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Abstract

The first part of the work focuses on the Merging dynamics of the Bose-Einstein

Condensates in the presence of oscillating trap potentials. The dynamics is studied

by using the Gross-Pitaevskii equation and the MCTDHB theory in the KH frame

of reference. In the second part of the work, an algorithm is proposed which uses

analytic expressions for block diagonalization and other trnasformations involved in

the (t, t
′
) method, thus reducing the memory storage and computational time required

for performing such heavy calculations.





Chapter 1

Introduction

1.1 Bose-Einstein Condensates

Bose-Einstein Condensation is a phenomenon observed at really low temperatures

when a large fraction of particles in a bosonic gas occupy the lowest energy quantum

state.

Bosons are particles with integral spins and they do not follow Pauli’s Exclusion prin-

ciple. The uncertainty in position of a thermal momentum distribution of a particle

of mass m is given by the de Broglie wavelength λDB [1].λDB can be approximated as

the average de Broglie wavelength of a particle of mass m kept at a fixed temperature

T. It is given by the formula:

λDB =

(
2π~

mKBT

) 1
2

(1.1)

At very low temperatures, the interatomic separation in a gas of bosonic particles

starts becoming less than λDB:

V

Nλ3
DB

≤ 1 (1.2)

1
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where V is the volume of the gas and N is the number of particles.

When the atoms are cooled below a critical temperature Tc, the quantum mechanical

wave-packets of these particles interfere with each other and they go through a process

of phase transition to form the Bose-Einstein condensates[1].

1.2 Historical background

In 1925, Albert Einstein predicted a new state of matter, the Bose-Einstein Conden-

sates. He made this prediction on the basis of a method introduced to him by S.N.

Bose to derive the Planck’s radiation law in a new way. Einstein extended this idea to

non-interacting atoms and immediately realized that there should be a temperature

below which a large fraction of the bosonic atoms would condense into the lowest

energy ground state and thus form the Bose-Einstein Condensates[1]. In the mid

1930s, Fritz London[3] and Laszlo Tisza[4] put forward the possibility of the presence

of the BECs being responsible for the superfluidity in liquid 4He. In the 1980s, laser

cooling was discovered which meant ultra low temperatures were now achievable and

in 1995, the first BECs were observed in a system of dilute atomic alkali gases[2]. Cor-

nell, Wieman, and Ketterle shared the 2001 Nobel prize for preparing the first BECs

and studying their properties[6] [7]. Anthony J. Leggett in his review of the BECs[5]

says, ”Perhaps the single aspect of BEC systems that makes them most fascinating

is best illustrated by the cover of Science magazine of December 22, 1995, in which

the Bose condensate is declared ”molecule of the year” and pictured as a platoon of

soldiers marching in lockstep: every atom in the condensate must behave in exactly

the same way, and this has the consequence, inter alia, that effects which are so small

as to be essentially invisible at the level of a single atom may be spectacularly ampli-

fied.” BECs display superconductivity and superfluidity which are prime examples of

showing quantum properties on a macroscopic scale.
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1.3 Formation of the BECs

The first requirement to achieve a sustained Bose-Einstein condensate is a Bosonic

gas of extremely low density 1014cm−3) [2]. The purpose of such low densities is to

delay the process of three body collisions. The three body collisions are responsible

for chemical equilibrium which, on cooling, will transform the gas into the more

stable solid state. Low densities will assure that two body collisions reach kinetic

equilibrium before chemical equilibrium and thus facilitate the formation of Bose-

Einstein Condensation [2]. But such low densities will demand an extremely low

temperature for the phase transition to occur. Thus, the cooling process must be

capable of ensuring temperature in the micro to nano kelvin range. [1] This cooling is

initialized by the very well know laser cooling techniques. When the gas is subjected

to a laser, the scattered photons are higher in energy as compared to the incident

laser field. The excess energy comes from the atoms which, as a result, start cooling

down. The cooled atoms are then magnetically trapped [1]. It was observed in early

experiments that the gas would stick on the surface of the container when it is cold.

Harold Hess, in 1986, came up with idea of magnetic trapping which would be like a

”surfaceless container” for BEC [8]. The magnetically trapped gas is then subject to

forced evaporative cooling in which the higher energetic atoms are forced out of the

trap by reducing its depth. The atoms which remain adapt to their new environment

and form the metastable Bose-Einstein Condensates.

1.4 Objectives and Overview

The work presented in this thesis is divided into two parts.

The first part of the thesis focuses on the study of the merging of two fragmented

Bose-Einstein Condensates in the presence of an oscillating field. The trapping of

BECs is one of the most fascinating phenomenon in this field[5]. R. Dum and co-

workers[12], in 1998, theoretically showed the splitting dynamics of BECs in the

Kramers-Hanneberger frame of reference[7]. The initial wavepacket was bound in
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a Harmonic Potential and the potential trap was shaken periodically to observe the

fragmentation of the condensates. Reversing the Mechanism, and starting with the

wavepackets of the BECs in a double well potential which experiences the oscillations

of a highly intense laser. The BECs, due to this high frequency and high intensity

laser reside in a potential which is effectively a single well potential. The study of

this phenomenon helps develop an understanding of how the reactions of atoms can

take place in intense laser fields. Two atoms are put in a trap and the trap is shaken

vigorously to achieve a molecule. An analogue of the Schrödinger equation for bosons

is the Gross-Pitaevskii equation. It is derived in the mean field approximation keeping

in mind that the BECs have really low density. It is also assumed that all the bosons

lye in the ground state of the system. The Multiconfigurational Time Dependent

Hartree Method for Bosons[11] overcomes the second approximation by including the

effects of the higher excited states. The merging dynamis is studied for optimal KH

parameters which are calculated for a symmetric double well potential.

The second part of the thesis focuses on methods for solving the Time Dependent

Schrödinger equation with time dependent hamiltonian which are encountered in the

study of the interaction of matter with fields. U. Peskin and N. Moiseyev[12], proposed

a brilliant method for solving the TDSE with time dependent hamiltonians which is

known as the (t,t’) algorithm. But, the computational complexity of this method

is the need to store a floquet matrix[15] which is infinite dimensional in the space

co-ordinate and one of the time co-ordinates. The algorithm proposed deals with this

complexity of this matrix in efficient ways described in Chapter 3. The algorithm could

form the basis of creating an algorithm which could be used to study phenomenon

in the presence of multiple chromatic lasers. There is a possibility of extending it in

multi dimensions as no storage space is required.
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Chapter 2

Theoretical analysis of Merging of

BECs

2.1 Many Body Hamiltonian and The Gross-Pitaevskii

equation

The many body hamiltonian for a system of N spinless bosonic particles is[1]:

Ĥ =
N∑
i=1

(
p2
i

2m
+ V0(~ri)

)
+

1

2

N∑
i=1

N∑
j 6=i

Vint(|~ri − ~rj|) (2.1)

where the first term in the hamiltonian,
p2i
2m

, is the kinetic energy of the ith particle.

The next term, V0, is the external trapping potential and the final term is the inter

particle interaction between the ith and the jth particles. As BECs are purely a prod-

uct of the Bose-Einstein statistics, the interaction term is not necessary for explaining

the process of condensation, but it is useful for explaining many of the properties

associated with the condensates. This interaction term prompts us to derive a spe-

cial equation for explaining the behaviour of BECs known as the Gross-Pitaevskii

equation[1]. As mentioned above, any number of Bosons, unlike fermions, can occupy

the same quantum state and in the limit of temperature T going to zero, almost all of

7
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the Bosons are found in the lowest energy state of the system. The eigenvectors corre-

sponding to the lowest energy state or the ground state can be obtained by minimizing

the free energy functional:[1]

F = E − µN (2.2)

where

E[Ψ(~r)] =

〈
Ψ(~r)|Ĥ|Ψ(~r)

〉〈
Ψ(~r)|Ψ(~r)

〉 (2.3)

and µ is a lagrange multiplier also known as the chemical potential. Here, the vari-

ational parameter is the many body wavefunction Ψ(~r). The simplest form of the

wavefunction can be taken to be the Hatree Fock ansatz, i.e., the product of the sin-

gle particle ground states. It is also known as the Gross-Pitaevskii ansatz in the limit

of T going to zero. This approximation is known as the ”mean field approximation”.

The ”mean field approximation”, made for dilute systems, states that the effect felt by

any given particle is the single averaged effect of all the other particles. The N-particle

tensor product wavefunction is taken as:

|Ψ(~r)
〉

= |ψ1(~r)
〉
|ψ2(~r)

〉
...|ψN(~r)

〉
(2.4)

where ψi(~r) is the single particle ground state wavefunction. When the normalization〈
Ψ(~r)|Ψ(~r)

〉
= 1 is considered, equation (1.9) reduces to:[1]

F (Ψ) =
〈
Ψ(~r)|Ĥ|Ψ(~r)

〉
− µN

〈
Ψ(~r)|Ψ(~r)

〉
(2.5)

Calculating each term of
〈
Ψ(~r)|Ψ(~r)

〉
: The Kinetic Energy term (~ = 1):

〈
Ψ(~r)|

N∑
i=1

p2
i

2m
|Ψ(~r)

〉
=
〈
Ψ(~r)|

N∑
i=1

−∇
2
i

2m
|Ψ(~r)

〉
(2.6)

= − 1

2m

N∑
i=1

∫∫
..

∫
ψ∗(~r1)ψ∗(~r2)..ψ∗(~ri)..ψ

∗(~rN) (2.7)

∇2
iψ(~r1)ψ(~r2)..ψ(~ri)..ψ(~rN)d~r1d~r2..d~ri..d~rN
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As all the particles are identical, equation (1.14) can be written as[1]

〈
Ψ(~r)|

N∑
i=1

p2
i

2m
|Ψ(~r)

〉
= − N

2m

∫
ψ∗(~r)∇2ψ(~r)d~r (2.8)

Similarly, the potential energy term:[1]

〈
Ψ(~r)|

N∑
i=1

V0(~ri)|Ψ(~r)
〉

= N

∫
ψ∗(~r)V0ψ(~r)d~r (2.9)

The interaction term is a two particle operator, so the total number of permutation

of coordinates will be N(N−1)
2

. The interaction term is written as:[1]

〈
Ψ(~r)|1

2

N∑
i=1

N∑
j 6=i

Vint(|~ri − ~rj|)|Ψ(~r)
〉

=
N(N − 1)

2

∫
d~r

∫
ψ∗(~r)ψ∗(~r

′
)Vint(|~r − ~r

′|)ψ(~r)ψ(~r
′
)d~r

′
(2.10)

and

µ
〈
Ψ(~r)|Ψ(~r)

〉
= µ

(∫
ψ∗(~r)ψ(~r)d~r

)N
(2.11)

The functional F [ψ(~r)] can be minimized with respect to the variational parameter

ψ∗(~r):[1]
δF

δψ∗
= 0 (2.12)

The terms are as follows:[1]

δ
〈
Ψ(~r)|

∑N
i=1

p2i
2m
|Ψ(~r)

〉
δψ∗

= −N 1

2m

∫
δψ∗(~r)∇2ψ(~r)d~r (2.13)

δ
〈
Ψ(~r)|

∑N
i=1 V0(~ri)|Ψ(~r)

〉
δψ∗

= N

∫
δψ∗(~r)V0(~r)ψ(~r)d~r (2.14)

〈
δΨ(~r)|1

2

∑N
i=1

∑N
j 6=i Vint(|~ri − ~rj|)|Ψ(~r)

〉
δψ∗

(2.15)

= N(N − 1)

∫
δψ∗(~r)

(∫
|ψ(~r)|2Vint(|~r − ~r

′|)d~r′
)
ψ(~(r)d~r
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δ
〈
Ψ(~r)|Ψ(~r)

〉
δψ∗

= N

∫
δψ∗(~r)ψ(~r)d~r (2.16)

Combining all the terms and arranging them leads to:[1]

δF [Ψ(~r)]

δψ∗
= N

∫ [
− 1

2m
∇2ψ(~r) + V0(~r)ψ(~r)

+ (N − 1)

(∫
|ψ(~r)|2Vint(|~r − ~r

′|)d~r′
)
ψ(~r)− µψ(~r)

]
δψ∗(~r)d~r = 0

(2.17)

It can be clearly seen that the expression inside the square brackets must go to zero.

The form of the interaction potential is generally taken to be Vint(|~r−~r
′|) = 4π

m
asδ(~r−

~r
′
). Here, as is the s-wave scattering length. With the approximation valid for large

number of particles , N − 1 ' N , the following equation is obtained:[1]

− 1

2m
∇2ψ(~r) + V0(~r)ψ(~r) +N

4π

m
as|ψ(~r)|2ψ(~r) = µψ(~r) (2.18)

This equation is known as the time Gross-Pitaevskii equation. The value of as de-

termines the strength of the interactions present between the Bosons. A positive as

signifies repulsive interactions and a negative as signifies attractive interactions. As

equation (1.25) is non-linear, the energy per particle is calculated by multiplying the

equation (1.25) with ψ∗(~r) and integrating it over ~r, where the value of µ is equal to
δ
〈
H
〉
N

δN
[2]

The Time-Dependent Gross-Pitaevskii equation can be written as:

i
δψ(~r, t)

δt
= − 1

2m
∇2ψ(~r, t) + V0(~r, t)ψ(~r, t) +N

4π

m
as|ψ(~r, t)|2ψ(~r, t)− µψ(~r, t)(2.19)

2.2 Beyond the Mean Field Approximation

The Gross-Pitaevskii ansatz is generally used to describe the dynamics of BECs. But

this approximation is only concentrates on the ground state of the system because

the basis is ground state single particle wavefunctions. To observe the effects of the

excited state on the system a more general approach needs to be taken.
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The next step in this direction was taken by Streltsov and co-workers in 2003[5]. They

introduced the multi-orbital mean field theory, also called as the Best Mean field

(BMF) theory. In this they considered a many body ansatz in which they distibuted

N particles in M orbitals such that n1 particle were in orbital φ1, n2 particle were in

φ2 and nm particles were in φM as:[4]

Ψ(~r1, ~r2, ....., ~rn) = φ1(~r1)...φ1(~rn1)φ2(~rn1+1)...φ2(~rn1+n2)...φM(~rn1+n2+..+nM
) (2.20)

In a later work, using this approximation they showed that on splitting the BECs in

presence of a time dependent barrier, the evolved state is an excited state which is

very close to the ground state[6].

In 2007, they introduced the Multconfigurational time-dependent Hartree method for

bosons[3]. In this approach a time dependent ansatz analogous to the configuration

interactions in Electronic Structure Theory is taken. In a bosonic system with N

particles and M states, the time dependent ansatz is a combination of all the possible

configurations which come out of distributing N particles over M states. As bosonic

particles are indistinguishable and don’t follow the Pauli’s exclusion principle, the

total number of configurations will be
(
M+N−1

N

)
.

In the second quantization formalism, a time dependent permanent defined by using

a complete set of orthonormal time dependent orbitals {φk(r, t)} can be written as:

|~n; t
〉

=
1√

n1!n2!n3!...nM !
[a†1(t)]n1 [a†2(t)]n2 ...[a†M(t)]nM |0

〉
(2.21)

where |0
〉

is the vacuum state and a†1 is the bosonic creation operator which has been

discussed in the first chapter. Here n = n1 + n2 + ...... + nM , where (n1, n2....., nM)

signify the total number of particles in each state.

The assumption of the total wavefunction in terms of the time dependent permanent

can be written as:[3]

Ψ(t) =
∑
~n

C~n(t)|~n; t
〉

(2.22)
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where C~nt is known as the expansion coefficients. In the limit of the number of states

M →∞, this ansatz describes the system exactly and the permanents span the entire

bosonic hilbert space.

The two sets of independent parameters, the expansion coefficients C~nt and the single

particle orbitals φk(~r, t) are studied over time to determine the properties of the

system. The equations concerning their motion are derived using the time-dependent

variational principle. The functional action can be written in terms of the lagrangian

as:

S[x1, x2] =

∫ t2

t1

L{x1, x2}dt (2.23)

so, for time-dependent Schrodinger equation:

S[{C~n(t)}, {φk(~r, t)}] =

∫ {〈
Ψ(t)|Ĥ − i ∂

∂t
|Ψ(t)

〉
(2.24)

−
M∑

k=1,j=1

αk,j(t){
〈
φk|φj

〉
− λk,j

}
dt (2.25)

Now, the functional action is minimized with respect to the two independent parame-

ters, the expansion coefficients and the single particle orbitals. Solving the equations

gives two equations of motion.

Firstly, the expectation term in the above equation can be written as:

〈
Ψ(t)|Ĥ − i ∂

∂t
|Ψ(t)

〉
=
∑
~n

∑
~n′

C∗~n[C~n′
〈
~n; t|Ĥ − i ∂

∂t
|~n; t

〉
−
〈
~n; t|~n; t

〉
i
∂C~n′

∂t
] (2.26)

Using the Orthogonality relation, the functional variation with respect to the expan-

sion coefficients {C~n(t)}
∂S

∂C∗~n(t)
= 0 (2.27)

gives[3] ∑
~n′

〈
~n; t|Ĥ − i ∂

∂t
|~n′

; t
〉
C~n′ = i

∂C~n
∂t

(2.28)
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This is the first equation of motion in a matrix form[3]

H(t)C(t) = i
∂C(t)

∂t
(2.29)

To write the hamiltonian in a form dependent on the orbitals, the second quantiza-

tion formalism is used where the operators can be expressed using the creation and

annhilation operators. The one particle operators can be written as:

ĥ− i ∂
∂t

=
∑
k

∑
q

a
′

kaq

[
hkq −

(
i
∂

∂t

)
kq

]
(2.30)

where

ĥ =
n∑
i=1

(
p2
i

2m
+ V0(~ri)

)
(2.31)

and the two particle operator is defined as:

1

2

n∑
i

n∑
j 6=i

V (|~ri − ~rj|) =
1

2

∑
k,s,q,l

a†ka
†
saqalVksql (2.32)

The next step involves writing the expectation value in a new form using definitions of

one particle and two particle reduced density matrix elements, ρkq =
〈
Ψ(t)|a†kaq|Ψ(t)

〉
and ρksql =

〈
Ψ(t)|a†ka†saqal|Ψ(t)

〉
[3]

〈
Ψ(t)|Ĥ − i ∂

∂t
|Ψ(t)

〉
=

M∑
k=1

M∑
q=1

ρkq

[
hkq −

(
i
∂

∂t

)
kq

]
(2.33)

+
1

2

M∑
k=1

M∑
s=1

M∑
q=1

M∑
l=1

ρksqlVksql − i
∑
~n

C∗~n
∂C~n
∂t

(2.34)

Now, minimizing the functional action with respect to the orbitals:

∂S

∂φ∗k(~r, t)
= 0 (2.35)

would yield the following equation [3]

M∑
q=1

[
ρkq

(
ĥ− i ∂

∂t

)
+

M∑
s=1

M∑
l=1

ρksqlV̂sl

]
|φq
〉

=
M∑
j=1

αkj|φj
〉

(2.36)



Chapter 2 Theoretical analysis of Merging of BECs 14

The value of the lagrange multiplier can be obtained by multiplying this equation

from the left with
〈
φj|. the value is again substituted into the equation and then the

equation is transformed using the invariance property of the ansatz (
〈
φk|∂φq∂t

〉
= 0 )

and the final equation describing the motion of the orbitals is achieved[3]

i|∂φj
∂t

〉
= p̂

[
ĥ|φj

〉
+

M∑
k=1

M∑
s=1

M∑
q=1

M∑
l=1

(ρ(t))−1
jk ρksqlV̂ |φq

〉]
(2.37)

where p̂ is a projection operator which ensures that the changes of the orbitals in

time are always in the orthogonal space to the orbitals.[3]

p̂ = 1−
M∑
i=1

|φi
〉〈
φi| (2.38)

The unitary transformation (
〈
φk|φ̇q

〉
= 0 ) also simplifies the matrix elements of eq.

(2.28) to
〈
n̂; t|Ĥ|~n; t

〉
Thus, two coupled equations of motions have been obtained. These equations are

exact equations are exact representation of the system in the limit of the number of

states going to infinity. Thus, a better approximation is achieved as compared to the

Gross-Pitaevskii equation.

2.3 Atoms in an intense laser field

When an atom is subjected to a light beam, the ionization probability of the elec-

tron increases with the increase in the intensity of the beam. This phenomenon

occurs at low intensities where the field can be taken as a small perturbation. But

in the presence of highly intense lasers the atoms tend to stabilize rather than ionize

which goes against common intuition. At such high intensities the atom becomes

”supersaturated”[11] with photons and the electrons see a continuous electric field

instead of quanta of photons. So when studying the high intensity regime the atom

is taken as a quantum mechanical entity and the field is treated classically. This ap-

proach is known as the semiclassical approach. The electrons oscillate in the presence
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of the electric field and their attachment with nucleus (binding energy) weakens. But

instead of ionizing they tend to stabilize and reside in a ”dressed state” which has

a very high kinetic energy. The probability density in this state is distorted because

of the electrons are far away from the nucleus and are having a large kinetic energy.

The process of stabilization is largely due to the presence of the oscillating field. The

binding energy plays a little role.

W. C. Henneberger, in 1968, suggested a new frame of reference, based on a work of

Kramers. This reference frame came to be know as the Kramers-Henneberger reference

frame[7] and was later explored by many groups. In this regime, the frame of reference

is moving with the oscillating electron. The stationary electron is hit by an oscillating

nucleus but most of the time the nucleus is far away from the electron because of

the high intensity of the field and the collision time is very small if high frequency

is taken. As a result, ionization probability decreases and atomic stabilization is

achieved. The electron eventually gains enough momentum to undergo ionization

but prolonged stabilization can be seen. The electron in this reference frame sees a

time averaged potential which is known as the KH potential and the electron remains

bound in this potential. This frame of reference can be described mathematically by

a set of transformations which are discussed in this subsequent sections.

2.3.1 Atom-Field equation

The Schröinger equation describing the interaction of an electron with an electromag-

netic field is written in the radiation gauge as(~ = 1):

(
− 1

2
[~∇− i ~A(~r, t)]2 + Vscalar(~r, t) + Vbinding(~r)

)
Ψ = i

δΨ

δt
(2.39)

where ~V (~r, t) and Vscalar(~r, t) are the vector and scalar potentials associated with the

field, Vbinding is the binding potential of the atom. The vector and scalar potentials

are gauge dependent quantities. They change across different gauge transformations

to keep the total system invariant under these transformations. The quantities which
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are independent of these transformations are the electric field, ~E = −∇Vscalar − δ ~A
δt

,

and magnetic field ~B = ∇× ~A.

The Schrödinger equation can be simplified by using the dipole approximation. As

the size of atom is small as compared to the wavelength of the electromagnetic wave,

the expansion of the vector potential can be truncated by ignoring the higher terms.

Mathematically the dipole approximation is written as ~k.~r << 1 where ~k = 2π/λ.

The vector potential is[13]

~A(~r + ~ri, t) = ~A(t)exp{i~k.(~r + ~ri)} (2.40)

' ~A(t)exp(i~k.~ri) (2.41)

Now, the Schrödinger equation after applying the dipole approximation and the con-

ditions of the radiation gauge can be written as:

(
− 1

2
[∇− i ~A(~ri, t)]

2 + Vbinding(~r)

)
Ψ = i

δΨ

δt
(2.42)

The transformation

Ψ = exp{i ~A(~ri, t).~r)χ(~r, t) (2.43)

converts the Schrödinger equation into a very familiar form

(
~p2

2
+ Vbinding(~r)− ~r. ~E(~ri, t)

)
χ(~r, t) = i

δχ(~r, t)

δt
(2.44)

where ~E = − ~̇A.

In this equation, the ~r. ~E(~ri, t) term represents the dipole interaction term. A set

of transformations can now be applied to this equation to take it to the Kramers-

Hanneberger frame[9].
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2.3.2 Kramers-Hanneberger transformation

The time-dependent dipole term ~r. ~E(~ri, t) needs to be removed from the equation

(2.46). The transformation required to remove it can be derived by writing

χ(~r, t) = U1φ(~r, t) (2.45)

in the equation (2.46). The equation now becomes(~ = 1):

i~φ(~r, t)
δU1

δt
+ iU1

δφ(~r, t)

δt
=

(
~p2

2
+ Vbinding(~r)

)
U1φ(~r, t)− ~r. ~E(~ri, t)U1φ(~r, t) (2.46)

From this equation it can be seen that

iφ(~r, t)
δU1

δt
= −~r. ~E(~ri, t)U1φ(~r, t) (2.47)

Solving this equation gives the first transformation:

U1 = exp

(
i~r

∫ t

0

~E(~ri, t)δt

)
(2.48)

Similarly the second transformation to the wavefunction can be obtained

U2 = exp

(
i∇
∫ t

′

0

δt
′
∫ t

0

~E(~r, t)δt

)
(2.49)

Equation (2.50) and (2.51) transforms the hamiltonian into a form in which the po-

tential becomes time dependent. This time dependent potential is known as the KH

potential and this frame of reference is called the KH frame of reference.

(
~p2

2
+ V (~r −

∫
~A(~ri, t)δt)

)
ΨKH = i

δΨKH

δt
(2.50)

The following expression is generally used:

∫
~A(~ri, t)δt = α(t) (2.51)
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where α(t) = α0cos(ωt). The term α decides the amplitude of the oscillations and ω

is the frequency of the field. Here

α =
ε

ω2
(2.52)

where ε is the field intensity.

This indicates that the field parameters, intensity and frequency, must be chosen care-

fully in order to achieve stabilization. The value of α is key to observe the phenomenon

of stabilization.

The time dependent potential can be expanded into a time-independent zeroth order

term and time dependent higher order terms.

V (~r − αcos(ωt)) = V KH
0 +

∞∑
n=1

V KH
n cos(nωt) (2.53)

where

V KH
0 =

1

2π

∫ 2π

0

V (~r − αcos(τ))d(τ) (2.54)

V KH
n =

1

2π

∫ 2π

0

V (~r − αcos(τ))cos(nτ)d(τ) (2.55)

The zeroth order time independent term is the effective potential experienced by the

electron. The higher order time-dependent terms are fast oscillating which can be

taken as a perturbation at low frequencies and equal to zero at high frequencies. The

zeroth order potential is a stabilizing potential and the terms reponsible for ionization

are eliminated.

2.3.3 Zeroth-order KH calculations for Merging Dynamics

The Zeroth order potential term for a symmetrical double well potential of the form

Ax4 −Bx2 is:

V KH
0 =

1

2π

∫ 2π

0

A(x− αcos(τ))4 −B(x− αcos(τ))2dτ (2.56)

=
1

2π

[
A(

3

4
α2πx2 + 6α2πx2 + 2πx4)−Bπ(α2 + 2x2)

]
(2.57)
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The merging caluclations are done at A = 1a.u. and B = 5a.u.. The potential V KH
0

at different values of alpha are plotted. The ideal α for which stabilization occurs on

top of the barrier is α = 2.581190.
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Figure 2.1: (a) V KH
0 at different α values. (b)Stabilization of the wavefunction
on top of the time averaged KH potential.

The variation of the value of α with the variation in the values of A and B is also

observed. At B=5, α decreases with the increasing A value and at A=1, α increases

with the increasing value of B.
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Figure 2.2: (a)Variation of α with A at B=5 (b) Variation of α with B at A=5.

2.4 Merging of the BECs

The BECs formed through the cooling method discussed in the first chapter have a

finite lifetime. The loss of the BECs can be attributed to the presence of the 3 body
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inelastic collisions within the gas and 2 body elastic collision with the gas present

in the background of the trap.[15] A really simple approach to having a long lived

BEC is introducing a newly formed BEC confined in a trap and merging it with the

already existing one. A continuous BEC source is also helpful in the generation of

atomic beams[14]. Chikkatur and co-workers, in 2002, showed that two independently

trapped Bose-Einstein condensates could be merged into one by bringing them closer

together[16].

A lot of work has been done towards the study of the fragmentation of the BECs both

theoretically and experimentally. In 1998, R. Dum and co-workers[12], studied this

phenomenon using the KH regime. They started with a wave-packet initially trapped

in a harmonic potential and then this potential was periodically shaken. They used

the Gross-Pitaevskii equation to describe the system.

i
δψ

δt
= [−∇2 + V (~r + α(t)ẑ) +

4πa

ma.u.

N |ψ|2]ψ (2.58)

where[12]

V (~r) =


m
2

(ω2
xx

2 + ω2
yy

2 + ω2
zz

2), V (~r) ≤ Vcut−off ,

Vcut−off V (~r) > Vcut−off

(2.59)

and[12]

α(t) =

α0sin
2(π

2
t
ton
sin(ωlasert), 0 ≤ t ≤ ton

α0sin(ωlasert), ton ≥ ton

(2.60)

where ton is the time for which the laser pulse is switched on and after that a continuous

laser is being shined on the system.

The condensates got distorted and formed a fragmented state in the presence of the

pulse, feeling the effects of the time averaged oscillations.

The opposite phenomenon is studied where two fragmented condensates initially

placed in a symmetric double well potential are taken. The trapping potential of
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the condensates is then shaken vigorously by applying a pulse of the form mentioned

in eq. (2.60). This dynamics is studied using both the Gross-Pitaevskii equation and

the MCTDHB [3] method. It is observed that due to the time averaged effects of the

fast oscillating potential, the initially fragmented BECs form a single merged BEC of

greater density confined in a time averaged potential.

The calulations are performed using the MCTDHB [3] package as follows:

• A system of N = 100 weakly interacting bosons is taken, with interaction

strength λ0 = −0.002a.u..

• A symmetric double well potential of the form Ax4 − Bx2 is initially applied,

where A = 1 and B = 5.

• The grid is taken from x = −10a.u. to x = 10a.u. with number of points

nx = 201.

• Relaxation of the system is performed for time interval t = 10a.u. to obtain an

initial stable wavepacket.

• The time dependent potential is of the form:

V (x, t) =

(x− α0sin
2(π

2
t

100
)sin(25t))4 − 5(x− α0sin

2(π
2

t
100

)sin(25t))2, t ≤ ton = 100

(x− α0sin(25t))4 − 5(x− α0sin(25t))2, t ≥ ton = 100

(2.61)

• Time propagation calculations are done for two values of α0, first value is

α0 = 2.3245a.u. and the other value is calculated through Zeroth order KH

calculations which is α0 = 2.581190a.u.. Here, ω = 25a.u. and ton = 100a.u..

Merging was observed in both the cases.

• In the Gross-Pitaevskii framework (M=1) all the particles are in the ground

state. For number of states (M=2) the particles are equally divided into the two

states initially. Some crude time-propagation calculations were initially done by

Abhijeet Roy[17] at N=1000 bosons and α0 = 4.3245.

• Results are shown for α0 = 2.581190 at different time intervals in the figure
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Figure 2.3: Merging of condensates for M=1 or GPE at α0 = 2.581190a.u.
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Figure 2.4: Merging of condensates for M=2 states at α0 = 2.581190a.u.
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Chapter 3

Implementation of the (t,t’)

algorithm for time-dependent

Hamiltonians

3.1 Quantum Adiabatic Theorem

An adiabatic process can be defined as a gradual change in the external surroundings

of a system so as to allow the system to perform a smooth change of a degree of freedom

as opposed to an abrupt change which can lead to erratic and chaotic behaviour. The

energy is not conserved during an adiabatic change.

For a quantum system which remains non-degenerate for a time interval, the Time

Dependent Schrödinger equation (TDSE) can be written as:

i~
∂ψ(~r, t)

∂t
= Ĥ(~r, t)ψ(~r, t) (3.1)

The wavefunction can be transformed using a time dependent unitary operator U

as[2]:

ψ(~r, t) = U(t)φ(~r, t) (3.2)

27
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If eq. (3.2) is substituted into eq. (3.1), one obtains:

i~U(t)
∂φ(~r, t)

∂t
+ i~φ(~r, t)

∂U(t)

∂t
= ˆH(t)(~r, t)U(t)φ(~r, t) (3.3)

Left multiplying the above equation with U−1(t) gives:

i~
∂φ(~r, t)

∂t
+ i~φ(~r, t)U−1(t)

∂U(t)

∂t
= ĤT (~r, t)φ(~r, t) (3.4)

If a gradually varying Hamiltonian H(t) is taken in the beginning, then U(t) will also

vary slowly with time and hence the second term on the L.H.S. of eq. (3.4) will go to

zero. Here, ĤT (~r, t) is a transformed operator given by ĤT (~r, t) = U−1Ĥ(~r, t)U The

equation can now be written as:

i~
∂φ(~r, t)

∂t
= ĤT (~r, t)φ(~r, t) (3.5)

Thus it can be seen that if the initial wavefunction is an eigenfunction of the Hamil-

tonian, it will remain its eigenfunction during the evolution process albeit the Hamil-

tonian is slowly varying. This is known as the quantum adiabatic theorem[1].

3.2 Split Operator Method

The split operator method is an approximate method which is used for numerically

solving the TDSE. If the Time dependent Schrödinger equation is of the form (~ = 1):

i
∂Ψ(~r, t)

∂t
= Ĥ(~r)Ψ(~r, t) (3.6)

where Ĥ(~r) is a time independent hamiltonian, the unitary transform for time-evolution

is given by:

U(t) = e−iĤ(~r)t (3.7)

The Hamiltonian can be written as the sum of a kinetic Energy operator and the

potential energy operator. The time evolution of the wavefunction is then described
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by the following equation:

Ψ(~r, t) = e−i(T̂ (~r)+V̂ (~r))tΨ(~r, 0) (3.8)

Since, the kinetic energy and potential energy operators do not commute,

e−i(T̂ (~r)+V̂ (~r)t 6= e−iT̂ (~r)te−iV̂ (~r)t. (3.9)

The Baker-Campbell-Hausdorff formula states that[13]:

ex̂eŷ = exp(x̂+ ŷ +
1

2
[x̂, ŷ] +

1

12
[x̂, [x̂, ŷ]]− 1

12
[ŷ, [ŷ, x̂]] + ....) (3.10)

In 1982, Feit and Fleck [4]suggested an approximation method for solving this equation

which is known as the split operator method. Using another variant of the BCH

formula,

ex̂eŷeẑ = exp(x̂+ ŷ+ ẑ+
1

2
[x̂, ŷ] +

1

2
[ŷ, ẑ] +

1

2
[x̂, ẑ] +

1

12
[[x̂, ŷ] + x̂+ ŷ+ ẑ] + ...) (3.11)

,the evolution operator can be written as:

e−i
V̂ (~r)
2
te−iT̂ (~r)te−i

V̂ (~r)
2
t = e−i(

V̂ (~r)
2

+T̂ (~r)+
V̂ (~r)
2

)t +O(t3) (3.12)

Here the two kinetic energy operators commute with each other and the error is of

the order of O(t3), which is better as compared to equation (3.9) where the error is

of the order of O(t2).

But this method is more useful in the case of time independent Hamiltonians because

the evolution operator of the time dependent Hamiltonian can’t be written in this

way. Although, this method is used for time dependent Hamiltonians, there are other

approximations which are better and discussed in further sections.
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3.3 The time-ordering operator

The Time evolution of the wavefunction of a TDSE with a time dependent Hamilto-

nian cannot be described easily like the TDSE with a time-independent Hamiltonian

operator (eq. 3.8).

In comparison with eq. (3.8), the most suitable form seems to be (~ = 1):

Ψ(~r, t) = e−i(
∫ t
0 Ĥ(~r,t′)dt′)Ψ(~r, 0) (3.13)

but this equation is not exact. The time evolution operator in the interval (0 < t < tf )

must follow a chronological order

U(tf , 0) = U(tf , t)U(t, 0) (3.14)

but as the operator e−i
∫ t
0 Ĥ(~r,t′)dt′ does not commute at two different instances of time

e−ii
∫ tf
t Ĥ(~r,t′)dt′−i

∫ t
0 Ĥ(~r,t′)dt′ 6= e−i

∫ tf
t Ĥ(~r,t′)dt′e−i

∫ t
0 Ĥ(~r,t′)dt′ (3.15)

One way to overcome this is to write the wavefunction in a Taylor expansion[2]:

Ψ(~r, t) = Ψ(~r, 0)− i
∫ t

0

Ĥ(~r, t′)dt′Ψ(~r, 0) (3.16)

−1

2

∫ t

0

∫ t

0

Ĥ(~r, t′)Ĥ(~r, t′′)dt′dt′′Ψ(~r, 0) + ..... (3.17)

But here also the chronological order of operations is violated. Thus, a new operator

known as the time ordering operator is introduced which imposes the condition that

the operator must act on the wavefunction in a certain order.

Ψ(~r, t) = T̂ e−i(
∫ t
0 Ĥ(~r,t′)dt′)Ψ(~r, 0) (3.18)

where T̂ is the time-ordering operator.
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3.4 Floquet Method for time periodic Hamiltoni-

ans

The Floquet method is used for solving the TDSE when the Hamiltonian matrix is

time periodic, i.e.

Ĥ(t) = Ĥ(t+ T ) (3.19)

where T is the time period of the Hamiltonian. Periodic Hamiltonians can be encoun-

tered while studying the atom in the presence of a continuous oscillating field. This

method was introduced by Shirley in 1965[5]. In this method, the time dependent

hamiltonian is converted into an infinite dimensional time independent Hamiltonian

using a complete basis set in both the space co-ordinate and time which was suggested

by H. Sambe[8] in 1973. The solution to the time dependent Schrödinger equation

with time periodic Hamiltonian is given by the Floquet ansatz (~ = 1):

Ψk(~r, t) = e−iEktφk(~r, t) (3.20)

Here, φ(~r, t) is also time-periodic and Ek is a diagonal matrix whose elements are

known as characteristic exponents.

Substituting eq. (3.20) into the TDSE yields (~ = 1):

{
Ĥ(~r, t)− i ∂

∂t

}
φk(~r, t) = Ekφk(~r, t) (3.21)

{
Ĥ(~r, t)− i ∂

∂t

}
is known as the Floquet Hamiltonian denoted by ĤF (~r, t) and φk(~r, t)

is known as the Floquet eigenstate. To calculate the time independent eigenvalues

Ek, equation (3.25) is left multiplied by φk(~r, t) and integrated over position space.

Ek =

∫ ∞
−∞

φk(~r, t)

{
Ĥ(~r, t)− i ∂

∂t

}
φk(~r, t)d

3r (3.22)

The wavefunction can be rewritten as (~ = 1):

Ψk = e−i(Ek+nω)teinωtφk(~r, t) (3.23)
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A Hilbert space (R ⊕ T) is taken which is extended in both space and time. The

Eigenfunctions can be written as a product of a Fourier vector |n
〉

and an atomic

eigenstate[2]

|αn
〉〉

= |α
〉
|n
〉

(3.24)

The Fourier vector gives the equation[2]

〈
t|n
〉

= einωt (3.25)

The matrix elements can be calculated as:[2]

〈〈
αn|HF (~r, t)|βm

〉〉
= Ĥ(~r, t)n−mαβ + nωδαβδnm (3.26)

It can be seen that the matrix formed will be a diagonal matrix due to the orthogo-

nality of the Hamiltonian and the presence of δ terms with the nω term.

In the presence of an oscillating potential term eiωt the Floquet hamiltonian with

three Floquet channels can be written as a block tridiagonal matrix:

Ĥf =



E + 2ω D 0 0 0

D E + ω D 0 0

0 D E D 0

0 0 D E − ω D

0 0 0 D E − 2ω


(3.27)

The elements of the Floquet matrix can be written as:[2]

Eαβ =
〈〈
α0β1|Ĥ(~r, t)|β0α1

〉〉
=

1

T

∫ T

0

〈
α|Ĥ(~r, t)|β

〉
dt =

〈
α|H̄(~r)|β

〉
(3.28)

where H̄(~r) is a time averaged hamiltonian.

Dαβ =
1

T

∫ T

0

〈
α|Ĥ(~r, t)|β

〉
eiωtdt (3.29)

The presence of the eiωt term discards the blocks with |n−m| > 1 [2].
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3.5 (t,t’) method for Time Dependent Schrödinger

equation

In 1993, Uri Peskin and Nimrod Moiseyev[6], gave a new formalism to solve the TDSE

which generalized the Floquet theorem used for time periodic Hamiltonians to time

dependent Hamiltonians. This new method is known as the (t,t’) method. In 1974, J.

Howland[9] built up on the idea of H. Sambe (1973) and gave a Hilbert space spanning

both the space and time coordinate for any Hamiltonian which is time dependent. This

idea was picked up by Peskin and Nimrod and they introduced a new co-ordinate t’

in the extended Hilbert space. This space is now constituted of a complete set of

basis functions in both the space co-ordinate r and the time co-ordinate t’. This

expansion of the Hilbert space allows the time-dependent Hamiltonian to be written

as an infinite dimensional time independent Hamiltonian. Thus, evolution operators

in this time independent form do not require a time ordering operator because their

chonological ordering is now not required as the Hamiltonian is time-independent.

Consider a Time Dependent Schrödinger equation (~ = 1):

i
∂Ψ(~r, t)

∂t
= Ĥ(~r, t)Ψ(~r, t) (3.30)

The solution to the time dependent Schrödinger equation in the new scheme can be

written as:[6]

Ψ(~r, t) = Ψ(~r, t′, t)
∣∣
t=t′

(3.31)

The equation of time evolution of the system:

Ψ(~r, t′, t) = e−iĤF (~r,t′)(t−t0)Ψ(~r, t′, t) (3.32)

where ĤF (~r, t) is the Floquet hamiltonian in the coordinate t’.

ĤF (~r, t′) = Ĥ(~r, t′)− i ∂
∂t′

(3.33)
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The starting point of the derivation of this equation is to differentiate the above

equation with respect to t and multiply i to both sides. The equation becomes:

i
∂Ψ(~r, t′, t)

∂t
= ĤF (~r, t′)e−iĤF (~r,t′)(t−t0)Ψ(~r, t′, t) (3.34)

The right hand side of the equation can be written as:

Ĥ(~r, t′)e−iĤF (~r,t′)(t−t0)Ψ(~r, t′, t) = −i∂Ψ(~x, t′, t)

∂t′
+ Ĥ(~r, t)Ψ(~r, t′, t) (3.35)

Combining equation (3.39) and (3.40), one gets[6]

i

(
∂

∂t′
+
∂

∂t

)
Ψ(~r, t′, t) = Ĥ(~r, t′)Ψ(~r, t′, t) (3.36)

Over the contour where t = t′, equation (3.41) converts into the time-dependent

Schrödinger equation which was taken in the beginning,

i
∂Ψ(~r, t)

∂t
= Ĥ(~r, t)Ψ(~r, t) (3.37)

The initial wavefunction can be expanded in a basis of fourier functions on the t’

co-ordinate

Ψi(~r, t
′, 0) =

∞∑
n=−∞

einωt
′
ψ(~r) (3.38)

If the basis functions in t’ are φ(t′) and the basis functions in r are φ(~r) then the term

〈〈
φ(t′), φ(~r)|Ψi(t)

〉〉
=

1

T

∫ T

0

dt′
∫ ∞
−∞

d~rφ(t′)φ(~r)Ψi(t) = Ψi(~r, t
′, t) (3.39)

and

Ψi(~r, t
′, t) = [e−iĤF (~r,t′)tΨi(~r, t

′, 0)] (3.40)

The Floquet matrix can be written as:

ĤF (~r, t′) = −1

2

∂2

∂r2
+ V (~r, t′)− i ∂

∂t′
(3.41)
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To remove the t’ co-ordinate the Floquet matrix is averaged out over this co-ordinate

in the Fourier basis expansion. The Floquet matrix elements are the same as those

obtained in the previous section.

The Time Evolution of the system can now be written in a form in which only the

propagation of the wavefunction corresponding to the n=0 Floquet channel needs to

be studied as the initial wavefunction is expanded in the fourier basis[6]:

Ψ(~r, t) =
∞∑

n=−∞

einωt[e−iĤf (~r)tΨi(~r, t0)]n (3.42)

This Floquet Matrix is an infinite order matrix in both space and time co-ordinate.

Thus, storage of such a large matrix and time needed to evaluate the exponential

of the matrix using the Taylor series are both very large. Thus, this is a really

difficult task computationally. In the next section, a method is provided to reduce the

complexity of the problem both in space and time using certain analytical expressions

and approximations.

3.6 A Memory and Time saving Algorithm for (t,t’)

method

If the Time Dependent Schrödinger equation of an atom kept in an oscillating field

with frequency ω is considered (~ = 1):

i
∂Ψ(~r, t)

∂t
= [−∇

2

2
+ V (~r) + ~r.~ε]Ψ(~r, t) (3.43)

Here

H0 = −∇
2

2
+ V (~r) (3.44)

D =
~ε.~r

2
(3.45)
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The TDSE becomes

i
∂Ψ(~r, t)

∂t
= [H0 + 2D]Ψ(~r, t) (3.46)

Now the Floquet type Hamiltonian can be written in a block tridiagonal form as:

[Hf ] = [H0 + nω]n,n′ + [D]n,n′±1 (3.47)

The Hf matrix for 3 floquet channels is written as:

[Hf ]nf×nx,nf×nx = (3.48)

[H0 + 2ω]nx×nx [D]nx×nx 0 0 0

[D]nx,nx [H0 + ω]nx,nx [D]nx,nx 0 0

0 [D]nx,nx [H0]nx,nx [D]nx,nx 0

0 0 [D]nx,nx [H0 − ω]nx,nx [D]nx,nx

0 0 0 [D]nx,nx [H0 − 2ω]nx,nx


Where the inner matrices are of the order of (nx, nx). The total Floquet matrix is of

the order of (nf×nx, nf×nx), nf being the Floquet matrix dimension. If both {n, nx}

→ ∞, the Floquet matrix will become very difficult to store. Also, the exponential

expansion of such a large matrix will require a lot of time for calculations as with the

number of iterations for convergence of the expansion (n×nx)3 number of operations

add up.

The first step is to separate the number matrix from the Floquet matrix.

[Hf ] = [HF ] + [Hnum] (3.49)

which will look like

[Hf ] =



[H0] [D] 0 0 0

[D] [H0] [D] 0 0

0 [D] [H0] [D] 0

0 0 [D] [H0] [D]

0 0 0 [D] [H0]


+



[2ω] 0 0 0 0

0 [ω] 0 0 0

0 0 0 0 0

0 0 0 [−ω] 0

0 0 0 0 [−2ω]


(3.50)
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Now, the block tridiagonal matrix HF has a certain symmetry which can be used to

diagonalize it using Coulson’s transformations[10]. The analytic expressions of the

unitary matrices are obtained which effectively reduces the storage space to only the

(nx, nx) order matrices as a full diagonalization is not required.

HF = U †HdU (3.51)

The diagonal matrix Hd is of the form:

Hd = (3.52)

[H0 + ~r.~εcos(τ1)] 0 0 0 0

0 [H0 + ~r.~εcos(τ2)] 0 0 0

0 0 [H0 + ~r.~εcos(τ3)] 0 0

0 0 0 [H0 + ~r.~εcos(τ4)] 0

0 0 0 0 [H0 + ~r.~εcos(τ5)]


where tauk = kπ

nf+1
, k=1,2,...nf . The Unitary matrix elements are given as

Uij =

√
2

nf + 1
sin(iτj) (3.53)

The unitary matrix is written as:

[U ] =



U11[I]nx.nx U12[I]nx,nx U13[I]nx,nx U14[I]nx,nx U15[I]nx,nx

U21[I]nx.nx U22[I]nx,nx U23[I]nx,nx U24[I]nx,nx U25[I]nx,nx

U31[I]nx.nx U32[I]nx,nx U33[I]nx,nx U34[I]nx,nx U35[I]nx,nx

U41[I]nx.nx U42[I]nx,nx U43[I]nx,nx U44[I]nx,nx U45[I]nx,nx

U51[I]nx.nx U52[I]nx,nx U53[I]nx,nx U54[I]nx,nx U55[I]nx,nx


(3.54)

where [I] is the identity matrix. Here, for n floquet channels only an (nf , nf ) matrix

needs to be made as many of the element are zeroes of repetition of themselves.
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The Floquet matrix is now of the form:

Hf = U †HdU +Hnum (3.55)

As the number matrix and the HF do not commute, the split operator approximation

is applied to take the exponential of the Floquet matrix.

e−iHf t = e−i(HF+Hnum)t (3.56)

e−iHf t = e−iHnumt/2e−iU
†HdUte−iHnumt/2 (3.57)

which can be written as:

e−iHf t = e−iHnumt/2U †e−iHdtUe−iHnumt/2 (3.58)

The exponential of the number matrix is trivial to calculate. It can be seen that

(e−iHnumt/2U †)T = Ue−iHnumt/2 (3.59)

which further reduces our storage space and number of calculations. The next part

deals with the calculation of the exponential of the block diagonal matrix Hd Using

equation(3.49) the split operator method each element of the matrix Hd can be written

as:

(Hd)ii = e−i(V (~r)+~r.~εcos(τi))t/2e−i(−∇
2/2)te−i(V (~r)+~r.~εcos(τi))t/2 (3.60)

Another transformation is needed to convert the exponential of the kinetic energy into

a diagonal form. So equation (3.65) can now be written as:

(Hd)ii = e−i(V (~r)+~r.~εcos(τi))t/2U †1e
−i(−p2/2)tU1e

−i(V (~r)+~r.~εcos(τi))t/2 (3.61)

where −p2

2
is the kinetic energy Hamiltonian in the fourier basis with pk = 2πk∆k

L
,

k = {−∞,∞}. In this algorithm the wavefunction is Fast Fourier transformed into

the momentum space and after multiplying with the exponential of the kinetic energy

matrix it is back transformed into the position space.
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(Hd)i = e−i(V (~r)+~r.~εcos(τi))t/2[fft]e−i(−p
2/2)t[ifft]e−i(V (~r)+~r.~εcos(τi))t/2 (3.62)

where ifft → inverse Fast Fourier transform, and fft → Forward Fast Fourier trans-

form. These transforms were performed using the FFTW package.

Every matrix is acted one by one upon the initial wavefunction. So, every step has

a maximum order of operation count of N2 as the complexity is only matrix vector

multiplication.

The full algorithm can be described as:

Ψ(r, t) = e−inω∆tU †


e−i(Hd)1∆t 0 0

0 e−i(Hd)2∆t 0

0 0 e−i(Hd)3∆t

Ue−inω∆t(Ψ(r, t0)n)

Ψ(r, t) = einωt
′

[Ψ(r, t)]0,Ψ(r, t) = Ψ(r, t
′
, t)|t=t′

3.7 Testing of the algorithm

The code is written in FORTRAN90 [3] and LAPACK [1] and FFTW[2] libraries

are used.

3.7.1 Forced Harmonic Oscillator

The Forced Harmonic Oscillator equation is given by:

H(r) = − 1

2m

∂2

∂r2
+
mω2

2
r2 − rEcos(αt) (3.63)

When the initial solution of this equation is a gaussian wavepacket. It remains a

Gaussian Wavepacket throughout time.

Here, Error bounds are calculated against a gaussian wavepacket suggested by Heller[12]

with the parameters taken from David Lauvergnat [11] and co-workers’ paper.
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The Gaussian wavepacket is of the form:[12]

gwp(r, t) = exp(i.at(r − rt)2 + i.pt(r − rt) + i.φt) (3.64)

Let d = (ω2 − α2) where the width

αt = i
mω

2
(3.65)

the impulsion

pt = −E
d

[αsin(αt)− ωsin(ωt)] (3.66)

The average position

rt =
E

md
[cos(αt)− cos(ωt)] (3.67)

The phase

φt = iln

[
4

√
mω

π

]
+ t

(
E2

4md
− ω

2

)
(3.68)

+
E2

8αmd
(8α2cos(ωt)sin(αt) + (ω2 − 3α2)sin(2αt)− 2αωsin(2ωt)) (3.69)

The initial parameters taken from the same paper[11] are: m=10000 a.u. , E= 0.01

a.u., α = 11/1000a.u. and propagation was done for 40000 a.u.. (r0 = 0, p0 = 0, α0 =

imω
2

and φ0 = −i 4
√

mω
π

.

The analytical wavepacket ΨE was propagated and the error in the overlap with the

(t,t’) wavepacket was calculated.

erroverlap = 1−
〈
Ψ|ΨE

〉
(3.70)

Firstly the error was calculated for different number of Floquet channels at different

time steps to check the convergence with respect to number of Floquet channels. The

grid was taken from [-4.0:4.0] with number of points in x = 1001.(Fig 3.1)

These figures show that irrespective of the time step the error converges with the same

number of Floquet channels, around, NF = 7.
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Figure 3.1: Error in the overlap different ∆t with different number of floquet
channels.

So, now the error in the overlap is calculated by keeping the number of Floquet

channels fixed and expanding the basis in x. Larger grid with grid size ∆x = 0.004

are taken. The number of Floquet channels are fixed to NF = 8. figure (3.2).

Quantitative analysis of error is done by calculating the Euclidean Norm and The

Max Norm.
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Figure 3.2: Error in the overlap with respect to change in the grid size.

The Euclidean Norm is given by

||x||euc =

√√√√ N∑
1

x2
i (3.71)

The Max Norm is:

||x||max = max(x1, x2, x3, ...., xN) (3.72)

Grid size Euclidean Norm Max Norm

[-15:15] 9.57256296×10−3 1.40629042×10−4

[-17:17] 7.29933317×10−3 1.09146903×10−4

[-28:28] 3.27786227×10−3 4.61124168×10−5

[-30:30] 2.88307059×10−3 3.43729180×10−5

[-32:32] 2.74945679×10−3 3.33709260×10−5

Table 3.1: Euclidean Norm and Max Norm for error in the overlap

The results show that a very large basis set is required for getting good results. But

the error remains unchanged with change in the time step.

The Timings for time propagation are recorded for different number of floquet channels

at fixed time step ∆t = 1a.u. and fixed Grid size [−4 : 4] for nx=2001 points. It can

be seen that the largest matrix is of the order of (2001 × 21, 2001 × 21) and it took

very less time to perform the calculations. The timings were recorded on Dell, 64

bits, OptiPlex 9020 (05A4), version 00, 8 GB RAM, 4 cores
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NF Time(sec.)

3 105.619836
4 135.359236
5 168.107580
6 200.686867
7 236.886939
8 270.457813
9 309.217981
10 369.985104

Table 3.2: Timings of time propagation for different number of floquet channels
at ∆t = 1a.u.

3.7.2 Two-Level System

The population of the second level of a two level system changes with time as:[11]

popRabi2 (t) = sin2(
Ωrabit

2
) (3.73)

where Ωrabi = µE is the rabi frequency. The same is obtained by (t, t
′
) method for

µ = 1 and E = 1/10000. The parameters are again taken from Lauvergnat’s paper[11].
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Figure 3.3: (a) Analytic population of second states (b) State obtained by (t,t’)
method

3.8 Future work

We want to extend the algorithm for:

• Inclusion of a pulse.
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Figure 3.4: difference between the (t,t’) population and the analytic population.

• Multiple Dimension.

• Multimode Floquet theory

• Linearly and Circularly polarized lights.
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Appendix A

New algorithm for the (t,t’)

method: Fortran90 code

The following code is written in Fortran90 [3] to develop the method proposed in

chapter 3. The test problem taken in this code is the forced harmonic oscillator.

A.1 Libraries and Packages used

FFTW[2] (Fast Fourier Transform in the West) - Used For performing Fast

Fourier Transformations.

LAPACK[1] (Linear Algebra PACKage) - Used for diagonalization of the ma-

trices.

A.2 Compilers used

ifort[4] (Intel R© Fortran Compiler)

47
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A.3 Compilation Instruction

Use the following command on terminal: ifort -o outfile codefile.f90 −L/usr/local/lib

-lfftw3 -llapack

A.4 Code

!program to implement the new ttprime algorithm

!Author :: Alkit Gugalia

!Date :: 12/1/2018

program ttprime_method

implicit none

include ’fftw3.f’ !FFTW LIBRARY

!********** variable declaration **********!

integer (kind = 4), parameter :: nx=2001,ny=1

integer (kind = 4) :: i, j, k, ii, jj, kk, ix, iy, l, ll, jx, jy, n

integer (kind = 4) :: m, mm,it,pt

integer (kind = 8) :: plan

real (kind = 8) :: dx, dy, x1, x2, y1, y2, x, y , lenx, leny

real (kind = 8) :: pi,twpi,twpinx,twpiny,twpinlx,twpinly,E,w

real (kind = 8) :: mass,fconst,findx,tab,start,finish

real (kind = 8), allocatable :: evecs(:,:),evals(:),psi1(:,:)

complex (kind = 8), parameter :: io=(0.00000d0,1.00000d0)

complex (kind = 8) :: const1,const2,iodt

complex (kind = 8) :: val,mtval,val1,val2,val3,cof(nx,40000)

complex (kind = 8) :: anal(nx,40001),nom(40000)

complex (kind = 8), allocatable :: psqx(:),psqy(:),psqz(:),V(:)

!********** Floquet variables **********!

integer (kind = 4), parameter :: Nf = 3

integer (kind = 4) :: flag,totfq

real (kind = 8) :: tau,omega,ucons
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complex (kind = 8) :: sum1,alpha

complex (kind = 8), allocatable :: coeff(:),nomega(:),coeff1(:)

complex (kind = 8), allocatable :: umat(:,:),floq(:,:)

!********** time variables **********!

integer (kind = 4), parameter :: nt=40000

real (kind = 8) :: t1,t2,dt,t

real (kind = 8) :: ton,pls

complex (kind = 8) :: pconst,pkconst

!********** constants **********!

flag=(2*Nf+1) ; totfq=nx*(2*Nf+1) ; omega=11.0d0/1000.0d0

E=0.010d0 ; w=0.010d0 ; mass=10000.0d0 ; fconst=1.00000d0

pi=3.14159265358979323846200d0 ; twpi=2.00000d0*pi

twpinx=twpi/nx ; n=nx ; tau= pi/(flag+1.00000d0)

ucons=dsqrt(2.0000d0/(flag+1.0000d0))

x1=-4.00d0 ; x2=4.00d0 ; t1=0.000d0 ; t2=40000.00d0

pconst=(0.500d0*pi)/(ton) ; lenx=x2-x1 ; leny=y2-y1

dx=lenx/real(nx-1, kind = 8) ; dy=leny/real(ny-1, kind = 8)

dt=(t2-t1)/real(nt-1, kind = 8) ; twpinlx=twpi/lenx

twpinlx=twpinlx*twpinlx ; iodt=io*dt

!********** fourier grid hamiltonian **********!

allocate(psqx(nx),psqy(nx))

psqx(1)=(1.00d0,0.00d0); alpha=-(iodt*0.5d0*twpinlx)/mass

do i=1,(nx+1)/2

psqx(i+1)=cdexp(alpha*dfloat(i)*dfloat(i))

psqx(nx-i+1)=psqx(i+1)

enddo

alpha=(0.00000d0,0.00000d0)

allocate(psi1(nx,nx))

!********** DVR Hamiltonian **********!

call raddvr(x1,nx,dx,psi1)

allocate(V(nx))



Appendix A New algorithm for the (t,t’) method: Fortran90 code 50

alpha=0.50000d0*fconst

!********** Potential Energy + Kinetic Energy **********!

do i=1,nx

x = x1 + (i-1)*dx

V(i)=alpha*(x*x)

psi1(i,i) = psi1(i,i) + V(i)

enddo

alpha=(0.00000d0,0.00000d0)

allocate(evals(nx),evecs(nx,nx))

!********** Diagonalization for Eigenfunctions **********!

CALL CALL_DSYEV_WT_EIGVECS(psi1,n,evals,evecs)

deallocate(evals,psi1)

!********** Full Floquet wavefunction **********!

allocate(coeff(totfq))

ii=0

kk=0

jj=totfq

do k=1,Nf+1

ii= Nf + 2 - k

jj=jj-(nx)

do i=1,nx

kk=kk+1

x=x1 + (i-1)*dx

coeff(kk)=(evecs(i,1))

coeff(jj+i)=coeff(kk)

enddo

enddo

deallocate(evecs)

!********** Bigger Unitary matrix*Number Matrix **********!

ii=0

alpha=iodt*omega
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allocate(umat(flag,flag))

do i=1,flag

findx=-(flag+1)/2 + i

nomega(i)=cdexp(-alpha*0.5000d0*findx)

do j=1,flag

umat(i,j)=ucons*dsin(i*j*tau)*nomega(i)

enddo

enddo

allocate(coeff1(totfq))

mm=0;ll=0

!********** Time-Propagation **********!

do it=1,nt

t= t1 + (it-1)*dt !time increment

ii=0

!********** Wavefunction*U(omega) **********!

do k=1,flag

do i=1,nx

ii=ii+1

val1=(0.0000d0,0.000000d0)

do j=1,flag

pt= Nf-flag+j

kk=(j-1)*nx+i

val1=val1+(umat(j,k)*coeff(kk))

enddo

coeff1(ii)=val1

enddo

enddo

ii=0 ; kk=0

!********** Exp of KE, PE and Dipole Multiplication ********!

do k=1,flag

pkconst=-E*dcos(k*tau)!*cdexp(0.50000*io*(pi))
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psqy=(0.00000d0,0.000000d0)

alpha=-iodt*0.500000d0

do i=1,nx

x = x1 + (i-1)*dx

ii=ii+1

psqy(i)=cdexp(alpha*(V(i)+x*pkconst))*coeff1(ii)

! Multiplying by (potential+dipole)/2 term

enddo

!********* FAST FOURIER TRANSFORM using FFTW **********!

!Inverse FFT

call dfftw_plan_dft_1d(plan,nx,psqy,psqy,FFTW_BACKWARD,FFTW_ESTIMATE)

call dfftw_execute_dft(plan,psqy,psqy)

call dfftw_destroy_plan(plan)

do i=1,nx

psqy(i)=psqx(i)*psqy(i) !Fourier Grid KE multiplication

enddo

call dfftw_plan_dft_1d(plan,nx,psqy,psqy,FFTW_FORWARD,FFTW_ESTIMATE)

call dfftw_execute_dft(plan,psqy,psqy)

call dfftw_destroy_plan(plan)

!Forward FFT

do i=1,nx

x=x1 + (i-1)*dx

kk=kk+1

coeff(kk)=cdexp(alpha*(V(i)+x*pkconst))*(psqy(i)/nx)

! Multiplying by (potential+dipole)/2 term

enddo

enddo

coeff1=(0.0000d0,0.00000d0)

kk=0 ; ii=0

!********** Wavefunction*U(omega) **********!

do k=1,flag
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do i=1,nx

ii=ii+1

val2=(0.0000d0,0.0000d0)

do j=1,flag

kk=(j-1)*nx + i

val2 = val2 +(umat(k,j)*coeff(kk))

enddo

coeff1(ii)=val2

enddo

enddo

coeff=(0.0000d0,0.00000d0); coeff=coeff1; ll=ll+1

do i=1,nx

cof(i,ll)=coeff((Nf*nx-1)+i)

enddo

enddo

deallocate(psqx,psqy,umat,nomega,V,coeff,coeff1)

end

!DVR grid K.E. MATRIX

subroutine raddvr(a,n,dx,T)

integer (kind = 4) :: n,i,j,s,u

real (kind = 8) :: a,dx,x,T(n,n)

real (kind = 8) :: const,pi = 3.141592653589793238460d0

const = (pi*pi)/(6.00000d0*dx*dx)

do i=1,n

x = a + (i-1)*dx

T(i,i) = const

do j=1,i-1

s=i-j

T(i,j)=(((-1.0d0)**s)/((dx*dx)*(s*s)))

T(j,i)=T(i,j)

enddo
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enddo

T=T/10000.00000d0

return

end

!********** SUBROUTINE for diagonalization using LAPACK *******!

!-----------------------------------------------------------------------------!

!-----------------------------------------------------------------------------!

SUBROUTINE CALL_DSYEV_WT_EIGVECS(H,ndim,eigvals,eigvecs)

!-----------------------------------------------------------------------------!

implicit none

integer (kind = 4) :: ndim

real (kind = 8) :: H(ndim,ndim)

real (kind = 8) :: eigvals(ndim)

real (kind = 8) :: eigvecs(ndim,ndim)

character (len = 1),parameter :: JOBZ="V"

character (len = 1),parameter :: UPLO="L"

integer (kind = 4) :: LDA

integer (kind = 4) :: LDWORK

integer (kind = 4) :: INFO

real (kind = 8),allocatable:: WORK(:)

LDA = ndim

LDWORK=3*ndim-1

allocate(WORK(LDWORK))

CALL DSYEV(JOBZ,UPLO,ndim,H,LDA,EIGVALS,WORK,LDWORK,info)

deallocate(WORK)

eigvecs=H

END
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