
ESTIMATING THE TEMPERATURE OF
THERMAL QGP SYSTEMS

Anjaly S Menon
Roll No: MS13151

A dissertation submitted for the partial fulfilment

of BS-MS dual degree in Science

Under the guidence of

Dr. Satyajit Jena

April 2018

Indian Institute of Science Education and Research Mohali
Sector - 81, SAS Nagar, Mohali 140306, Punjab, India





Certificate of Examination

This is to certify that the dissertation titled “Estimating the Temperature of Ther-

mal QGP Systems” submitted by Anjaly S Menon (Reg. No. MS13151) for the

partial fulfillment of BS-MS dual degree programme of the Institute, has been ex-

amined by the thesis committee duly appointed by the Institute. The committee

finds the work done by the candidate satisfactory and recommends that the report

be accepted.

Prof. Charanjit Singh Aulakh Dr. Ketan Patel Dr. Satyajit Jena

(Supervisor)

Dated: 20.04.2018





Declaration

The work presented in this dissertation has been carried out by me under the

guidance of Dr. Satyajit Jena at the Indian Institute of Science Education and

Research Mohali.

This work has not been submitted in part or in full for a degree, a diploma, or a

fellowship to any other university or institute. Whenever contributions of others

are involved, every effort is made to indicate this clearly, with due acknowledge-

ment of collaborative research and discussions. This thesis is a bonafide record of

original work done by me and all sources listed within have been detailed in the

bibliography.

Anjaly S Menon

(Candidate)

Dated: April 20, 2018

In my capacity as the supervisor of the candidate’s project work, I certify that the

above statements by the candidate are true to the best of my knowledge.

Dr. Satyajit Jena

(Supervisor)





Acknowledgement

First and foremost I praise and thank the almighty for being the unfailing source of support,

comfort and strength throughout the completion of my project work.

I would like to thank Prof. Debi Prasad Sarkar, Director of Indian Institute of Science Ed-

ucation and Research Mohali and Prof. Jasjeet Singh Bagla, Head of the Department of

Physical Sciences, for the infrastructure, library facilities, research facilities and for expos-

ing myself to the working environment of a full–fledged research institute. I would like to

also thank Prof. N. Sathyamurthy, former Director, Indian Institute of Science Education

and Research Mohali.

It’s an honour and proud privilege in expressing my deepest and sincere gratitude to Dr.

Satyajit Jena, Assistant Professor, Department of Physical sciences, Indian Institute of Sci-

ence Education and Research Mohali, for his kindness and support, for accepting my re-

quest to work under his guidance, for enabling me in the pursuit of my career.

I express my warm appreciation and most respectful regards to Prof. Charanjit Singh

Aulakh and Dr. Ketan Patel, my thesis committee members for their valuable suggestions

and comments during the committee meetings.

I am so obliged and extremely thankful to Rohit Gupta, for patiently teaching me everything

from basics. He helped me throughout this project by providing me with necessary intel-

lectual input in most needful times. Without his help and effort, this project work would be

incomplete.

i



I would like to thank my lab members, Anjali Krishnan, Nishat Fiza, Tasha Gautam,

Shahina Ali, Akhil Bharadwaj, Asish Moharana, Shubham Varma, Neeraj Maan and Kartik

Joshi for making the lab lively and lending a hand at times when I needed.

I express my enormous love and affection to my family members, for their unconditional

love and support which I always received. Finally, I would like to express my love and care

to my friends especially Arathy, Neelima and my classmates for their unselfish, loyal, true

benevolent concern for me.

Anjaly S Menon

MS13151

IISER Mohali.



Contents

Acknowledgement i

List of Figures v

Abstract vii

1 Introduction 1

2 Quantum Chromodynamics 5

2.1 Quarks and QCD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Gluons and QCD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Asymptotic Freedom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 QGP and Dynamics of Heavy Ion Collisions 11

3.1 Why do we study HIC? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2 Formation of QGP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3 Phases of QCD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.4 Space Time Evolution of Matter . . . . . . . . . . . . . . . . . . . . . . . 16

3.4.1 Pre-equilibrium Stage . . . . . . . . . . . . . . . . . . . . . . . . 17

3.4.2 Expansion Stage followed by Hadronization . . . . . . . . . . . . . 17

3.4.3 Freeze-out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4 Statistical Approach to Thermal QGP Systems 19

4.1 QGP and Hadronic Gas in Ideal Limit . . . . . . . . . . . . . . . . . . . . 19

4.2 Relativistic Kinetic Theory . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.3 Boltzmann Gibbs Statistical Framework . . . . . . . . . . . . . . . . . . . 23

4.4 Tsallis Statistical Framework . . . . . . . . . . . . . . . . . . . . . . . . . 27

iii



4.5 Pearson statistical Framework . . . . . . . . . . . . . . . . . . . . . . . . 34

4.5.1 Mathematical Background . . . . . . . . . . . . . . . . . . . . . . 34

4.5.2 Pearson Function as an Extension to Tsallis . . . . . . . . . . . . . 36

5 Analysis and Results 39

5.1 Fitting Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

A ROOT: Data Analysis Framework 43

Bibliography 45



List of Figures

2.1 QCD Lagrangian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Asymptotic freedom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1 Collisions of Gold nuclei in the STAR experiment at RHIC . . . . . . . . . 12

3.2 A nucleus at normal (left) and high density (right). . . . . . . . . . . . . . 13

3.3 (a)Space Time Picture (b) Phases of Strong Matter . . . . . . . . . . . . . 16

3.4 Evolution of strongly interacting systems produced in HIC . . . . . . . . . 17

4.1 Probability vs Energy in a Statistical Ensemble . . . . . . . . . . . . . . . 25

4.2 Plots of transverse momentum spectra of π+ and π− produced in Au+Au

collisions at
√
s = 200GeV at different centralities. . . . . . . . . . . . . . 33

5.1 The transverse momentum data of π− particles produced at collision energies of

(a) 7.7 GeV, (b) 11.5 GeV, (c) 19.6 GeV, (d) 39.0 GeV (e) 200 GeV and (f) 2760

GeV fitted with Boltzmann (Eqn4.9), Tsallis (Eqn4.20) and Pearson distribution

function (Eqn4.52). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

v



vi



Abstract

Ultra-relativistic heavy ion collisions at RHIC (Relativistic Heavy Ion Collider) and LHC

(Large Hadron Collider) has made it possible to study the state of matter produced un-

der extreme conditions of temperature and energy density known as Quark Gluon Plasma

(QGP). To explore and investigate the possibility of formation of this new deconfined state

of only quarks and gluons, tools of Statistical thermodynamics can be used. We focus on

the study of transverse momentum distributions which has proven to be an effective probe

for understanding the properties of systems produced in relativistic heavy ion collisions.

Our objective is to find an accurate distribution function to approximate the identified parti-

cle spectra. Since no function exactly describes the transverse momentum spectra, finding a

correct distribution function to describe the spectra is of great interest to present day particle

physics community. The classical description of high energy collisions uses statistical mod-

els that are based on Boltzmann-Gibbs distribution (BG). In spite of its great success BG

statistical mechanics is not completely universal. A class of physical ensembles involving

long-range interactions and long-time memories can hardly be treated within this classical

framework. Such systems are analyzed using a generalized non-extensive statistical ther-

modynamics known as Tsallis statistics. We will be examining both Boltzmann-Gibbs and

Tsallis statistical approaches in detail. An extension of Tsallis statistics applicable in high

energy physics is explored here in order to study the phase space of particles produced from

both soft as well as hard scattering processes occurring in heavy ion collisions using a gen-

eralized Tsallis distribution. We carried out analysis for an invariant yield of pions. ROOT,

data analysis framework has been used along with MINUIT class for fitting. Results have

shown that this new generalized approach gives a successful explanation in a consistent

way as compared to earlier approaches. Fit details including the values of temperature and

other relevant parameters are also given. Also, the connection of new parameters to physics

is explored, and generalized thermodynamics for relativistic particles is derived.
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Chapter 1

Introduction

Particle physics is all about studying the nature of fundamental constituents of matter that

makes up this universe. Our knowledge of these constituents is necessary to understand

the laws that shape this universe. In 20th century, particle physicists formulated a series of

equations that describe all fundamental forces except gravitational force and classify entire

known elementary particles in a consistent way, that is known as Standard Model.

This model makes several predictions based on the theoretical calculations and high energy

experiments occurring at particle accelerators all over the world, aimed at confirming these

predictions. It is well known that several physics phenomena have been explained success-

fully by this model mutually working with the experimental data from detectors and also,

there are evidences showing that the standard model built is in excellent accord with almost

all current data.[GGS99],[Nov00]

Even though standard model is currently the best description, it does not explain the com-

plete picture. What happened to antimatter after the Big Bang?, What is dark matter? are

some of the questions which standard model is unable to explain. The reasons for consid-

ering it as an approximation to the actual story and, the hints which indicate that it fails at

arbitrarily short distances are presented in [GGS99]. Physicists are looking for answers to

the above-mentioned questions, and several other phenomena need to be investigated. One

of the important questions physicists concerned about is how did the entire universe come

into existence.
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Big Bang theory gave an explanation that all matter formed in an explosive event 13.7 mil-

lion years ago and the universe began as a fireball with extremely high temperature and

energy density. The observational evidences for Big Bang and the profound discovery of

accelerating the expansion of universe are discussed in [AP12],[Mac04]. Next question that

caught the attention of scientists was what kind of matter existed at those earliest moments

of universe.

Theoretical calculations based on Lattice QCD (Quantum chromodynamics) framework,

first predicted a new state called Quark Gluon Plasma (QGP) to exist at these sufficiently

higher temperatures or baryon densities. Later, heavy ion collision experiments performed

at RHIC made it possible to reach energy densities above critical values predicted by Lattice

QCD, for the establishment of QGP and, thus the droplets of the matter that filled the uni-

verse microseconds after the Big Bang was recreated in the laboratories[JW05, GVWZ04,

KH04a]. A brief discussion on the basic understanding of QCD and the formation of QGP

will be provided in coming chapters.

Considering QGP to be a thermally equilibrated state in which quarks and gluons are de-

confined from hadrons and are free to move over nuclear, rather than nucleonic volumes,

tools from statistical thermodynamics can be used to compute its thermodynamic properties

[Ris04]. Review of processes that drives to the thermalization of QGP and evidence for the

creation of thermal QGP systems is done in [Str13].

We focus on the study of transverse momentum distributions which has proven to be an

effective probe for understanding the properties of systems produced in relativistic heavy

ion collisions. Our objective is to find a distribution function to approximate the published

data on transverse momentum spectra of identified particles in collider experiments. Many

attempts were done in the past, and the results were not satisfying. We begin with a short

review of developments happened on this path of finding a distribution that can explain

particle spectra with good accuracy and, later a solution to the problem is proposed using a

generalized form of Tsallis distribution, called Pearson distribution.

The classical description of high energy collisions uses statistical models that are based on
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Boltzmann-Gibbs distribution (BG). In spite of its great success BG statistical mechanics is

not completely universal. A class of physical ensembles involving long-range interactions

and long-time memories can hardly be treated within this classical framework.

Such systems are analyzed using a generalized non-extensive statistical thermodynamics

known as Tsallis statistics. In this thesis work, We will be examining both Boltzmann-

Gibbs and Tsallis statistical approaches in detail. The domains in which BG and Tsallis

formalism are valid, and the rationale behind the need for a generalized Tsallis statistical

mechanics will also be discussed.

For analysis, we have taken the data of invariant yield of π− produced in Au-Au and Pb-Pb

collisions at several collision energies and the temperature corresponding to the thermal

system produced, is extracted from the fit details. This procedure is performed for BG,

Tsallis and Pearson distributions such that a comparison can be made. The accuracy of fits

is determined by examining the Chi-square values associated with each fit.

A derivation which shows that the Pearson distribution is a generalization to both BG and

Tsallis distribution is also presented. Our expected behavior is that this new approach us-

ing Pearson density will give better fits and successful physical explanation in a consistent

way as compared to earlier approaches. There are parameters other than temperature in the

Pearson distribution, for which the physical connection is to be extracted.

The outline of this thesis is following. In chapter 2, we will introduce some basics about

Quantum Chromodynamics. Chapter 3 starts with the discussion of why do we study heavy

ion collisions. The theoretical background behind the formation of QGP is also given. Fur-

ther, review of developments happened in the area of QGP research is done. In chapter 4,

we will be presenting the idea of using statistical tools to analyze the transverse momen-

tum data and the motivation for doing this. The earlier approaches which were used for

describing the particle spectra are also explained in this chapter. These approaches include

Boltzmann-Gibbs and Tsallis statistical framework.

It is known that till now no function could approximate the particle spectra without any
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deviation. Various drawbacks and difficulties of above-mentioned formalism will be dis-

cussed in chapter 4. Then, we will introduce our proposal to the problem using a general-

ized distribution called Pearson distribution. The mathematical formulation of this function

along with the derivation which allows us to write Pearson function as an extended form of

Tsallis distribution is also presented. Chapter 5 will include the plots, where comparison of

BG, Tsallis and Pearson statistics in the context of describing transverse momentum spec-

tra of identified particles is performed. The fit details including the chi-square values and

extracted parameters will also be given in this chapter.
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Chapter 2

Quantum Chromodynamics

For several years, the question of why an atomic nucleus sticks together without falling

apart remained unanswered by physicists. However, it was known before the 1970s itself

that the nucleus is composed of protons and neutrons and that the protons are positively

charged, and neutrons are electrically neutral. The framework of electromagnetic inter-

actions was understood completely by that time, which suggested that the protons would

repel each other when they are close and, the nucleus would fly apart due to this repulsive

interaction. But this was never observed, and a new physics phenomenon was needed to

explain this unusual stability of atomic nuclei. This new force that is stronger than electric

repulsion among protons and, binds the nuclei together is known as strong nuclear force or

color force.

The modern quantum theory that describes this strong nuclear interactions is Quantum

Chromodynamics (QCD). It is a non-abelian SU(3) gauge theory with color charges as

the generators of the gauge group. In discussing the basic properties of QCD, the most

important role is played by the QCD Lagrangian since it gives the complete description of

the theory. The expression for QCD Lagrangian is given in 2.1, Here mj and qj are the

mass and quantum field of the quark of jth flavor, and A is the gluon field, with spacetime

indices µ and ν and color indices a, b, c. The numerical coefficients f and t guarantee

SU(3) color symmetry. Aside from the quark masses, the one coupling constant g is the

only free parameter of the theory.
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Figure 2.1: This picture is taken from the paper QCD Made Simple written by Frank Wilczek

2.1 Quarks and QCD

When probed at short wavelengths that are million times smaller than that of an atom,

strong force can overcome all other fundamental interactions such as gravitational, weak

and electromagnetic forces. However, it affects only at short distances and can be observed

at two distance scales. On a larger scale, it is the force that binds the neutrons and protons

together inside a nucleus. If we try to understand it on a small scale, the strong force will

act as a binding force between quarks, carried by gluons, to form protons and neutrons and

other hadron particles.

Since protons and neutrons with which nucleus is made of, are themselves combinations of

quarks and are elementary particles, these are considered as fundamental objects in strong

interactions. They come in 6 different varieties or flavors as up, down, strange, charmed,

bottom, and top (u, d, s, c, b, t). Among these, only up and down quarks play a remarkable

role in the structure of ordinary matter that we see in the universe. This is because of the

finding that the protons and neutrons are composed of up and down quarks.

Just like electrons, quarks are also spin-1/2 particles without structure according to the un-

derstanding till now. But instead of electrical charge, they carry color charge. In addition

to this color charge, they carry fractional electrical charge also (+2e/3 for the u, c, and t

quarks, and −e/3 for the d, s, and b quarks). It has been observed experimentally that the

quarks never exist in isolation. There are two reasons for this finding.
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Firstly, this can be explained on the basis that, in nature, only integral charged particles are

found to be isolated, not fractionally charged ones.

Another explanation comes from the concept of color confinement in QCD. Due to this,

particles that are physically observed in nature are formed by the combinations of quarks.

And, these combinations are made in such a way that all the particles show color neutrality.

In another way, we can say that only color-singlet states can propagate over macroscopic

distances and, the only stable color singlets are quark-anti-quark pairs, which are mesons,

and three-quark states, called baryons.

2.2 Gluons and QCD

The next class of fundamental particles in QCD, which act as mediators in strong inter-

actions are gluons. As we said earlier, quarks do not interact among each other; their

interaction is mediated by gluon particles. Gluons act as a carrier in strong interaction be-

cause of their color charge. In contrast to electric charge, a scalar quantity in QED, the

color charge is a quantum vector charge which follows the addition law of vectors just like

angular momentum in quantum mechanics.

There are three basic color charge states which form a basis in three-dimensional complex

vector space. Although the masses of different flavors of quarks are different, the QCD the-

ory shows complete symmetry with respect to these three colors and this color symmetry is

described by the Lie group SU(3).

Gluons are spin one, massless particles like photons in QED, and respond appropriately to

the presence of color charges. Even though there is only one photon, there are eight type of

gluons in QCD, which can be understood by the SU(3) color symmetry. Also, It has been

observed that the quarks can change their color state to another under absorption and emis-

sion of quarks. So, gluons must also carry themselves a color charge. This is in complete

contrast with QED where photons are electrically neutral. The consequence of this feature
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is that gluons show self-interactions.

2.3 Asymptotic Freedom

Now, let us understand how the strength of strong force between the quarks varies with the

distance between them. It is known that the strength of interaction in QCD is given by its

coupling constant, which is defined as follows.

αs =
g2

4π
Where, g is the Coupling constant (2.1)

This is analogous to the fine structure constant in quantum electrodynamics. One of the

remarkable characteristics of QCD that describes above fact is known as Asymptotic free-

dom. This special feature of QCD was discovered in 1973 and was a breakthrough for the

theory of strong interactions. It states that the interaction of quarks decrease as the quarks

come close to each other. The converse is also true when the quarks move apart; the inter-

actions become stronger when the distance increases.

In other words, we can say that the coupling strength between quarks and gluons depends

on the energy of the particles when they encounter for an interaction. The higher the energy

transfer between them, the lower the coupling strength and hence the weaker the force. Due

to this phenomenon, QCD becomes a free theory at large scales.

There are experimental evidences for this behavior of hard gluons experiencing weak in-

teraction whereas soft gluons with strong interaction. This property of asymptotic freedom

has been well verified experimentally, and the summary of it is given in [HM00]. In heavy

ion collisions, soft hadrons are those which participate in interactions involving little mo-

mentum transfer, and on the other hand, particles produced with high transverse momentum

and energy are called hard hadrons.

On the other hand, at an increasing distance, the coupling between quarks becomes so

strong that it is impossible to isolate a quark from a hadron. This property is called color

confinement, due to which the color charged particles like quarks and gluons could never
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be observed as free and they have to assemble together to form hadrons to be directly ob-

served. This has been verified in Lattice QCD calculations but, not proven mathematically

from first principles because of the coupling constant that makes it non-perturbative.

This is clearly visible if we take a look at the form of QCD potential. Then, it is the effect

of the second term in the expression which is linear in r, makes the interaction potential to

increase with distance, at large distances. A comparison with QED will indicate that the

potential will decrease with increase in distance since there is only inverse term in the QED

potential. It is also evident that the difference between QED and QCD is of importance

only at short distances. Interaction potentials in QCD and QED are related to distances in

the following way.

V (r) ≈ α

r
+ σr (2.2)

V (r) ≈ −e
2

r
(2.3)

The description of asymptotic freedom given above is the interpretation of the mathemati-

cal results that were obtained by the renormalization procedure of QCD. The relation which

shows the dependence of coupling constant up to some constant (αs) on the exchanged four-

momentum (Q) between the interacting partons is;

αs(|Q2|) =
12π

(11n− 2f) ln (Q2/Λ2)
(2.4)

Where, |Q2| is the square of the exchanged four-momentum (energy scale), n is the num-

ber of colors in QCD (equal to 3), f is the number of quark flavours (equal to 6) and

ΛQCD ∼ 300MeV/c is the QCD scale parameter, a constant calculated from experimental

data. A key property of QCD is that 11n − 2f > 0. As a consequence, αs decreases with

increasing energy scale (decreasing distance), or asymptotic freedom is followed .

Current understanding of asymptotic freedom is displayed in Fig2.2. It shows the agreement

between theoretical predictions and the experimental data measured in collider experiments.

9



Figure 2.2: The value of QCD coupling constant (αs) as a function of the energyQ is shown
in the figure. The solid line represents the theoretical prediction and dotted one gives the
experimentally measured data.
Reference: http://inside.hlrs.de/ old/htm/Edition 01 12/article 14.html

10



Chapter 3

QGP and Dynamics of Heavy Ion

Collisions

3.1 Why do we study HIC?

The history of heavy ion collision dates back to 1986 when CERN began to accelerate large

nuclei containing many neutrons and protons in the Super Proton Synchrotron (SPS). At

CERN, particles are made to collide at velocities close to the speed of light by making use

of largest and extremely complex scientific instruments such as particle accelerators and

detectors. These accelerators push the beams of particles to higher energies, and subse-

quently, these beams are collided with each other or with targets which are at rest. The

detectors are then used to record the results from these collisions.

Over the past few decades, the domain of relativistic heavy ion collisions has been exam-

ined in detail on both theoretical and experimental side. And, it is understood from its

descriptions that the collisions of nuclei are difficult to comprehend, with distinct stages

that investigate different aspects of the theoretical framework, QCD. Therefore it is im-

portant to find answers to the following questions: why do we study heavy ion collisions?

What are the new insights that we are looking for? What are the new physics phenomena

that we have explored till now?

This chapter is devoted to the answers to above questions and, further the theoretical frame-

work of QGP formation and review of recent works to understand it will also be discussed.
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The intrinsic purpose behind starting this new era of heavy ion collision experiments is

to study the basic building blocks of matter, the fundamental particles that constitute this

universe. In collider experiments, one important characteristic we need to note is the large

amount of energy that is involved. Such large fraction of the energy, when deposited in a

small space, for a short duration of time, energy density can be very high.

There are various experiments all over the world that span large range of nucleus-nucleus

center of mass energies, like AGS accelerator at BNL which uses 5 GeV, the CERN heavy

ion beams at the SPS accelerator with collisions performed at 17 GeV and there is Relativis-

tic Heavy Ion Collider (RHIC) at BNL, where energies are in the order of 200 GeV.[Pai09].

An image of the collision between gold and deuteron beams is displayed in Fig 3.1a. Also,

the RHIC view of colliding Gold nuclei in the STAR experiment, that shows the appearance

of droplets of quark-gluon plasma is given in Fig 3.1b.

(a) Collision between deuteron and gold nuclei (b) RHIC View of gold nuclei collision as cap-
tured by the Solenoidal Tracker At RHIC.

Figure 3.1: Collisions of Gold nuclei in the STAR experiment at RHIC, creating a fireball
in which the quark-gluon plasma briefly appears. Its properties are reconstructed from
particle tracks captured in STAR’s Time Projection Chamber. https://phys.org/news/2010-
01-jetting-quark-gluon-plasma.html

Let us consider RHIC, where the collisions primarily involve gold nuclei, one of the heavi-

est common elements present. This was the first machine in the world to collide heavy ions

at such ultra-relativistic energies, and the expectation was that the nuclear matter would

melt at these energies to form a new state called Quark Gluon Plasma (QGP). Creating
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droplets of this state and studying phase transition of nuclear matter to this new asymptoti-

cally free state, under the conditions of very high temperature and density was the foremost

aim behind constructing RHIC at BNL and LHC CERN. [STA05] And, there are numerous

experimental and theoretical results, which provide evidence for the actual production of

QGP during these collisions. [JW05],[GVWZ04],[KH04a],[Tan08],[LSZ04, BRv18]

The theoretical understanding of this new state is obtained by Lattice QCD calculations

whereas experimental approach involves the use of heavy ion collision experiments and

analysis of its data. Before QGP was produced in collider experiments, lattice QCD calcu-

lations predicted the existence of this state and even the estimate of critical energy densities

required for its establishment was also present. Then, significant advances in modern tech-

nology made it possible to collide nuclei each other and reach those conditions required for

forming this new state of matter in laboratories.

3.2 Formation of QGP

Understanding QGP is of great interest to both cosmologists and particle physicists and is

a rapidly growing field nowadays even with the challenges involved in its studies. This is

mainly because QGP studies can give insights into the primordial matter that existed during

the earliest moments of the universe.

Figure 3.2: A nucleus at normal
(left) and high density (right).

It has been speculated by Big Bang theory that the uni-

verse began as a fireball with extremely high temper-

ature and density, and the ordinary matter existed that

time was not made of protons and neutrons, but was in

a plasma state of only quarks and gluons. Therefore, by

producing QGP, heavy ion experiments were recreating

a small Big Bang in an artificial environment. Just like

QGP is proposed to exist in the early universe, It is also possible that it exists at the core of

neutron stars. In neutron stars, as compared to heavy ion collisions, the temperature is very

less, and the density is extremely high.
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Let us now try to understand the conceptual basis for the QGP formation. We know that

traditionally nuclear physics is the study of nuclear matter at zero temperature and densities

of the order of atomic nuclei or energy densities as ε ≈ 0.16GeV/fm3. It is the advent of

accelerators which enabled us to investigate the matter at temperatures and densities sev-

eral orders of magnitude higher. At these extreme conditions, individual hadrons lose their

identity, and the matter is best described in terms of only quarks and gluons.

What happens to the hadronic system upon increasing its density is schematically depicted

in Fig 3.2. At low density, one particular quark in a hadron knows its partner quark.

Whereas as density increases, one quark would be unable to identify the quark which was

its partner at low density, due to the interpenetration of hadrons. This can happen at high

temperature also.

As the temperature increases or the energy given to the system increases, more hadrons

will be created, and further, the increase in density will lead to more interpenetration. At

some point in time, the interaction between quarks within a single hadron and that between

quarks in different hadrons will be of equal strength. Then, the boundary that separates

quarks in different hadrons will vanish, i.e., the system no longer has the hadronic iden-

tity. Only quarks will be there along with gluons, which is the phase of matter called QGP.

Model calculations have shown that this transition happens beyond a critical energy density,

εc ≈ 1GeV/fm3, or temperature Tc ≈ 200MeV .

In the hadronic state, the quarks are confined inside the hadrons whereas, in the QGP state,

quarks are free to move over a nuclear volume rather than a nucleonic volume and are no

longer confined. Therefore, we can think of this as a confinement to deconfinement transi-

tion. At low temperature, nuclear matter stays in confined state, and at high temperature, it

goes to QGP state, which is the deconfined state of strongly interacting nuclear matter. But,

this can not be considered as a thermodynamic transition, in which the energy or its deriva-

tives must have a singularity at the transition point. In [Cha12], this transition is regarded

as an analog of Mott transition in atomic physics.

14



In Mott transition, when Coloumb potential that holds electron and ion together inside neu-

tral atom gets screened by other charges, the potential becomes short ranged. Then, at very

high density, an electron can no longer feel the binding force of ion and will be free. Thus

the normal insulating matter becomes conducting at higher densities. Quantum chromody-

namic analogue of above transition is deconfinement of quarks, where quarks cannot bind

to hadrons due to the screening of color potential.

3.3 Phases of QCD

It is known that nuclear matter can take different phases at different temperatures and den-

sities. These various phases and phase transitions between them can be displayed in phase

diagrams. Exploring this phase diagram and identifying several phases of matter in the

phase space is one of the main challenges of nuclear and high energy physics and continue

to be intensively studied both theoretically and experimentally.

A sketch of the QCD phase diagram is given in Fig 3.3b. Essentially there are three phases

in the figure. Firstly, there is the hadron gas phase at low temperature and density, where

both the vacuum in which we live in and normal nuclear matter are located. Secondly, the

quark-gluon plasma phase is represented at high temperature (Cabibbo and Parisi 1975),

which we described above in detail. Thirdly, the color superconductor phase is expected

to appear at high density and low temperature, where quarks are believed to form Cooper

pairs, leading to color superconductivity (Barrois 1977; Bailin and Love 1984).[Gub]

The important point to be noted is that many features of this phase diagram are not under-

stood till now. Specifically, points of high chemical potential and low temperature where

the three phases will meet. This is because perturbative theory breaks down here. The

most interesting is the region of transition between QGP and hadron gas, which has been

investigated in past years. As we described earlier, large energy densities in the nuclear

collisions allow exploring matter at extreme conditions. Therefore, one of the major goals

of studying heavy ion collisions is to understand the physical aspects of this phase diagram

and its connection to the early universe.
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3.4 Space Time Evolution of Matter

We have already discussed some of the objectives of collider experiments. In order to fulfill

these, it is important to understand the time sequence of processes in an expanding strongly

interacting hadronic systems. Ultra relativistic nucleus-nucleus collisions have recreated

the environment by colliding heavy ions and the Fig 3.3a depicts the collision of two nuclei

in (t, z) plane. Two Lorentz contracted nuclei approach each other with a velocity of light

and collide at (t=0,z=0).

Figure 3.3

(a) Space time picture (b) Phase transitons

A nucleus-nucleus collision at relativistic energy passes through different stages. A schematic

picture of various distinct stages are shown in Fig 3.4 . A fireball is created in the collision

process. The produced fireball has such a high density and temperature that apparently all

partons (quarks and gluons) reach equilibrium very rapidly (over a time scale of less than 1

fm/c). After the particle production occurs, QGP phase starts where equilibrium is achieved

locally and thermally since no new particles are being produced here.

The basic steps of the evolution of a heavy ion collision can be described with a single

sentence: at first collision of Lorentz contracted heavy ions occur, that leads to a pre-
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equilibrium phase, and is followed by QGP phase which expands and cools until hadroniza-

tion occurs, and eventually long-lived particles arrive the detectors.

3.4.1 Pre-equilibrium Stage

This is the first stage in the evolution of heavy ion collision where a fireball is created in a

highly excited state. The fireball is not in equilibrium and its constituents collide repeatedly

to establish a state of local equilibrium. An important parameter here is the thermalization

time. It is defined as the time taken by the system to establish local equilibrium.

Figure 3.4: Evolution of strongly interacting system produced in heavy ion collisions

3.4.2 Expansion Stage followed by Hadronization

In the equilibrium or the thermalized state, the system has a thermal pressure which acts

against the surrounding vacuum. Then the system undergoes collective (hydrodynamic)

expansion. As a result of this expansion, density (energy density) of the system decreases,

and subsequently, it will cool. Consequently, when the density and temperature become

smaller than the critical density and critical temperature that has been predicted from the-

ory, a phase transition occurs. This can itself be considered as a single stage where the

partons (quarks and gluons) will convert to hadrons. This is called hadronization.

Sudden decrease in system entropy over a small temperature interval is a special feature of

this stage. Since a decrease in total entropy is not plausible, it implies that the fireball will

expand rapidly, while the temperature remains approximately constant. If the transition is
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1st order, there will be a mixed phase, where QGP and hadronic resonance gas exist to-

gether. In 2nd or cross-over, there would not be mixed phase. Eventually, all the partonic

matter will be converted into hadronic matter.

3.4.3 Freeze-out

As QGP, the hadronic matter will also be in thermal equilibrium. Constituent hadrons will

collide each other to maintain local equilibrium. The system will continue to expand and

cool. At some point, chemical equilibrium will stop, and an era of binary collision will

begin, and particles will be freezed out finally. There are two types of freeze out-chemical

and kinetic freeze out.

A stage will come when inelastic collisions, in which hadron changes identity, become too

small to keep up with expansion. This stage is called chemical freeze-out. Hadron abun-

dances will remain fixed after the chemical freeze-out. However, local equilibrium can still

be maintained due to elastic collisions, and the system will cool and expand with fixed

hadron abundances.

Eventually a stage will arrive when average distance between the constituents will be larger

than their strong interaction range. Collisions between the constituents will be so infre-

quent that local thermal equilibrium can not be maintained. At this point the hydrodynamic

description will break down. The hadrons decouple or freeze-out. It is called kinetic freeze-

out. The hadrons detected in the detector are those from the freeze-out surface.

Let us discuss the collision process with an increase in energy. In very low energy colli-

sions, nucleus as a whole interact. As we increase energy, nucleons inside the nucleus start

to interact, and new particles will be produced. Quarks inside the nucleons will begin to

interact on further increase in collision energy. Here also we can observe the production of

new particle species.
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Chapter 4

Statistical Approach to Thermal QGP

Systems

4.1 QGP and Hadronic Gas in Ideal Limit

We described asymptotic freedom in the previous chapter as, the decrease in strength of

strong nuclear interactions with the momentum transfer or the energy involved in the pro-

cess. Therefore, this simplifies high-temperature QCD in such a way that, at large energies,

we can assume the system to be a gas of free quarks and gluons, with very weak interactions

with each other. This assumption is actually a valid starting point, and the reasoning behind

this approximation is discussed in [Wil00].

One important consequence of these quarks interacting weakly when probed at large enough

energies is that it allows using perturbative QCD to understand systems at these ranges.

Then the problems arise for examining systems at smaller energies, where the perturbation

theory will fail due to the higher value of coupling constant. Therefore, we need to use

other techniques.

Application of statistical thermal models to the experimental measurements is one of the

methods used since the 1950s. In this, QGP is described using statistical mechanics as a

free relativistic Parton gas, which is the simplest system of strongly interacting particles in

QCD. This idea was formulated by Heinz Koppe in 1948, and subsequently, the generaliza-

tion was done by Enrico Fermi.[Fer50]
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They implemented approaches using Fermi-Dirac or Bose-Einstein or Stefan-Boltzmann

statistics to investigate particle production, formation and decay of resonances and temporal

and thermal evolution of the interacting systems in thermal medium and under equilibrium

in the final state of interaction. Further, Koppe estimated the equilibrium concentrations

of each type of the produced particles. Fermi model is a reliable description in energy

ranges comparable to that of cosmic rays only. It breaks down at lower energies. Later,

several models were proposed, and Hagedorn was the first who systematically analyzed

high-energy phenomena using all tools of statistical physics.[Taw14],[Hag65],[NUWW04]

While explaining the formation of QGP in the last section, we discussed that the quarks and

gluons inside hadrons and those in QGP state as produced in collider experiments shows

completely different properties. The basic difference is that the former, as opposed to the

later, can be treated as a macroscopic system.

We know that a macroscopic system is generally characterized by state variables like num-

ber density (n), pressure (p), energy density (ε), temperature (T ), a chemical potential (µ),

etc. The equilibrium thermodynamic properties of hadronic systems obtained using statis-

tical models can also be characterized by thermodynamic parameters that are mentioned

above. This will finally give insights about the dynamics of the systems in terms of these

state variables.

4.2 Relativistic Kinetic Theory

In this means of statistical description, we will use certain aspects of relativistic kinetic the-

ory. In kinetic theory, a macroscopic system is generally studied in terms of the distribution

function f(x, p). f(x, p)d3xd3p is the average number of particles in small volume d3x,

with momenta between p and p+ dp.

The particle content in the volume element is large enough to apply the concepts of statisti-

cal physics. Most of the discussion is based on [SRGW]. Imagine a system of large number
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of relativistic particles with mass m, momenta p and energies cp0 where, c is the speed of

light and

p0 =
√
p2 +m2c2

All the macroscopic quantities required for the thermodynamic description of the system

can be derived by making use of the distribution function introduced above. The particle

four flow is defined as the 1st moment of the distribution function.

Nµ(x) =

∫
d3p

p0

pµ
f(x, p) (4.1)

The time and space (µ = 1, 2, 3) components of this four flow will give particle density and

particle flow respectively. They are given as follows where, particle flow involves a new

quantity, velocity defined as

u =
~p

~p0
(4.2)

N0(x) =

∫
d3pf(x, p) (4.3)

N i(x) =

∫
d3p

pi

p0
f(x, p) (4.4)

=

∫
d3puif(x, p), i = 1, 2, 3 (4.5)

The 2nd moment of the distribution function is a tensor called energy-momentum tensor.

The definition of this tensor is given in Eqn4.6.

T µν(x) =

∫
d3p

p0
pµpνf(x, p) (4.6)

We know that µ and ν are Lorentz indices and can take any value from 0,1,2 and 3. Differ-

ent components of this tensor give rise to quantities with different physical meaning. Time

component of the tensor gives energy density whereas space component is called momen-

tum flow which can be realized as pressure tensor. The mixed components give energy flow

and momentum density based on the choice of indices.
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Energy density, T 00(x) =

∫
d3p

p0
f(x, p)

Energy flow, T 0i(x) =

∫
d3p

p0
uipµpνf(x, p)

Momentum density, T i0(x) =

∫
d3p

pi
f(x, p)

Momentum flow, T ij(x) =

∫
d3p

pi
ujf(x, p)

(4.7)

The next quantity that can be derived is entropy flow which is also a four-vector and is

denoted by Sµ.

Sµ(x) = −
∫
d3p

p0
pµf(x, p)[logf(x, p)− 1] (4.8)

The most simple description of relativistic heavy ion collisions is provided by hydrodynam-

ics. Since the initial interactions among the particles in collision fireball are sufficiently

strong to establish local thermal equilibrium rapidly, and then to maintain it over an evo-

lution time, the resulting matter can be treated as a relativistic fluid undergoing collective,

hydrodynamic flow. Hydrodynamic calculations for Au+Au collisions and a comparison

between model and experimental data is discussed in [KH04b]. Even though some prob-

lems remain, from the equilibrium stage to the kinetic freeze-out, all the processes can be

modeled by hydrodynamics, and it is in good agreement with the data from experiments.

Since our focus is on statistical models, let us not go in detail to the hydrodynamic models.

Let us summarize the above discussion before going into detail to various statistical ap-

proaches. The aim of statistical models is to derive the equilibrium properties of a macro-

scopic system from the measured yields of the constituent particles. We realized that QGP

exists in the early universe and in neutron stars, both of which are not accessible for study.

But it is believed that the study of products of collisions in heavy ion experiments can yield

information about the QGP phase.

But the challenge here is that the droplets of QGP exists only for microseconds and are

produced in very small amounts. The only way we can analyze them is by focusing on

the properties of the final state particles produced in the nucleus-nucleus collisions. The

measurable quantities that can be used for this analysis are pseudo rapidity, transverse mo-
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mentum, transverse energy, azimuthal angle, elliptic flow, multiplicity, etc. Among these

variables available, we will be investigating the properties of the distribution of transverse

momentum of identified particles produced in the collisions.

The discussion of applying relativistic thermodynamics to these particles starts with BG

approach that uses exponential distribution and, followed by its generalization called Tsallis

approach. Later, a new approach using generalized Tsallis distribution will be introduced.

4.3 Boltzmann Gibbs Statistical Framework

The initial attempt, undertaken by people to characterize the behavior of particle spectra

produced in relativistic heavy ion collisions was using Boltzmann-Gibbs statistical distri-

bution. This assumption of various hadrons being distributed according to BG statistics is

valid considering the nature of thermalized ensemble at equilibrium.

Also, the fact that both Fermi-Dirac and Bose-Einstein distributions would reduce to BG

statistics at temperatures that are sufficiently high gives a firm foundation to the approxima-

tion. This is because the energy at which heavy ions undergo collision is very large in high

energy experiments and subsequently the thermal systems being produced will also have a

larger value of temperature.

The conventional form of distribution function used in BG approach for fitting to momen-

tum spectra is as following.

1

2πpT

d2N

dpTdy
=
gV mT

(2π)3
exp

(
−mT

T

)
(4.9)

Using the framework of relativistic kinetic theory, physically relevant quantities like num-

ber density, energy density and pressure can be obtained as,
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n =
1

(2π)3

∫
d3pexp

(
− E − µ

T

)
ε =

1

(2π)3

∫
d3pEexp

(
− E − µ

T

)
P =

1

(2π)3

∫
d3p

p2

3E
exp
(
− E − µ

T

) (4.10)

Where mT and pT are the transverse mass and transverse momentum of particle respec-

tively. The transverse mass is given as
√
p2T +m2. Also, g is the spin degeneracy factor,

V is the volume of the system, y is rapidity, and T is the temperature. For several years,

researchers used this function for approximating the measured transverse momentum and

invariant yield data of identified particles. From the fit parameters, the temperature is ex-

tracted which is in agreement with the known values from theoretical models.

Calculation that gives the justification for approximating particle production spectra by BG

formalism at large enough temperatures is discussed here. We know that the expression for

average number of particles in the sth state of a statistical system is as follows;

ns =
1

eβ(εs−µ) ± 1
(4.11)

If the number of particles in the system is constant, the constraint which determines µ is the

following equation.

∑
s

ns =
1

eβ(εs−µ)±1
= N (4.12)

Where, upper and lower sign refers to the case of bosons and fermions respectively. When

we look at classical limit which is defined by high temperature, the higher energy states

will be mostly occupied and the relation εs << µ will be obeyed.

For keeping N fixed, the following relation must be satisfied.

eβεs−µ >> 1

When this is satisfied, the functional form for the number fo particles will become expo-

nential like or BG distribution as given in Eqn4.13 Therefore, BG distribution function has

fundamental significance in describing PT spectra at high temperatures. Bose as well as
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Fermi-Dirac distributions can always be written as an infinite sum of Boltzmann distribu-

tion.

ns = eβ(εs−µ) (4.13)

The Fig 4.1 represents the variation of the probability of each microstate or the population

of particles to occupy each state in a thermal system at equilibrium, as a function of energy.

The functional form of probability is also given, which is the standard Boltzmann factor.

Taking QGP also as a thermal system, we can make the following analogy. Energy in the

classical thermal system can be regarded as transverse momentum (PT ) measured from the

collider experiments. A parallel connection can be made between the probability of each

state and the measured invariant yield of particles, which gives the rate of change of the

number of particles with respect to rapidity variable, in a fixed PT window or vice versa.

This is because by definition invariant yield is the normalized joint probability distribution

of particle densities and rapidities.

Figure 4.1: Variation of probability of each microstate in a classical statistical ensemble
with the energy.

In order to make a comparison with the entropy, we will define in Tsallis statistics, let us
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introduce Boltzmann entropy initially. For a system of classical particles with discrete mi-

crostates defining its macroscopic state, the functional form of BG entropy or Gibbs entropy

is as follows,

SBG =
∑
i

piln(pi) (4.14)

Where, pi is the probability of thermodynamical system to be in ith microstate. Though this

expression for entropy remains valid even when the system is far away from equilibrium,

need for a generalization to Boltzmann-Gibbs theory arised due to its lack of universality.

Here, universality refers to the fact whether the formalism is valid for all the phenomena

[Abe01]. In the literature, many studies have been performed using exponential distribution

to describe heavy ion collision dynamics.

A method for extracting temperature of the system from the transverse momentum (pT )

spectra of the emitted particles is presented in [BNC+16], [SLH+07], [BCC+16]. An ex-

ponential Boltzmann-type fit to the pT spectra gives a measure of the temperature. It is also

important to test whether the approximation used is valid in the small volumes encountered

in collision fireballs. A study of criterion for the applicability of thermodynamics in heavy

ion collisions is performed in [EH92]. Analysis has shown that using continuous calcula-

tions may possibly be invalid for the case of hadronic resonance gas.

Now let us discuss the domains of applicability of BG statistical mechanics. The first prop-

erty that should be referred here is mixing, the exponential mixing. This is associated with

the extensivity of BG thermodynamics and the energy dependence of distribution func-

tion, the Boltzmann factor. Extensivity means that the entropy, thermodynamic potentials

and similar quantities proportional to the number of microscopic elements of the system.

Second thing concerns about the complexity of structure and what kind of structure is re-

sponsible for exponential mixing. It is known that the smooth phase space with Euclidean

like structure obeys BG framework.

Next thing to consider is the physical background that leads to extensive statistical mechan-

ics. These include short-range interactions and short-term memories (in Markovian pro-

cesses). Therefore, systems with long-range interactions, multifractally structured phase
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space, long time memories, etc. can hardly be treated within this BG framework. So we

need a generalization. This led to the foundation of a new breakthrough in statistical me-

chanics, known as non-extensive statistical mechanics.

In the context of high energy collisions, it was the deviation of experimental data from the

BG function, which led physicists to think of a new approximating function. Even though

pT spectra fitted to BG distribution gave satisfying results, it was not accurate. Also, one

can think of the possibility that extreme conditions in RHIC may lead to long-range color

interactions. As a consequence, mixing might no longer be simply exponential, and the

thermodynamic quantities may obey non-extensive statistical mechanics.

In the ref:[AL09], it is told that particle production at high pT is sensitive to properties of

the hot and dense matter in the nuclear collisions and therefore the transverse momentum

spectra will be sensibly affected by non-extensive statistical effects. The non-extensive

generalization to BG theory is known as Tsallis statistical thermodynamics, and the next

section is devoted to the developments happened on the basis of this framework.

4.4 Tsallis Statistical Framework

The generalization of Boltzmann-Gibbs theory known as non-extensive statistical mechan-

ics was initially constructed based on an entropy which was proposed by Tsallis in 1988.

The functional form of this proposed entropy, known as Tsallis entropy is in such a way

that it converges to BG entropy in a specific limit of its q-parameter. The parameter other

than temperature in the Tsallis distribution is q, which gives the extent of non-extensivity

in the thermodynamical system.

There exists a large number of physical systems involving long-range interactions and phase

space of complex microscopic dynamics that violate BG statistical mechanics and standard

thermodynamics. Some of the processes including such systems are ferromagnetism, so-

lar neutrinos, black holes, cosmology, high energy collisions of particles and many more

[Abe01]. We will be investigating the case of systems produced in heavy ion collisions.
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Let us begin by the definition of non-extensive Tsallis entropy that was suggested by Tsallis.

Sq = −k
∑
i

pqi lnq(pi) (4.15)

= −k
∑
i

pqi
p1−qi − 1

1− q
(4.16)

= −k
∑
i

pi − pqi
1− q

(4.17)

= k
1−

∑
i p

q
i

1− q
(4.18)

Parallel to the definition of q-exponential which will be introduced later, its inverse also

exists as q -logarithm which is used in deriving Tsallis entropy above. The q-logarithm is

defined as follows:

lnq(pi) =


ln(pi), if pi ≥ 0, q = 1

p1−q
i −1

1−q , if pi ≥ 0, q 6= 1

undefined, if pi ≤ 0

It is obvious from the definition that the Tsallis entropy, in the limit q → 1 gives standard

Boltzmann-Gibbs entropy. When it approaches 1, we can say that the system stays in equi-

librium and no longer exhibits non-extensivity.

It was observed that BG approximation to transverse momentum spectra fails at lower and

higher momentum ranges. Further numerous studies happened on the implementation of

Tsallis statistics to particle production spectra. The thermodynamical aspects of this for-

malism along with its foundations and applications are discussed in [TB04]. The Tsallis sta-

tistical distribution used for fitting to transverse momentum data can be obtained from BG

distribution by replacing the exponential in BG function by q-exponential[CW12] which is

defined as,

expq(x) = [1 + (q − 1)x]
1

q−1 (4.19)
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And the distribution function used for fitting to particle spectra is as following where, mT ,

pT , T , g, and V have the same meaning as in BG distribution and y is the rapidity variable.

1

2πpt

d2N

dpTdy
=
gV mt

(2π)3

[
1 + (q − 1)

mt − µ
T

]− q
q−1

(4.20)

The definition of Tsallis statistical version of Fermi-Dirac and Bose-Einstein distributions

along with corresponding entropy functionals are given in [CW12]. As we defined num-

ber density, energy density, pressure, etc. in BG formalism, similar can be done using

non-extensive relativistic kinetic theory. The only difference is that the Tsallis distribution

function will be raised to power q.

In standard thermodynamics, we are familiar with the following constraints on a total num-

ber of particles, N and energy, E in the system. Given the distribution function fi,

N =
∑
i

fi (4.21)

E =
∑
i

fiEi (4.22)

Tsallis statistics can be used to explain systems where temperature fluctuations are present

around some initial value T0. In such cases, the q parameter, which tells about non-

extensivity in system, can be connected to variance of temperature [WW00] [WW12a] as:

q − 1 =
V ar(T )

〈T 〉2
(4.23)

In order to have physical significance to the formalism, the basic requirement is to check

whether the distribution function obeys fundamental thermodynamic relations among the

thermodynamic variables like pressure (P), volume (V), temperature (T), number density

(n) and energy density (ε). In [CW12], they have shown that for Tsallis statistics to be

thermodynamically valid, the above constraints must be redefined in following way with

function raised to a power of q.
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N =
∑
i

f qi

E =
∑
i

f qi Ei

(4.24)

A proper definition of entropy four current demanding positive entropy production accord-

ing to the second law of thermodynamics is given in [BM12]. The Tsallis entropy derived

from this will have following functional form.

ST = −
∑
i

f qi lnqfi − fi (4.25)

By extremizing above entropy under the constraints given in Eqn4.24, we can derive the

distribution function, fi. This method is called Lagrange Multiplier’s variational principle.

The variational equation is,

δ

δfi

[
ST + α(N −

∑
i

f qi ) + β(E −
∑
i

f qi Ei)

]
= 0 (4.26)

∂ST
∂fi

= −
∑
i

[
f qi
∂lnqfi
∂fi

+ lnqfiqf
q−1
i − 1

]
= −

∑
i

lnqfiqf
q−1
i − 1

= −
∑
i

1− f 1−q
i

1− q
qf q−1

i

= −
∑
i

q

q − 1
(f q−1
i − 1)

(4.27)

Using this derivative of entropy with respect to fi in eqn4.26, we get

−
∑
i

[
q

q − 1
(f q−1
i − 1)− αqf q−1

i − βEiqf q−1
i

]
= 0

∑
i

qf q−1
i

[
−1

q − 1
− α− βEi] = − q

q − 1

(4.28)

Extracting the distribution function fi from above expression,

f q−1
i =

1

1 + (q − 1)(α + βi)

fi =
[
1 + (q − 1)

Ei − µ
T

] −1
q−1

(4.29)
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Therefore, fi is derived and is equivalent to Tsallis distribution function. Now we have to

show that the function is thermodynamically consistent. In order to check thermodynamic

consistency of the formalism, we need to prove that the relations among thermodynamic

parameters are indeed obeyed. Here, we will prove the following relation between pressure

(P), and number density (n) that is familiar from the laws of thermodynamics.

∂P

∂µ

∣∣∣∣
T

= n (4.30)

Using the first law of thermodynamics, the thermodynamical definition for pressure is as

follows.

P =
−E + TS + µN

V
(4.31)

Taking derivative of pressure with respect to chemical potential (µ), we get

∂P

∂µ
|T =

1

V

[
− ∂E

∂µ
+ T

∂S

∂µ
+ S

∂T

∂µ
+ µ

∂N

∂µ
+N

]
(4.32)

=
1

V

[
− ∂E

∂µ
+ T

∂S

∂µ
+ µ

∂N

∂µ
+N

]
(4.33)

=
1

V

[
N +

∑
i

−T
q − 1

(
[1 + (q − 1)

Ei − µ
T

]
1

q−1

)∂f qi
∂µ

+
Tq(1− fi)q−1

q − 1

∂fi
∂µ

]
(4.34)

Now, let us calculate the derivative of fi and f qi with respect to q,

∂fi
∂µ

=
1

T

[
1 + (q − 1)

Ei − µ
T

] q
1−q

(4.35)

∂f qi
∂µ

=
qf q−1

i

T

[
1 + (q − 1)

Ei − µ
T

] q
1−q

(4.36)

Putting this in eqn4.32,
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∂P

∂µ

∣∣∣∣
T

=
1

V

∑
i

[
N − Eiq

T
[
1 + (q − 1)Ei−µ

T

][1 + (q − 1)
Ei − µ
T

] q
1−q

+
q

q − 1

[
1 + (q − 1)

Ei − µ
T

] q
1−q
[

1− 1

1 + (q − 1)Ei−µ
T

]

+
µq

T
[
1 + (q − 1)Ei−µ

T

][1 + (q − 1)
Ei − µ
T

] q
1−q
]

By cancelling the terms in the above expression,

=
1

V

[
N +

∑
i

q

T

[
1 + (q − 1)

Ei − µ
T

] 2q−1
1−q
(
µ− Ei

)
+
∑
i

q

T

[
1 + (q − 1)

Ei − µ
T

] 2q−1
1−q
(
Ei − µ

)]
=
N

V

= n

Hence, it has been proven that the Tsallis Boltzmann formalism is thermodynamically con-

sistent. We have shown only one thermodynamical relation and in a similar manner other

relations can also be shown to be satisfied.

From the entire discussion, it is evident that the non-extensive Tsallis approach provides

better fits and, explains heavy ion collisions more appropriately as compared to the stan-

dard Boltzmann and power-law approaches. The figure representing the plots of PT spectra

of π+ and π− particles fitted to Tsallis function is taken from [DBSB07], where satisfying

agreement between the experimental data and function is established.

Yet this is not the complete story. It is known that the exponential function or standard

BG theory can only take care of soft PT region of the hadronic spectra where the particles

produced will have small transverse momenta. Whereas, QCD calculations have shown

that the explanation of spectra of particles produced in hard scattering processes can be

provided by power law functions. Our interest lies in finding a single distribution function

which describes the whole region of PT spectra (both soft and hard part)in a unified manner.
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Figure 4.2: Plots of transverse momentum spectra of π+ and π− produced in Au+Au col-
lisions at

√
s = 200GeV at different centralities. The filled symbols represent the experi-

mental data points. The solid curves provide the fits on the basis of nonextensive approach

Even though Tsallis approach does this [DBSB07], it has been shown in a recent paper

[SLL17] that the Tsallis form of standard distribution can describe only the transverse mo-

mentum spectrum of particles produced in soft excitation process. A clear deviation from

the data is observed in the higher momentum ranges of the spectra. Therefore, can some

function accurately describe the entire range of spectra in an integrated way is still an open

question.

Since perturbative QCD can be used to describe hard scattering processes, it is possible to

extract the form of PT spectra at these regions. And, the calculations suggest that the spectra

will have the form of inverse power law which is expressed as; [SLL17],[A+82],[WW12b],

[BMS17],[MV77],[Mic79].

f(pt) =
1

N

dN

dpt
= Apt

(
1 +

pt
p0

)−n

(4.37)

Where p0 and n are fitting parameters and A is the normalization constant related to free

parameters. This QCD inspired formula was proposed by Hagedorn to describe data of
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invariant cross-section of hadrons as a function of PT . Now, our proposal to the question

above stated is to combine inverse power-law and Tsallis distribution using Pearson distri-

bution. This statistical approach is discussed in detail in the next section.

4.5 Pearson statistical Framework

4.5.1 Mathematical Background

Pearson distribution was first proposed by Karl Pearson in 1895 [Pea95] and subsequently

modified in 1901 and 1916. He proposed to classify a distribution function based on first

four moments related to mean, standard deviation, skewness, and kurtosis of the distribu-

tion. Moments are defined for specifying the shape of any probability distribution.

The first moment or the mean locates the center of the distribution whereas variance gives

the spread or dispersion in the data about the mean. Other two are called shape parameters,

among which skewness gives the degree of asymmetry in the distribution around the mean

and kurtosis specifies the relative peakedness or flatness of the distribution. Characteriza-

tion of any statistical data involves the specification of skewness and kurtosis.

Gaussian, beta, gamma, inverse-gamma, exponential, Student’s t-distribution are all special

cases in Pearson distribution and belong to Pearson family of the curve. Due to this reason,

it is considered as the most general distribution and has been used in many different fields

like geophysics, biostatistics, and financial marketing. It is a family of continuous proba-

bility distributions, whose densities p(x) satisfy the following differential equation.[Pol79]

1

p(x)

dp(x)

dx
+

a+ x

b0 + b1x+ b2x2
= 0 (4.38)

where the parameters a, b0, b1, b2 can be related to first four central moments as follows:

a = b1 =
m3(m4 + 3m2

2)

10m2m4 − 18m3
2 − 12m2

3

(4.39)

b0 =
m2(4m2m4 − 3m2

3)

10m2m4 − 18m3
2 − 12m2

3

(4.40)
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b2 =
2m2m4 − 6m3

2 − 3m2
3

10m2m4 − 18m3
2 − 12m2

3

(4.41)

Here, m1,m2,m3 and m4 are the central moments with m1 = 0. Pearson curves are classi-

fied into 12 different types based on the root of the quadratic equation in the denominator of

differential equation. Therefore, Pearson criteria which will decide the type of distribution

is the sign of discriminant of the quadratic equation which is expressed as,

k =
b21

4b0b2
(4.42)

A table including different types of Pearson distribution along with Pearson criteria and

condition on parameters can be found in Ref [PLKP03]. Our task is to solve the differential

equation4.38 to find the form of Pearson density.

By doing seperation of variables we get,

p(x) = C
′
exp

∫
−P (x)

Q(x)
dx (4.43)

= C
′
exp

∫
− a0 + a1x

b0 + b1x+ b2x2
dx (4.44)

We can express the quadratic equation in the following form,

b0 + b1x+ b2x
2 = b2(x− α)(x− β) (4.45)

p(x) = C exp

∫
a0 + a1x

(x− α)(x− β)
dx (4.46)

= C exp

∫
m

x− α
+

n

x− β
dx (4.47)

Where m and n have following definition.

m = −a0 + a1α

β − α
n = −a0 + a1β

β − α
(4.48)

After integration,

p(x) = C exp ln|x− α|m + ln|x− β|n (4.49)

= C|x− α|m|x− β|n (4.50)
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A general solution can be written as in eqn.4.51 where C is a normalization constant and

e, f, g and h are free parameters.

p(x) = C(g + x)h(e+ x)f (4.51)

4.5.2 Pearson Function as an Extension to Tsallis

We will now show that the Pearson function can be expressed as an extended version of

Tsallis distribution. It is easy to see that the Pearson distribution converges to exponential

when the numerator, P (x) and denominator, Q(x) in Eqn 4.43 becomes constant and unity

respectively. In similar way, we can derive the limit of Pearson parameters at which it will

reduce to Normal or Gaussian distribution. For this, P (x) has to be of linear form andQ(x)

has to be unity. Since Pearson density reduces to exponential at some limit, it is obvious

that we can find a relation between Tsallis, which is a generalized Boltzmann and the Pear-

son function.

The Eqn4.51 can be rewritten in following form by doing simple algebra.

p(x) = B

(
1 +

x

g

)h (
1 +

x

e

)f
(4.52)

Up to some normalization constant B = Cefgh. Now if we replace g = T
q−1

, h = − q
q−1

,

f = −n and e = p0 we will get:

p(x) = B
(

1 + (q − 1)
pT
T

)− q
q−1

(
1 +

pT
p0

)−n

(4.53)

where,

B = C
1

(p0)n

(
T

q − 1

)− q
q−1

(4.54)

Now, we can try to fit the particle spectra with this function.

1

2πpT

d2N

dpTdy
= B

(
1 + (q − 1)

pT
T

)− q
q−1

(
1 +

pT
p0

)−n

(4.55)
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Hence, it is inferred that the Pearson distribution is a generalised form of Tsallis distribution

and can shown to be having two parts. In reference to Eqn4.37, the inverse power law term

in the above equation can be considered as the hard scattering part in the extended Tsallis

form of distribution. In the limit n = −1 and p0 = 0 we can recover Tsallis statistics apart

from the normalization factor.

37



38



Chapter 5

Analysis and Results

5.1 Fitting Details

The plots in Fig 5.1 present the main body of results obtained in this work where, a com-

parison between BG, Tsallis and Pearson statistical approaches in describing the transverse

momentum spectra is demonstrated. It shows the degree of agreement between measured

data and the results attainable by the approaches based on Statistical Thermodynamics. In

the plots, symbols represent the experimentally measured data of transverse momentum,

and solid lines represent the results fitted by BG, Tsallis and Pearson distribution functions.

ROOT, CERN data analysis framework has been used along with MINUIT class for fitting.

The analysis was done for the transverse momentum data of π− particles produced in Au-

Au and Pb-Pb collisions, and the collision energies we selected for study included 7.7 GeV,

11.5 GeV, 19.6 GeV, 39.0 GeV, 200.0 GeV and 2760 GeV.

The goodness of Pearson approach over other approaches is determined by looking at the

chi-square values of each fit. chi-square goodness of fit test is used to find out how the ob-

served value is significantly different from the expected value and to compare the observed

sample distribution with the expected probability distribution. Using the ROOT framework,

we have obtained A table including the Chi-square values of Boltzmann, Tsallis, and Pear-

son functions fitted to PT spectra at several energies is given in Table 5.1.
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Figure 5.1: The transverse momentum data of π− particles produced at collision energies of (a) 7.7
GeV, (b) 11.5 GeV, (c) 19.6 GeV, (d) 39.0 GeV (e) 200 GeV and (f) 2760 GeV fitted with Boltzmann
(Eqn4.9), Tsallis (Eqn4.20) and Pearson distribution function (Eqn4.52).
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Collision Energy in GeV χ2/NDF (Boltzmann) χ2/NDF (Tsallis) χ2/NDF (Pearson)

7.7 8.38446 1.33471 0.552933
11.5 9.80142 2.39404 0.142277
19.6 10.9543 0.422782 0.0810845
39.0 10.5826 0.349578 0.0050
200 346.41 14.13 2.0832

2760 24.4878 2.27986 0.0417518

Table 5.1: The χ2/NDF values of transverse momentum data of π− particles fitted to
Boltzmann, Tsallis and Pearson functions at various collision energies is given.

Distribution Energy (GeV) T (MeV) q f e h g
Boltzmann 7.7 161.209 − − − − −
Boltzmann 11.5 164.578 − − − − −
Boltzmann 39.0 175.545 − − − − −
Boltzmann 200.0 176.590 − − − − −
Boltzmann 2760.0 245.873 − − − − −

Tsallis 7.7 112.177 1.05798 − − − −
Tsallis 11.5 106.611 1.07134 − − − −
Tsallis 39.0 106.520 1.08761 − − − −
Tsallis 200.0 111.984 1.09085 − − − −
Tsallis 2760.0 118.895 1.11631 − − − −
Pearson 7.7 14.59 1.00123 789.504 12.5658 −810.299 11.8127
Pearson 11.5 163.29 1.03710 15.9308 50.1280 −27.9524 4.40135
Pearson 39.0 221.70 1.182 8.54571 6.77728 −6.49152 1.21747
Pearson 200.0 381.298 1.016 4.5193 1.2502 −62.152 27.949
Pearson 2760.0 371.270 1.0355 1.04663 0.170752 −29.1514 10.4583

Table 5.2: The parameters extracted from Bolzmann, Tsallis and Pearson fits to the mo-
mentum data at various collision energies is given.

The parameters extracted from the fits are given in the Table ??. Boltzmann distribution is

parametrized by only one parameter, which is temperature (T). Tsallis framework includes

another parameter called q-parameter apart from the temperature, which gives the extent of

non-extensivity in the distribution. In all the systems that we have studied, the parameter

q is greater than 1 and hence shows sub-additivity [WW02]. The proposed approach using

Pearson distribution comprises of four free parameters in addition to the temperature and

q-parameter.
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5.2 Discussion

We have fitted PT spectra of π− particles produced in most central ( 0-5 ) collisions at en-

ergy of 7.7, 11.5, 19.6, 39.0, 200 and 2760 GeV. It is clearly visible by merely observing the

plots itself that the Pearson fits are better compared to Boltzmann and Tsallis fits. This can

be confirmed from the Table 5.1, where the χ2/NDF values of all the fits are displayed. It

can be seen that at all the energies, χ2/NDF values are minimum for Pearson fits. As we

expect, these are large for Boltzmann fits, and that of Tsallis fits are intermediate.

Statistically speaking, one possible reason for obtaining best fit using Pearson distribution

is the presence of higher order moments as parameters. Most of the distribution function

uses mean and standard deviation as parameters. In case of Pearson, skewness, and kurtosis

are also utilized for parametrization. Further, as we already discussed that Tsallis distribu-

tion is not fitting higher pt values which is the tail part of the distribution. And the tail of a

distribution is sensitive to higher order moments so a distribution function which depends

on higher moments can fit tail part more precisely.

Several two-component models have been formulated to fit pT spectra at low pT as well

as high pT but interestingly Pearson distribution has never been considered. In this work,

our objective was to find a single function which can describe both soft and hard scattering

regions of particle spectra in a unified manner. Our proposed distribution function is shown

to have two parts where the first part is an inverse power law and the second part is similar

to Tsallis function. Hence, we have combined inverse power law and Tsallis framework

and, it has been observed that the unified function is fitting spectra accurately. Further, the

thermodynamical connection among the extracted parameters and generalized thermody-

namics for relativistic particles based on this approach is yet to be discovered.
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Appendix A

ROOT: Data Analysis Framework

ROOT is an object oriented data analysis frame work developed by physicists. It provides

a very composite and fast platform for researchers to perform complicated and rigorous

calculations. Its significant features are an advanced user interface for visualization and

interactive data analysis and an interpreter for the C++ programming language.

One of its important features is the visualization of things. Hence we need to incorporate

different visualization techniques such as graphs, plots and histograms. One needs to sat-

isfy editing techniques also. That will help to modify the graphs and allows one to modify

it in such a way that it is more efficient, accurate and perfect. We may need to save these

outputs in a minimal space and use it for some further calculations.

Another important feature is fitting data. This is where I have made use of ROOT frame-

work for this study. In experimental physics, analysing data is the most significant task,

where we need to compare measurements to theoretical models. When we say models,

they are any functions which can give predictions of the measured data. One may have to

fit the data with predicted functions or may have to fit several functions to it. All these

features are satisfied by ROOT. It has some well defined classes which enable the user

to perform effective analysis.[Ref] Here, some of the basic libraries or classes are briefly

discussed.

1. TF1 : It enable the user to define one dimensional functions in the program. Here

the integral function is available as predefined and we used that for our calculations.
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2. TFile : It is class dedicated for saving data to some file and reading data from a

file.

3. TH1F : This class is for plotting one dimensional histograms. We need to specify

the number of bins needed and the range of x axis.

4. TH2F : This one is also for plotting purpose, dedicated for two dimensional his-

tograms. In a two dimensional histogram we need to specify number of bins in x and

y axes. It is a good tool to save large number of one dimensional histograms in a

compact form. It saves a lot of time while writing program and visualization is also

good. We can get the projections along any axis and profile of the histogram in any

direction, all these things are associated with this.

5. TGraph : For the visualization of graphs we need to use this class. We can modify

the plots in different colour, different point markers, different style, and also labeling

and plotting multiple graphs in one chart is also included.

6. TRandom : This class is very special for simulation studies. It is a powerful

tool which helps the user to create random numbers which satisfy the user provided

conditions. Different options are available even in this class, were T Random3 is very

good for best randomness. Because the computer generated random numbers are not

exact random number, while they are pseudo random numbers.

7. TCanvas : As the name indicates it gives a canvas for plotting all sorts of visual-

ization methods. We can add multiple graphs in one canvas by dividing it into desired

number of parts.

A code for fitting collected transverse momentum data with Boltzmann, tsallis and pear-

son distribution functions was written using C language and was compiled using ROOT

framework. TMinuit class was used for fitting.
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