Lt = Ltn−1 , whenever t ∈ (tn−1, tn].

The process Lt remains simple with respect to any finer partition.

For a given µ, ν ≥ 0, consider the simple process X given by:

Xt =

n−1∑
j=1

Ltj−1 [Λµν (tj)− Λµν (tj−1)] + Ltn−1 [Λµν (t)− Λµν (tn−1)],

whenever t ∈ (tn−1, tn]. The process X is called the quantum stochastic integral of

the process L with respect to Λµν and written as

Xt =

t∫
0

L dΛµν =

t∫
0

Ls dΛµν (s).

Observe that the definition of X is independent of the partition with respect to which

L is simple. Given u ∈ h0 and f ∈ H the map t → Xtue(f) is continuous, thus X is a

regular (h0,H)-adapted process. The properties of annihilation, creation and conservation

operators which are listed in previous sub-section, in particularly Proposition 3.2.6 give

rise to the following lemma.

Proposition 3.2.9. (First Fundamental Lemma) For µ, ν ≥ 0, u, v ∈ h0 and f, g ∈

H, we have

〈ue(f),

t∫
0

Ls dΛµν (s) ve(g)〉 =

t∫
0

fµ(s)gν(s)〈ue(f), Lsve(g)〉 ds. (3.10)
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Let L and M be two simple (h0,H)-adapted process with respect to the partition 0 = t0 <

t1 · · · < tn = t of R+. Let Xt =
t∫

0

Ls dΛµν (s) and Yt =
t∫

0

Ms dΛξη(s). Then for u, v ∈ h0

and f, g ∈ H,

〈Xt ue(f), Yt ve(g)〉 =

n∑
j=1

〈Ltj−1ue(ftj−1]),Mtj−1ve(gtj−1])〉〈Λµν (j) e(f[tj ),Λ
ξ
η(j) e(g[tj )〉

+

n∑
j=1

〈Xtj−1ue(ftj−1]),Mtj−1ve(gtj−1])〉〈e(f[tj ),Λ
ξ
η(j) e(g[tj )〉

+

n∑
j=1

〈Ltj−1ue(ftj−1]), Ytj−1ve(gtj−1])〉〈Λµν (j) e(f[tj ), e(g[tj )〉.

(3.11)

From the equations (3.10) and (3.11) we have the following result:

Proposition 3.2.10. (Second Fundamental Lemma)

〈Xt ue(f), Yt ve(g)〉 =

t∫
0

δµξ fν(s)gη(s)〈Lsue(f),Msve(g)〉 ds

+

t∫
0

fξ(s)gη(s)〈Xsue(f),Msve(g)〉 ds

+

t∫
0

fν(s)gµ(s)〈Lsue(f), Ysve(g)〉 ds.

(3.12)

The quantum Ito formula can be express as for all µ, ν, η, ξ ≥ 0:

dΛµν dΛξη = δ̂ξν dΛµη , where δ̂ξν =


0 if ξ = ν = 0,

δξν otherwise.

The function δξν being the Kronecker delta function.
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Using Second Fundamental Lemma (3.12) with X = Y and L = M , we observe that

following holds:

‖Xtue(f)‖2 = 2Re

t∫
0

fν(s)fµ(s)〈Xsue(f), Lsue(f)〉 ds+

t∫
0

‖fν(s)‖2‖Lsue(f)‖2 ds.

For general adapted processes, the integral is defined as the limit of integrals and the

following result shows when such limit exists.

Proposition 3.2.11. Let L be a (h0,H)-adapted process satisfying the following: For

given u ∈ h0, f ∈ H

(i) the map t→ Ltue(f) is left continuous.

(ii) sup
0≤s≤t

‖Lsue(f)‖ <∞, for each t.

Then there exists a sequence of simple (h0,H)-adapted processes {L(n)} such that

lim
n→∞

L
(n)
t ue(f) = Ltue(f), ∀ t ≥ 0

and for any µ, ν ≥ 0,

s− lim
n→∞

t∫
0

Ls dΛµν (s) exists on the domain h0 ⊗ E(H).

Notice that the strong limit, say Xt, is independent of the choice of approximating

sequence. The limit Xt is said to be the quantum stochastic integration of L with respect

Λµν . For all such general processes, the first and second fundamental lemmas hold and can

be proved similarly. We denote the space of all such integrable processes by L(h0,H). Since

most of the time we deal with the family of process, so here we discuss the integrability

of family of adapted process.
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Proposition 3.2.12. Let {Lµν} be a family in L(h0,H) satisfying, for all t ≥ 0, ν ≥

0, u ∈ h0, f ∈ H,
t∫

0

∞∑
µ=0

‖Lµν (s)ue(f)‖2 dγf (s) <∞, (3.13)

where γf (t) =
t∫

0

(1 + ‖f(s)‖2)ds. Then there exists a regular (h0,H)-adapted process X

satisfying, for all t ≥ 0, u ∈ h0, f ∈ H :

(i) lim
n→∞

sup
0≤s≤T

‖X(n)
s ue(f)−Xsue(f)‖ = 0, where T <∞, s ∈ [0, T ] and

X
(n)
t =

∑
0≤µ,ν≤n

t∫
0

Lµν (s)ue(f) dΛµν (s).

(ii) ‖Xtue(f)‖2 = 2eγf (t)
∑
ν≥0

t∫
0

∑
µ≥0
‖Lµν (s)ue(f)‖2dγf (s),

Such a family {Lµν} is called stochastically integrable with respect to Λµν and its

stochastic integral is defined to be:

Xt =
∑
µ,ν≥0

t∫
0

Lµν (s)ue(f) dΛµν (s).

and this is written as a differential equation:

dX =
∑
µ,ν≥0

Lµν dΛµν .

Here we state that first fundamental lemma and second fundamental lemma hold for any

two stochastically integrable families of process {Lµν} and {Mµ
ν }.

Proposition 3.2.13. With notations in 3.12 and for µ, ν ≥ 0, u, v ∈ h0 and f, g ∈ H,

we have:
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(i) (First Fundamental Lemma)

〈ue(f), Xtve(g)〉 =
∑
µ,ν≥0

t∫
0

fµ(s)gν(s)〈ue(f), Lµν (s) ve(g)〉 ds. (3.14)

(ii) (Second Fundamental Lemma)

〈Xt ue(f), Yt ve(g)〉 =
∑
µ,ν≥0

t∫
0

∑
ξ≥0

fµ(s)gν(s)〈Lξµ(s) ue(f),M ξ
ν (s) ve(g)〉 ds

+
∑
µ,ν≥0

t∫
0

fµ(s)gν(s)〈Xsue(f),Mν
µ (s) ve(g)〉 ds

+
∑
µ,ν≥0

t∫
0

fµ(s)gν(s)〈Lµν (s) ue(f), Ysve(g)〉 ds.

(3.15)

Proposition 3.2.14. Let {Lµν} be a family of bounded linear operators on h0 such that

for each ν ≥ 0 there exists a constant cν satisfying:

∑
µ≥0

‖Lµνu‖2 ≤ c2
ν‖u‖2 for all u ∈ h0.

Then there exists a unique regular (h0,H)- adapted process X = {Xt}t>0 satisfying the

differential equation

dX =
∑
µ,ν≥0

XLµν dΛµν , X(0) = X0 ⊗ 1, (3.16)

where X0 ∈ B(h0).

The following result proves the existence of a unitary solution for a class of quantum

stochastic differential equation (QSDE) studied and developed by Hudson and Parthasarathy
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know as HP (left) differential equation:

dU =
∑
µ,ν≥0

ULµν dΛµν U(0) = U0 ⊗ 1. (3.17)

Theorem 3.2.15. Let h0 be a complex separable Hilbert space with orthonormal ba-

sis {ei}Ni=1, N ≤ ∞. Let H ∈ B(h0) be a self-adjoint operator and {Li ; 1 ≤ i ≤

m}, {Sµν ; µ, ν ≥ 0} are bounded operators on h0 such that
∑

µ,ν≥0
Sµν ⊗ |eµ〉〈eν | is a unitary

operator in h0 ⊗ k. If the coefficients of differential equation (3.17) are as follows:

Lµν =



−(iH +
1

2

∑
k≥1

L∗kLk) if (µ, ν) = (0, 0).

Li if (µ, ν) = (i, 0),

−
∑
k≥1

L∗kS
k
j if (µ, ν) = (0, j),

Sij − δij if (µ, ν) = (i, j).

(3.18)

Then there exists a unique unitary process U satisfies:

dU =
∑
µ,ν≥0

ULµν dΛµν , U(0) = I on H̃. (3.19)

One can see that the solution U of the left QSDE (3.19) with the coefficients as

defined in (3.18) is an isometry. To prove that U∗ is an isometry, we consider a dual

process associated with U∗ given by the time reversal operator and satisfies a left QSDE.

Consider the time reversal operator Rt on L2(R+,k) defined by

Rt(f)(s) :=


f(t− s) if s ≤ t;

f(s) if s > t.

(3.20)

Observe that Rt is a self-adjoint unitary. Thus the second quantization Γ(Rt) is so. For a
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bounded process U , define the dual process Ũ by

Ũt := (1⊗ Γ(Rt))Ut
∗(1⊗ Γ(Rt)).

Proposition 3.2.16. Let U be a bounded process satisfying the QSDE (3.19). Then the

dual process Ũ will satisfy the QSDE of the similar form given by,

Ũt = I +
∑
µ,ν≥0

t∫
0

ŨsL
ν
µ
∗ dΛµν (s).

The equation (3.19) can be interpreted as a Schrödinger equation in the presence of noise.

Now we look at the Heisenberg picture of this equation. Let U be a unitary process

satisfying (3.19), for X ∈ B(h0) define a family of ∗-homomorphisms (Jt)t≥0 by:

Jt : B(h0)→ B(h0 ⊗ Γ(H))

X → U∗t (X ⊗ I)Ut.

Then {Jt(X)}t≥0 is a regular (h0,H)-adapted process which satisfies the QSDE

dJt(X) =
∑
µ,ν≥0

Jtθ
µ
ν (X) dΛµν (t), J0(X) = X ⊗ IΓ(H), (3.21)

where θµν are the maps from B(h0) to itself, given by:

θµν (X) =



∑
k≥1

(Ski )∗[X,Lk] if (µ, ν) = (i, 0),

∑
k≥1

[L∗k, X]Skj if (µ, ν) = (0, j),

∑
k≥1

(Ski )∗XSkj − δijX if (µ, ν) = (i, j)

(3.22)
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and

θ0
0(X) = i[H,X]− 1

2

∑
k≥1

(L∗kLkX +XL∗kLk − 2L∗kXLk).

The map θ0
0 is the generator of a QDS (Tt)t≥0 and the homomorphic co-cycle Jt dilates Tt

in the sense that

〈uΦ, Jt(X)vΦ〉 = 〈u, Tt(X)v〉, ∀ u, v ∈ h0 and X ∈ B(H). (3.23)

In other words, QDS (Tt)t≥0 is the vacuum expectation of the homomorphic co-cycle

(Jt)t≥0, implemented by the HP flow U known as an Hudson-Parthasarathy (HP)

dilation of the QDS Tt.

Definition 3.2.17. Let A be a unital C∗-algebra of B(h0). A family (Jt)t≥0 of ∗-

homomorphisms from A into B(H̃) is called an Evans-Hudson (EH) flow with initial

algebra A if following conditions are satisfied:

(i) j0(X) = X ⊗ 1 ∀ X ∈ A.

(ii) Jt(X) ∈ Bt] ∀ X ∈ A.

(iii) For µ, ν ≥ 0, there exists A0 a unital dense ∗-subalgebra of A and the family of maps

θµν : A0 → A0 such that (Jt(X))t≥0 is a regular (h0,H)-adapted process satisfying

the differential equation (3.21).

The maps {θµν : µ, ν ≥ 0} are called structure maps of the EH flow (Jt)t≥0 and they

satisfy the following structure equations:

(i) θµν is linear for all µ, ν ≥ 0.

(ii) Whenever 1 ∈ A0, θ
µ
ν (1) = 0 for all µ, ν ≥ 0.

(iii) θµν (X∗) = (θµν (X))∗ for all X ∈ A0.
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(iv) θµν (XY ) = θµν (X)Y +Xθµν (Y ) +
∑

µ,ν≥0
θµν (X)θµν (Y ), for all X,Y ∈ A0.

In equation (iv) the convergence of the series is in strong sense. The structure maps are

said to satisfy Mohari-Sinha regularity condition if there exists constants αj > 0 and

a family of maps {Tµν : µ ∈ N, ν ≥ 0} in B(h0) such that for all u ∈ h0 , X ∈ B(h0)

∑
i∈N
‖Tµν u‖2 ≤ α2

j‖u‖2,

∑
i∈N
‖θµν (X)u‖2 ≤

∑
i∈N
‖XTµν u‖2.

(3.24)

If there exists n ∈ N such that θµν = 0 whenever max{µ, ν} ≥ n and the maps θµν satisfy

structure equations then Mohari-Sinha regularity conditions are automatically satisfied.

The following results tells us that such a family of homomorphisms give rise to an EH

flow.

Theorem 3.2.18. Let {θµν : µ, ν ≥ 0} be a family of maps from A0 into itself satisfying the

structure equations and the regularity condition (3.24), then there exists a unique EH flow

{Jt}t≥0 with initial algebra A0 such that for X ∈ A0 it satisfies the differential equation

(3.21).
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Examples of Quantum Dynamical

Semigroups

As an attempt to understand strongly continuous QDS, here we look at certain classes

of Lindbladians on UHF C∗-algebras. Though, the Lindbladians are given as forms, we

manage to solve the associated quantum stochastic differential equations and are able to

construct the QDS which are conservative [34].

4.1 Operators on GNS space of UHF algebra

In this section, we discuss the construction of operators on the GNS space of UHF C∗-

algebras which are the coefficients in the Lindbladian forms as well as in the associated

HP type QSDE.

Consider the UHF C∗-algebra A as the C∗-inductive limit of the infinite tensor product

of the matrix algebra MN (C),

A =
⊗
j∈Zd

MN (C)
c∗

.

57
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The algebra A can be interpreted as inductive limit of full matrix algebras. For x ∈MN (C)

and j ∈ Zd, x(j) denotes an element of A with x in the jth component and identity

everywhere else. We shall call the elements of the form
k∏
i=1

x
(li)
i , where l1, l2, · · · , lk ∈ Zd,

to be simple tensor elements in A. For a simple tensor element x in A, let x(j) be the jth

component of x. Support ‘supp(x)’ of x is defined to be the subset {j ∈ Zd;x(j) 6= I}.

For a general element x ∈ A such that x =
∑∞

n=1 cnxn with simple tensor elements

xn and complex coefficients cn, define supp(x) =
⋃
n≥1 supp(xn). For any ∆ ⊂ Zd, let

A∆ denotes the ∗-sub algebra generated by the elements of A with support in ∆. For

j = (j1, j2, · · · , jd) ∈ Zd, define |j| = max{|ji| ; 1 ≤ i ≤ d} and set ∆n = {j ∈ Zd; |j| ≤ n},

∂∆n = {j ∈ Zd; |j| = n}. We say an element x ∈ A is local if x ∈ A∆p for some p ≥ 1.

We write Aloc for the dense ∗-algebra generated by local elements. The unique normalized

trace tr on A is given by tr(x) =
1

Nn
Tr(x), for x ∈MNn(C), where Tr denotes the matrix

trace. The trace tr is a faithful normal state on the elements of A. The algebra A can

be represented as vectors in the Hilbert space h0 = L2(A, tr), the GNS Hilbert space for

(A, tr), and as an operator in B(H) by left multiplication.

Consider a formal element of the type

r :=

∞∑
n=1

Wn such that

∞∑
n=1

‖Wn‖ =∞,

where each Wn belongs to A∂∆n . Let us denote formally

∞∑
n=1

W ∗n by r∗.

Now, if we set Cr(x) = [r, x] =
∞∑
n=1

[Wn, x] for x ∈ Aloc, clearly it is well defined since

[Wn, x] = 0 for all n > m when x is in finite dimensional algebra A∆m ⊆ Aloc. Thus

we have a densely defined linear operator (Cr,Aloc) in h0. In case,
∞∑
n=1
‖Wn‖ < ∞, the

operator (Cr,Aloc) would be bounded.



Chapter 4. Examples of QDS 59

Lemma 4.1.1. Let r be as above and n ≥ 1. Consider the element rn =
n∑
k=1

Wk in A and

define a bounded operator C(n)
r on h0 by setting C(n)

r (x) = [rn, x] =
n∑
k=1

[Wk, x] for x ∈ Aloc.

Then for each n ≥ 1, A∆n is an invariant subspace for Cr and C(n)
r . Also for m ≥ p,

Cr|A∆p
= C(m)

r |A∆p
= C(p)

r |A∆p
. (4.1)

Proof. For x is in A∆n , [Wk, x] = 0 for k > n. Thus [r, x] = [rn, x] ∈ A∆n and A∆n is an

invariant subspace under Cr and C(n)
r . Now for x ∈ A∆p and m ≥ p, it is easy to see that

Cr(x) = C(m)
r (x) = C(p)

r (x).

Proposition 4.1.2. The operator (Cr,Aloc) is closable.

Proof. We shall show that Aloc ⊆ Dom(C∗r ) and for x ∈ Aloc, C∗r (x) = Cr∗(x) = [r∗, x],

thereby showing that the operator C∗r is densely defined and therefore (Cr,Aloc) is closable.

Indeed for x ∈ Aloc, there exists p ≥ 1 such that x ∈ A∆p . Define Φx(y) := 〈x, Cr(y)〉 ∀y ∈

Aloc. For each y ∈ Aloc, there exists m such that y ∈ A∆m . As {A∆n} is an increasing

family of algebras, with no loss of generality, let us assume m ≥ p. Then by definition and

property of trace and Lemma 4.1.1,

Φx(y) = tr(x∗Cr(y)) = tr(x∗C(m)
r (y)) = tr([C(m)

r∗ (x)]∗y) = 〈C(p)
r∗ (x), y〉 = 〈Cr∗(x), y〉,

and thus

|Φx(y)| ≤ ‖Cr∗(x)‖‖y‖, ∀ y ∈ Aloc.

Thus x ∈ Dom(C∗r ) and

C∗r (x) = Cr∗(x),∀x ∈ Aloc. (4.2)
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We denote by C̄r, the closure of the densely defined, closable operator Cr. Note here that

for an operator T on h0, T ∗ = T̄ ∗, if T is closable. Then by standard theorem of von

Neumann, C∗r C̄r is a positive self-adjoint operator in h0 and Dom(C∗r C̄r) is a core for C̄r.

Furthermore, the operator G := −1

2
C∗r C̄r is closed, densely defined dissipative operator.

Hence by Theorem 2.4.13 generates a C0-contraction semigroup St on h0.

Proposition 4.1.3. For n ≥ 1, define the bounded operator G(n) on h0 by

G(n) := −1

2
C(n)
r∗ C

(n)
r .

Then each A∆n is invariant under G(n). Furthermore,

G(m)|A∆p
= G(p)|A∆p

= G|A∆p
if m ≥ p, (4.3)

Proof. By Lemma 4.1.1, we have A∆n invariant under C̄r and C(n)
r and for m ≥ p, the

identity Cr|A∆p = C(m)
r |A∆p = C(p)

r |A∆p holds. By Proposition 4.1.2, C∗r (x) = Cr∗(x), for

all x ∈ Aloc, we have C∗r |A∆p = C(m)
r∗ |A∆p

= C(p)
r∗ |A∆p

and hence result follows.

Proposition 4.1.4. The subspace Aloc is a core for the operator G.

Proof. It is enough to prove that the subspace Aloc is invariant under the semigroup St.

For a vector x ∈ Aloc, there exists n ≥ 1, such that x ∈ A∆n . Now by Proposition 4.3, for

any k ≥ 0, Gk(x) = (G(n))k(x) ∈ A∆n and it follows that the series
∑

k≥0
tkGkx
k! converges

strongly in A∆n . Therefore, we have, Stx = S(n)
t x = etG

(n)
for x ∈ A∆n . Thus, St leaves

Aloc invariant and by Nelson’s theorem [28], the core property follows.

4.2 HP Flow Associated to the Lindbladian

Formally, let us define L by, for a ∈ B(h0),

L(a) = C∗raCr −
1

2
(aG+G∗a).



Chapter 4. Examples of QDS 61

By definition of Cr, it is clear that L is not densely defined.

We consider the sesquilinear form, Lindbladian L(X), for X ∈ B(h0), with the domain

Aloc ×Aloc ⊆ Dom(G)×Dom(G) given by

〈u,L(X)v〉 ≡ 〈u,XGv〉+ 〈Gu,Xv〉+ 〈C̄ru,XC̄rv〉. (4.4)

By definition of G, it is clear that 〈u,L(I)v〉 = 〈u,Gv〉+ 〈Gu, v〉+ 〈C̄ru, C̄rv〉 = 0.

Though by Chebotarev’s iterative method in the Theorem 3.1.5 we can construct the

minimal QDS, but the conservativity does not follow. Alternatively, let us look at the HP

type QSDE associated to the Lindbladian (4.4). Let H = L2(R+,C) and set H̃ = h0⊗H.

Recall that Γ(H) denotes the symmetric Fock space on H and E is the space of all the

exponential vectors in Γ(H). Let Aloc⊗E be the linear span of {x⊗ e(f) : x ∈ Aloc, f ∈

L2(R+,C)}. Then the set Aloc ⊗ E is a dense subspace of H̃. Here the noise space is of

one dimension.

Theorem 4.2.1. Consider the HP type QSDE in Aloc ⊗ E

Ut = I +

t∫
0

UsGds+

t∫
0

UsC̄ra†(ds)−
t∫

0

UsC∗ra(ds), (4.5)

where a†, a are creation and annihilation processes respectively. The QSDE (4.5) admits a

unitary solution Ut. Moreover, the expectation semigroup (Tt)t≥0 of the homomorphic co-

cycle Jt(X) = U∗t (X ⊗ I)Ut is the unique (minimal) semigroup associated with the formal

Lindbladian L in (4.4) and is conservative.

Proof. Recall that the UHF algebra A can be approximated by finite dimensional algebras,

namely A∆n =
∏
‖j‖≤n

MN (C) and Aloc =
∞⋃
n=0
A∆n . For n ≥ 0, consider the following QSDE
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in Aloc ⊗ E ,

U
(n)
t = I +

t∫
0

U (n)
s G(n)ds+

t∫
0

U (n)
s C(n)

r a†(ds)−
t∫

0

U (n)
s C(n)

r

∗
a(ds). (4.6)

By Theorem 3.2.15, the QSDE 4.6 admits a unitary solution U
(n)
t on h0 ⊗ Γ(H).

We now show that the operators U
(n)
t satisfy some compatibility condition, that is for

n ≥ m,

U
(n)
t |A∆m

= U
(m)
t |A∆m

. (4.7)

Here the symbol T |A∆m
means the restriction of T to the subspace A∆m ⊗ Γsym.

Since these operators C(m)
r , C(m)

r

∗
and G(m) leave A∆m invariant, the restriction U

(m)
t |A∆m

satisfies the following QSDE in A∆m ⊗ E ,

U
(m)
t |A∆m

= I|A∆m
+

t∫
0

U (m)
s |A∆m

G(m)|A∆m
ds (4.8)

+

t∫
0

U (m)
s |A∆m

C(m)
r |A∆m

a†(ds)−
t∫

0

U (m)
s |A∆m

C(m)
r

∗|A∆m
a(ds).

For n ≥ m, consider the QSDE in A∆m ⊗ E ,

U
(n)
t |A∆m

= I|A∆m
+

t∫
0

U (n)
s |A∆m

G(n)|A∆m
ds (4.9)

+

t∫
0

U (n)
s |A∆m

C(n)
r |A∆m

a†(ds)−
t∫

0

U (n)
s |A∆m

C(n)
r

∗|A∆m
a(ds).

With reference to Lemma 4.1.1, equation (4.3) and Theorem 3.2.15, the unitary processes

U
(n)
t |A∆m

and U
(m)
t |A∆m

satisfy the same QSDE in A∆m ⊗E . Therefore, by uniqueness of

solution in Theorem 3.2.15, (4.7) follows.
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Define Ut on Aloc ⊗ E by setting

Ut(x⊗ e(f)) = U
(n)
t (x⊗ e(f)) if x ∈ A∆n

and extending linearly. Since the family U
(n)
t satisfies the compatibility condition (4.7),

Ut is well defined on Aloc ⊗ E , and for x ∈ A∆m we have

Ut(x⊗ e(f)) = U
(m)
t (x⊗ e(f)) = U

(n)
t (x⊗ e(f)), ∀n ≥ m. (4.10)

Hence U
(n)
t converges strongly to Ut on Aloc⊗E and Ut extends to a contraction operator

on h0⊗Γsym. As Aloc⊗E is dense in h0⊗Γsym, (4.10) gives that U
(n)
t converges strongly

to Ut on h0 ⊗ Γsym as well and the limit Ut is an isometry.

For U
(n)
t , consider the dual process Ũt

(n)
= (1 ⊗ Γ(Rt))U

(n)
t

∗
(1 ⊗ Γ(Rt)). Then by

Proposition 3.2.16, {Ũt
(n)} satisfies the following QSDE in Aloc ⊗ E ,

Ũt
(n)

= I +

t∫
0

Ũs
(n)
G(n)∗ds+

t∫
0

Ũs
(n)C(n)

r

∗
a(ds)−

t∫
0

Ũs
(n)C(n)

r a†(ds). (4.11)

The equation (4.11) is identical to (4.6) except that C(n)
r is replaced by −C(n)

r . So similar

arguments yield that the operators Ũt
(n)

also satisfy the compatibility condition and

converge strongly to an isometry and because Ũt
(n)

and Γ(Rt) are unitaries, the sequence

U
(n)
t

∗
of unitaries converges strongly and thus it must converge to U∗t . Hence U∗t is an

isometry, so Ut is a unitary process.

It remains to prove that Ut satisfies the QSDE (4.5). As Ut is a unitary process, the

quantum stochastic integral on the right-hand side of (4.5) makes sense. Thus, it is

enough to establish that integrals on the right-hand side of (4.6) converge to integrals in
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(4.5). For xe(f) ∈ Aloc ⊗ E , we have

‖
t∫

0

(U (n)
s G(n) − UsG)ds(xe(f))‖ ≤

t∫
0

‖(U (n)
s G(n) − UsG)(xe(f))‖ds,

hence by (4.3) and (4.10), it converges to 0. By estimates of quantum stochastic integrals

[29], we have

‖
t∫

0

(U
(n)
s C(n)

r − UsCr)a†(ds)(xe(f))‖2

≤ 2e

t∫
0

(1+|f(s)|2)ds t∫
0

‖(U (n)
s C(n)

r − UsCr)xe(f)‖2(1 + |f(s)|2)ds.

Therefore, by (4.1) and (4.10),

lim
n→∞

‖
t∫

0

(U (n)
s C(n)

r − UsCr)a†(ds)(xe(f))‖2 = 0.

Convergence of annihilation term follows from a simpler estimate and using (4.2), (4.1)

and (4.10). Thus Ut is a unitary solution to the QSDE (4.5).

Now let us consider the expectation semigroup (Tt)t≥0 of the homomorphic co-cycle Jt(·) =

U∗t (·⊗I)Ut. As Ut is a unitary process, the QDS (Tt)t≥0 is conservative minimal semigroup

associated with the form (4.4).

4.3 EH Flow Associated to the Lindbladian

In this section, we deal with the structure maps on Aloc in the UHF algebra. For Wk ∈

A∂∆k
, define the operators:

δk(X) = [X,Wk], δ†k(X) = (δk(X
∗))∗ = [W ∗k , X],
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for every X ∈ Aloc. Consider the Lindbladian:

L(X) =
1

2

∞∑
k=1

{W ∗k δk(X) + δ†k(X)Wk}, for all X ∈ Aloc. (4.12)

Though each component W ∗k δk(.) + δ†k(, )Wk are bounded maps, L is unbounded due to

presence of infinitely many components (like in [27]). For n ≥ 1, define a bounded map

L(n)(X) = 1
2

∑n
k=1{W ∗k δk(X)+δ†k(X)Wk}, for all X ∈ A. Note that for X ∈ A∆n , δk(X) =

δ†k(X) = 0 and L(k)(X) = L(n)(X) for every k ≥ n. The operators L(n) are CCP, bounded

and the associated uniformly continuous QDS (Tt)t≥0 leaves the space A∆n invariant.

As an operator −1
2

∑∞
k=1W

∗
kWk may have a trivial domain or not a generator of a C0-

semigroup on H. Thus the HP equation associated to (4.12) on H̃,

Ut = I +

t∫
0

Us(−
1

2

∞∑
k=1

W ∗kWk)ds+
∞∑
k=1

t∫
0

UsWka
†
k(ds)−

∞∑
k=1

t∫
0

UsW
∗
k ak(ds)

may not make sense.

Let us consider the EH type quantum stochastic differential equation with structure maps

L, δk and δ†k. In the following result we show that EH flow exists and give rise to

conservative QDS.

Theorem 4.3.1. There exist a homomorphic co-cycle Jt : A → A′′ ⊗ B(Γ(H)) satisfying

the Evans-Hudson equation, for X ∈ Aloc,

Jt(X) = X⊗I+

t∫
0

Js(L(X))ds+

∞∑
k=1

t∫
0

Js(δk(X))a†k(ds)+

∞∑
k=1

t∫
0

Js(δ
†
k(X))ak(ds). (4.13)

The expectation semigroup (Tt)t≥0 of the homomorphic co-cycle Jt is conservative minimal

semigroup associated with the Lindbladian form (4.12).
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Proof. For each n, we look at the following EH equation:

J
(n)
t (X) = X ⊗ I +

t∫
0

J (n)
s (L(n)(X))ds+

n∑
k=1

t∫
0

J (n)
s (δk(X))a†k(ds).

+

n∑
k=1

t∫
0

J (n)
s (δ†k(X))ak(ds). (4.14)

By Theorem 3.2.18, there exists a homomorphic solution J
(n)
t : A → A′′⊗B(Γ(H)) which

satisfies the EH equation (4.3), for all X ∈ A. When X ∈ Aloc, there exist m such that

x ∈ A∆m and as in HP case we can see that

J
(n)
t (X) = J

(m)
t (X), for all n ≥ m. (4.15)

Let us define

Jt(X) = lim
n→∞

J
(n)
t (X) for all X ∈ Aloc.

To prove that Jt satisfies the EH equation (4.13), we observe that for every X ∈ Aloc, the

stochastic integrals on the right hand side of equation (4.3) converge to that of equation

(4.13). Since for X ∈ A∆m , δk(X) = 0 for all k ≥ m implies δk(X) ∈ A∆m . Therefore we

have,

∞∑
k=1

t∫
0

Js(δk(X))a†k(ds)−
n∑
k=1

t∫
0

J (n)
s (δk(X))a†k(ds)

=
m∑
k=1

t∫
0

Js(δk(X))a†k(ds)−
m∑
k=1

t∫
0

J (n)
s (δk(X))a†k(ds). (4.16)

Since δk(X) ∈ A∆m , by (4.15) Js(δk(X)) = J
(n)
s (δk(X)) = J

(m)
s (δk(X)) for n ≥ m. Thus
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for any X ∈ Aloc

lim
n→∞

 ∞∑
k=1

t∫
0

Jsδk(X)a†k(ds)−
n∑
k=1

t∫
0

J (n)
s δk(X)a†k(ds)

 = 0.

Similar argument gives the convergence of annihilation and dt term. Therefore Jt : Aloc →

A′′ ⊗ B(Γ(H)) is the homomorphic solution of QSDE (4.13) which extends to the UHF

C∗-algebra A by boundedness of Jt on the dense ∗-algebra Aloc.

Now let us consider the expectation semigroup (Tt)t≥0 of the homomorphic co-cycle Jt.

The QDS (Tt)t≥0 is conservative semigroup associated with the form (4.12) in the sense

that for all u, v ∈ h0

〈u, Tt(X)v〉 = 〈u,Xv〉+

t∫
0

〈u,L(Ts(X))v〉ds.
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UHF C∗-algebras, 18

Ultra-Strong Topology:, 20

Ultra-Weak Topology:, 21

uniformly continuous, 27

uniformly continuous (norm-continuous), 35

unital, 16

vacuum conditional expectation, 47

von Neumann algebra, 22

Weak (Operator) Topology:, 20

Weyl operator, 42


	Introduction
	Preliminaries
	Hilbert Space Theory
	Unbounded Operators

	C* and von Neumann Algebras
	C*-algebras
	UHF C*-algebra
	Locally Convex Topologies in B(H)
	von Neumann Algebras

	Completely Positive Maps
	Semigroups on Banach Spaces
	Strongly Continuous (C0)-Semigroups


	Quantum Dynamical Semigroups and Quantum Stochastic Calculus
	Quantum Dynamical Semigroups
	Quantum Stochastic Calculus on Symmetric Fock Space
	Tensor Product of Infinitely Many Hilbert Spaces
	Symmetric Fock Space and Weyl Representation
	Fundamental Processes
	Quantum Stochastic Integration


	Examples of QDS
	Operators on GNS space of UHF algebra
	HP Flow Associated to the Lindbladian
	EH Flow Associated to the Lindbladian

	Bibliography
	Index

