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Abstract

In this thesis, we study the asymptotic shape of the region visited by Eulerian walkers

in a square lattice using monte carlo simulations. For a single walker, this region was

found to be a perfect circle. We extended the study for two Eulerian walkers that start

their walks from two different origins on the lattice. Our preliminary study suggests

that the shape of the region is likely to be circular if both walkers rotate the direction

of arrows on the lattice in the same sense. The shape of the region changes to elliptical

if the two walkers rotate the direction of arrows on the lattice in the opposite sense.
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Chapter 1

Introduction

Over the past few decades, the nature of complex systems in various fields of science

became apparently clear with the introduction of concepts of stochastic process and

self-organized criticality(SOC) in Physics and Mathematics. The study of stochastic

or random process gained momentum due to various complicated dynamical phenom-

ena of nature exhibiting its features. Many phenomena like earthquakes, economies of

stock exchange market and population growth model exhibit properties of stochastic

processes. The concepts of SOC and stochastic process has been applied to various

diverse fields of science because of it’s efficiency in explaining complex phenomena.

1.1 Stochastic Process in Physics

The role of probability theory and stochastic methods in physics is profound. Physi-

cally, a stochastic variable or a random variable is an object ,say X, defined by

• a set of possible values (called range, set of states, sample space, phase space)

• probability over this set[1].

This set can be discrete:- like heads or tails in a coin toss, or continuous in given inter-

val such as:- potential difference between end points of electrical resistance (−∞,∞).
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In nature, we encounter various phenomena in which some quantity varies with time

in a very irregular and complicated way, for instance, the motion of random walkers

in medium. The position of a walkers vary continuously with time. In such cases,

averaging over suitable time period could give useful information. This averaging

could be done in two different ways. One way is to average over the ensemble and

another way is to average over some time interval. In thermodynamic limit, these two

averages coincide. For better justification, we can consider trajectory of a random

walk. We can observe large number of non-interacting random walkers and average

the result. Similarly, we can observe single random walker and take time averages

over many time intervals.

If the trajectory of one walk does not affect the trajectory of other walk, time average

will be equal to the ensemble average and the process is called ergodic. If a stochastic

process possess the property of ergodicity then a large collection of large random sam-

ples from that process must represent the average statistical properties of the entire

process.

1.2 Patterns in Randomness

It is observed that catastrophic events in nature such as earthquakes, flooding, volcanic

eruptions and the prices in stock market also follow some pattern and laws. 1/f

noise[5] and fractals observed in nature which are self driven to their state can be

said to withhold property of SOC because the outlook of their state is complex and

the system carries large scale variations. Critical or rather scale-invariant behavior

is interesting because it is universal i.e seemingly different systems share the same

critical properties such as critical exponents and amplitude ratios. Thus the problem

of explaining the statistical features of complex systems can be understood as problem

of explaining the underlying laws, and more specifically the values of exponents.
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1.3 Random Walks

In the past decades, the study of random walks gained momentum because of its

efficiency in explaining complex process. The concept of Random walks emerged

with efforts of biostatistician Karl Pearson in 1905. Modelling of random walks in

different dimensions helps to understand nature of stochastic process. Many theories

regarding complex and fluctuating processes are focused on randomness involved in

these systems because when the nature of randomness is determined the behavior of

these systems can be predicted to an extent. Random walk model can be used to

the explain various phenomena with large variations like fluctuating prices in stock

market, the path traced by a molecule in liquid or gas.

1.3.1 Random walk in d-Dimensions

Let us define a random walk in 1 dimensional lattice. The walker starts from origin and

takes a step of size l towards either left or right directions with equal probability. Let

ai represents the displacement of the walker at ith step. Then its average displacement

after N steps is given by

〈RN〉 =

〈
N∑
i=1

ai

〉
= 0, (1.1)

as all steps are uncorrelated. Since, this does not gives any important information,

we calculate the average square displacement

〈R2
N〉 =

〈( N∑
i=1

ai

)( N∑
j=1

aj

)〉
, (1.2)

which can be written as

〈R2
N〉 =

〈
N∑

i=j=1

a2i

〉
+

〈
N∑
i 6=j

aiaj

〉
, (1.3)
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The second term on the R.H.S. is 0 as the ith and jth steps are uncorrelated. Therefore,

we have

〈R2
N〉 = Nl2 ∼ N2v, (1.4)

where l is the step size and v is the exponent. Therefore at distance N the walker’s

displacement is of the order
√
N . For a random walk, v = 1/2. The size exponent

v = 1/2 is true also in higher dimensions.

In Fig. 2.1 we plot the mean square displacement < R2 > for a random walker

of length N=100 on a square lattice and on fitting the data we found the value of

exponent v is equal to the value stated above.

Figure 1.1: Mean Square Displacement < R2
N > as function of number of steps N for

random walker on Square lattice

1.4 Known Literature and Preliminaries

In this work, we aim to study the asymptotic shape of the region visited by different

Eulerian Walkers (which is Rayleigh Pearson Random Walker) on Square lattice .
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Let us give introduction to models that use a variant of random walk models. The

algorithms and cluster formed by systems of these models have somewhat similarity

with the Eulerian walker model.

1.4.1 Eden Growth Model

Eden growth model is a stochastic model that is used to explain the growth of tumor

cells[11]. A cluster is defined as composition of connected sites, two sites are considered

connected only if they are first neighbors. Cluster growth occurs by an empty site

becoming occupied at the end of each time interval. The process starts with a germ

which can be a line or a point. Now in case of square lattice a cell of a planar

square grid is labeled as infected. Then any one of the four possible adjacent cells

is randomly and independently chosen to be infected. The process continues until a

cluster is formed. The region occupied and cluster observed has a compact core and

rough surface as shown in Fig 1.2. Hence this model studies the random processes

and is helpful in analysing cluster formation in growth model where randomness is

present dynamically.

Figure 1.2: Eden cluster with 6000 particles[11]
This figure is taken from https : //www.google.co.in/search?q =

edengrowthmodeldcr0sourcelnmstbmischsaXvedimgrcY WUJsyGUm3jTOM
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1.4.2 Diffusion limited aggregation

Another clusterable random walk observed is the diffusion-limited aggregation (DLA)[10].

It is the stochastic process where particles moving randomly and undergoing Brown-

ian motion come together to form aggregates or clusters. The cluster formed by DLA

is a fractal as shown in Fig 1.3. Particles are diffused in the medium before getting

attached to the cluster. In DLA also the process begins with a fixed seed as in Eden

model. The nature of cluster formed depends on the type of seed, surface area for

movement, attachment rules to the cluster. This theory was proposed in 1981. Some

Figure 1.3: Cluster of DLA[10].
This figure is taken from

http : //statslab.cam.ac.uk/ jpm205/quantum− gravity.html

clusters are also observed in internal diffusion limited Aggregation(IDLA) which was

introduced by Diaconis and Fulton in 1991[2] and they studied the aymptotic shape

of occupied region for an interacting lattice system. In this model, the particles are

dropped at the origin of lattice each at a time. Every successive particle performs

independent random walk until it sticks or encounters a site which is previously not

occupied. The cluster of stuck particles is asymptotically circular as particles diffuse

from interior of occupied cluster and are more likely to stop at an unoccupied site

which is closer to origin as contrast to DLA were particles stick to the extreme ends.
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1.4.3 Sandpile Model: Dynamical system of SOC

Sandpile model is the first discovered model which exhibits self-organised criticality .

It was introduced by Per Bak, Chao Tang, and Kurt Weisenfled in 1987[3]. This model

can be studied on infinite square, square lattices and directed graphs. The sandpile

model of Per Bak and its many extensions was helpful to find the new concept of

self-organized criticality, which is now a useful concept to study complex systems.

Per Bak proposed that the local interactions between the elements of a system could

spontaneously reach the critical point and then the systems becomes self-organised

after reaching this criticality[3]. He explained it using dynamics involved in sandpile.

If we consider, sand running from the top of an hourglass to the bottom we observe

that it gets accumulated grain by grain. Eventually, the the pile grows and reaches a

point where it is so unstable that the next grain can cause pile to collapse and cause

an avalanche. When a collapse occurs, the base widens, and the sand starts to pile

up again, and the mound is formed once again to cause avalanche. It is through this

series of avalanches of various sizes that the sand pile, a complex system of millions

of tiny elements, maintains overall stability. Fig 1.4 shows mounds of various sizes

which helps to stabilize the system.

Figure 1.4: Four million grains of sandpile dropped on infinite grid. Colors represent
different number of grains at each vertex[8]

This figure is taken from https : //mathmunch.org/2012/11/12/sandpiles−
prime− pages− and− six− dimensions− of − color/



Chapter 1 Introduction 8

1.4.4 Rotor Router Model

The rotor-router growth model is similar in many ways to the abelian sandpile model

introduced by Per Bak[3]. The rotor-router model is a deterministic analogue of

random walk and internal DLA. The cluster shape in rotor router aggregation model is

circular. In this model, there is a rotor placed at each site in the integer lattice pointing

to either of directions randomly:- north, south, east or west. A particle starts at the

origin and the rotor at the particles current location rotates by 90 degrees clockwise,

and then the particle moves a step ahead in the direction of the new direction. This

happens every time particle takes a step. In rotor-router aggregation, we start with n

particles at the origin; each particle in turn performs rotor-router walk until it reaches

a site not occupied by any other particles. A cluster An is formed that has a occupied

region proportional to n1/4. Fig 1.5 shows a cluster formed through rotor-router walk

by 270,000 particles.

Figure 1.5: Rotor-Router aggregate of 270,000 particles[9]
This figure is taken from http : //yuvalperes.com/router/router.html
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1.5 Plan of thesis

The goal of this thesis work is to look at dynamics of Eulerian walker on square lattice.

The plan of thesis is as follows:

• Looking at random walk model on square lattice

• Obtaining useful relationship by analyzing Eulerian walker[6] on square lattice.

• Study the dynamics of two Eulerian walker together on square lattice and com-

paring it with dynamic of single Eulerian walker
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Chapter 2

Model

The Eulerian walker model on a two dimensional square lattice is defined as follows:

• Generate 2D lattice with random number at each lattice site.

• With each random number associate an arrow which can point to any one of

the four directions denoted by N, S, E and W.

• Walker starts from the origin.

• The walker detects the arrow, rotates the arrow 90 degrees anti-clockwise and

moves one step ahead in the new arrow direction.

Thus the motion of the walker is affected by the medium and it in turns affects

the medium in which it moves. The initial configuration of directions of arrows are

generated randomly and independently using a pseudo random number generator.

The aim of this work is to study the asymptotic shape of the region visited by the

different Euler walkers which grows with the length N of the walk. We study the

following cases:

• Case 1: A single anticlockwise Eulerian walker starting from origin O.

11
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• Case 2: Two Euler walkers starting from origins O and O′ that are separated

by a distance d. Both walkers rotate the arrows in the anticlockwise direction

while moving on lattice.

• Case 3: Two Eulerian walkers starting from origins O and O′ separated by

distance d. But now one walker rotates the arrows in the clockwise direction

and other rotates in the anticlockwise direction.

Figure 2.1: 2D lattice with randomly oriented direction where two Eulerian walkers
are situated at O and O

′
which are separated distance d

For a single Euler walker, the asymptotic shape of the cluster formed by sites visited

is found to be circular as shown in Fig 2.2. The cluster of region visited by walker

shown in Fig 2.2 is irregular in shape but when it was averaged over 106 different

initial arrow configurations some regularities were observed. The shape of the visited

site was found to be a perfect circle. Fig. 2.3 shows the plots for nN(x)= constant

where isopleths for nN(x)= 10, 20, 30, 40, 50 are plotted. For Case 2, the shape was

again found to be circular and for case 3 the shape was found to be elliptical, arched

towards upward direction. Fig. 2.4 and Fig. 2.5 shows plots of line nN(x)= constant

for above 2 mentioned cases respectively. Both of these plots were observed after 106

different initial arrow configurations on 2D lattice.

It is clear from these figues that the sites closer to origin are visited more often,
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Figure 2.2: A single walk of case 1 with 107 steps

Figure 2.3: Contour of constant number
of visits as indicated nN(x) :Case 1

Figure 2.4: Contour of constant number
of visits as indicated nN(x) :Case 2

therefore for |x2| > |x1| , x1 will be visited more oftenly initially where x2 and x1 are

distances from origin. As N tends to infinity the difference between the number of
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Figure 2.5: Contour of constant number of visits nN(x) as indicated :Case 3

times sites at distances x1 and x2 are visited becomes constant. Hence

nN(x1)− nN(x2) = aN1/3[F (y1)− F (y2)] = Constant (2.1)

Also

nN(|x|) = aN
1
3F

(
|x|
bN

1
3

)
(2.2)

is the scaling function[7] for average number of visits to the site x. nN(|x|) is propor-

tional to N1/3 and is dependent on |x| which is distance from the origin. F (y) is the

linear function of y. Therefore,

F (y) =

1− y, for0 ≤ y ≤ 1.

0, otherwise.
(2.3)

because as the distance of the site increases it is visited less number of times. Fig

2.6 shows the scaling of nN(x) for different walks of N = 106, 107, 108 averaged over

different initial arrow configurations. As the number of steps increases, the scaled

data approaches the scaling form as mentioned in Eqn. 2.7.
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Figure 2.6: nN(x) as a function of distance x from origin for different values of N
along with scaling function
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Chapter 3

Results and Discussions

In the previous chapter, the shape of cluster was observed through large statistical

averaging. Now to analyze the shape of cluster we will use concept of moments and

Fourier series to carry out the statistical analysis.

3.1 Statistical Analysis

The fundamental task in statistical analysis is to characterize the variations of data

set generated in simulations. One of the methods is to determine the moments of the

data set. The nature of the moments help us to determine the distribution functions

and patterns of the data set. While observing a single anticlockwise walker on a 2D

square lattice, the standardized fourth moment ratios was found to be 3.002 for Case

1 and 3.6 for Case 2. As four directions are equivalent in case of circular symmetry

therefore for a cluster of circular shape following relation will hold

〈x4〉
〈x2y2〉

=
〈y4〉
〈x2y2〉

, (3.1)

17
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And for case 3 it was found that

〈x4〉
〈x2y2〉

= 4.2, (3.2)

and

〈y4〉
〈x2y2〉

= 48.2, (3.3)

This shows that this data set is not generating cirular shape as two moments are not

related, therefore we calculate the other moments

〈x2〉 = 485.76, 〈y2〉 = 1090.5851, (3.4)

and found that

〈x2〉
b2

+
〈y2〉
a2

= 0.999, (3.5)

where x=Rcosθ, y=Rsinθ and R is distance from origin. For case 3, b=22.0418 and

a=46.703 with 0.06% and 0.02% error respectively and 〈x2〉 and 〈y2〉 are calculated

at fixed R of an elliptical contour.

The analysis of fourth moment can be linked to kurtosis which is standardized fourth

moment. kurtosis for a distribution of random variable X is defined as

Kurt[X] =
E[(X − µ)4]

(E[X − µ]2)2
, (3.6)

where µ is the mean and σ is the standard deviation.

It describes the shape of the distribution’s tail to its overall shape. As kurtosis is the

expectation value of random variable minus mean value raised to the fourth power,

therefore the values that are closer to the mean will contribute nothing to the kurtosis.



Chapter 3 Results and Discussions 19

Therefore, the only data values that contribute to the kurtosis are those outside the

region of the peak i.e. outliers. That is why, kurtosis is high for Case 3.

When, the mean square displacement R2
N of a single anticlockwise Eulerian

walker was calculated as a function of N , it was found that R2
N grows as N2v were

v = 1/3. Fig 3.1 shows the plot of R2
N versus N for a walk of 106 steps averaged

over 106 different initial realizations. For a single walker, Euler walk was observed

after large number of steps. In the initial stage, walker behaves like random walker as

shown in Fig 3.1. Same is the observed for case 2 and case 3 as shown in Fig 3.2 and

Fig 3.3 respectively. Fig 3.4 shows the plot of R2
N as a function of N for all cases.

Figure 3.1: Mean Square Displacement R2
N as function of N : Case 1

It is clear from initial values that single euler walker converges to euler regime slowly

as compared to cases 2 and 3. Fig. 3.5 shows same contours for case 1 and case 2.

It is also clear from the plot that values of v is slightly higher for walks in the cases

2 and 3. As v increases, the region spanned also increases. Therefore case 2 and 3

cannot show perfect Euler behavior. It is clear from values of v in Fig 3.4 that these

walks are shifting towards random nature. The analysis of the shape of the rings for

the contours of the constant average number of visits nN(x) was also done through
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Figure 3.2: Mean Square Displacement R2
N as function of N : Case 2

Figure 3.3: Mean Square Displacement R2
N as function of N : Case 3

Fourier analysis. For this the shape of the rings for large N was defined as

f(θ) = lim
N→∞

rN(θ)

N1/3
(3.7)

where rN(θ) is the angle dependent radius for which 0 ≤ θ ≤ 2π. If the shape of

cluster is a perfect circle than f(θ) = constant because as N tends to infinity, rN(θ)

tends to N1/3, otherwise f(θ) is the periodic function of θ which can be expressed in
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Figure 3.4: Mean square Displacement R2
N as function of N for all 3 cases

Figure 3.5: Contour of constant number of visits nN for case 1 and case 2 on 2D
lattice
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terms of Fourier cosine series.

f(θ) =
∞∑

m=0

a4mCos(4mθ) (3.8)

Due to fourfold symmetry of the shape, this series will have terms terms with m=4s

(s= 0,1,2...). A circular shape is implied by vanishing of all the modes a4ms
′ for all

m 6= 0. A normalized amplitude of the fourth Fourier mode is given by

A(r) =

∑
j nN(xj)Cos(4θj)∑

j nN(xj)
(3.9)

The summation j was done over all the lattice points whose Euclidean distance from

the origin lies between r − 1 and r and θj is the angle that vector xj makes with

positive x-axis.

Figure 3.6: A4(r) as a function of r
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Fig.3.6 shows A4(r) as function of r for a single euler walk of 106 steps averaged over

106 different initial realization. It was observed that these fluctuations do not tend to

zero even with this large statistical averaging. These fluctuations arise because lattice

points are non-uniformly distributed along the ring within the radius r-1 and r. These

fluctuations are studied in mathematics under Gauss Circle problem and are said to

be of number-theoretic origin.

The method adopted to study the shape of rings was carried out by fitting the data

and observing deviations from the mean values. Fig 3.7 and Fig 3.8 shows a zoomed

section for the plot of contour nN(x) =1 and nN(x) =40 respectively for case 1 and

similarly Fig 3.9 and Fig 3.10 show contours of case 2. It can also be seen from the

figure that the contours at farther distance are rough as compared to contours at

closer distance from origin.

Along with this the deviation of distance of the points on the line of nN(x) =constant

Figure 3.7: Close up region for contour
of nN(x) = 1 :Case 1

Figure 3.8: Close up region for contour
of nN(x) = 40 :Case 1

with mean radius < R > was calculated and it was observed that these deviations
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Figure 3.9: Close up region for contour
of nN(x) = 1 :Case 2

Figure 3.10: Close up region for con-
tour of nN(x) = 40 :Case 2

are of the order 10−4 for Case 1 and the pattern observed is someway linked to the

symmetry of cluster. The deviations decreases as < R > increases as shown in Fig

3.11. The probable reason can be that as number of steps increases the walk becomes

clusterable; therefore the cluster will have more specific symmetry and shape at larger

radius. It was also observed that these deviations have different pattern for Case 3

as shown in Fig.3.12 where elliptical cluster was observed and these deviations also

decrease as radius increases. This pattern can also be linked to the symmetry in

observed cluster.
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Figure 3.11: Deviation of distance of the points on the line nN(x) =constant as
indicated with mean radius < R >: Case 1

Figure 3.12: Deviation of distance of the points on the line nN(x) =constant as
indicated with mean radius < R >: Case 3
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Chapter 4

Summary

In the present work, the main aim was to determine the shape of region visited

by different Eulerian walkers moving on two -dimensional square lattice. Initially,

randomness was introduced in the system by generating random directions on the

lattice using pseudo random number generator. In this work mainly three cases were

studied :- A single Eulerian walker which detected the direction; rotated it 90 degree

anticlockwise and then moved one step ahead in new direction. In the second case,

two Eulerian walker traversed the lattice by rotating directions in same sense that is

in anticlockwise direction and lastly two Eulerian walkers were studied who rotated

directions in the opposite sense; one of which moved by rotating directions 90 degree

clockwise and other moved by rotating directions 90 degree anticlockwise. The region

spanned was found to be circular after large sample averaging of 1 million samples for

Eulerian walkers observed in Case 1 and 2. It was observed after large number of steps

that the cluster becomes circular. For Case 2, if we have close look at the contours

closer to the origin they don’t seem to be circular and are little elliptical in nature.

As the walkers have been studied on 2D square with different origins separated by

particular distance, the distance can be changed to see what happens. For a single

27
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walk, a elliptical cluster was observed arched in the horizontal direction but a large

sample averaging is required for prominent result. For Eulerian walkers in Case 3 it

was found that the cluster shape was elliptical arched in the vertical direction. This

shape was observed after sample averaging of 1 million samples. In this case also, the

distance can be varied and some useful observations can be obtained. For a single

walk, a circular shape was observed at particular distance but again a large statistical

averaging is required for prominent results. To understand the particular orientation

of the cluster; either vertical or horizontal, some other analysis linked to combined

moments and correlation functions can be somewhat helpful .
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Appendix A

Useful code for Simulation of

Eulerian Walker on Square Lattice

The following program is a section from my code which is helpful for generating

lattice with random direction and carrying out Eulerian walk on 2D lattice with size

ND×MD.

int SEED;

SEED=1234;

srand(SEED);

for(l=0;l<SAMPLES;l++){

for(j=0;j<ND;j++){

for(i=0;i<MD;i++){

lattice[j][i]=0;

}

}

for(j=0;j<ND;j++){

for(i=0;i<MD;i++){

nvisit[j][i]=0;

31
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}

}

for(j=0;j<ND;j++){

for(i=0;i<MD;i++){

lattice[j][i]=rand()%4;

}

}

nvisit[xx][yy]=1;

for(k=0;k<STEPS;k++){

lattice[xx][yy]=(lattice[xx][yy]+1)%4;

RN=(lattice[xx][yy]);

switch(RN){

case 0: xx=xx+1;

break;

case 1: yy=yy+1;

break;

case 2: xx=xx-1;

break;

case 3: yy=yy-1;

break;

}

nvisit[xx][yy]+=1;

}

}
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The C library function void srand ’seeds’ the random number generator used by the

function rand(). It initializes the sequence of pseudo-random numbers when rand()

function is called. The seed value determines a particular sequence of random numbers

and it is useful to fix the seed while carrying out the simulations so that we get

reproducible data.
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