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Notation

Here are some notations that we will be using throughout this Ramsey theory:

N = {1, 2, 3, · · · } = set of positive integers.

|X| = cardinality of set X.

[n] = {1, · · · , n} defined for n ∈ N.

[X]k = {Y : Y ⊂ X, |Y | = k}.

When X = [n] we say [n]k = {Y : Y ⊂ {1, · · · , n}, |Y | = k}
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Abstract

Van Der Waerden’s theorem says that “If the positive integers are partitioned into

two classes then at least one of those classes must contain arbitrarily long arithmetic

progression.” A more generalized version of this theorem can be said in the way that

“If the set of positive integers are partitioned into r classes then at least one of the

class must contain an arithmetic progression of arbitrary finite length.” We will study

the proof of this theorem with Ramsey Theory and Topological Dynamics.
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Chapter 1

Introduction

Ramsey theory is named after Frank Plumpton Ramsey, he is mainly known for his

major contribution in this area before his early death at age 26 in 1930.And later the

theory was developed by Erdos.

In the second chapter we have proved the Ramsey’s theorem and Compactness prin-

ciple.The classical problem in Ramsey theory is the party problem, which asks the

minimum number of guests R(m,n) that must be invited so that at least m will know

each other or at least n will not know each other . Here, R(m,n) is called a Ramsey

number. We will begin with this example with m = 3 and n = 3 as a glimpse for

Ramsey theory.Then we have proved the Ramsey’s Theorem for graph ,which gives

the proof for the existence of minimum such number, what we shall call Ramsey num-

ber.Then we give a generalized version of Ramsey theorem for graph, which is known

as Ramsey’s Theorem hypergraph , that deals with the coloring of [n]k. Then we come

to the compactness principle which allows us to go from n sufficiently large to larger

set N, an r− coloring of [n] or [n]k has certain property then any r-coloring of larger

set N or [N]k has the property.

In 1927 B.L. Van Der Waerden published a proof of the theorem which says:”For

any finite partition of N there is a partition which contains arithmetic progression of

arbitrary finite length.” In the chapter 3 we have given a proof of the theorem of Van

Der Waerden’s using Ramsey theory.

In chapter 4 we have proved the theorem of Van Der Wearden using the topological

Dynamics.The approach to problems we are going to use is slightly different ,we first

translate a combinatorial problem into a problem in dynamical systems and then by

proper use of techniques in dynamical systems ,we try to solve the restated problem.

Hillel Furstenberg is widely known for his contributions in 1970’s for developing the
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connections between Ramsey theory and topological dynamics and then many math-

ematicians has elaborated this connection. We can define the dynamical systems with

different properties on the underlying space and by the map which we shall call the

transformation of the states. We look for the topological properties, which is the field

of topological dynamics.

In chapter 5, the main result is the theorem of Hindman’s which says: ”For any finite

partition of N there is some Cj which contains an IP -set.”

In the last chapter we have shown the IP-version of Van Der Waerden’s theorem.
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Chapter 2

Ramsey Theory

2.1 Puzzle problem

We will start with a “puzzle problem” and this problem , we can consider as the first

nontrivial example of Ramsey theory.

Example 1. In any collection of six people either three of them mutually know each

other or three of them mutually do not know each other.

Here we will assume that the relation of “knowing” is symmetric, that means if

A and B are two persons and if A knows B then B knows A.But we will not assume

transitivity ; that is if A,B,C are three persons and A knows B and B knows C then

A may or may not know C.We will give a proof of this example.

Let A,B,C,D,E,F are six people. Consider the relation of A with rest of 5 persons.Now

by the Pigeon-hole principle we can say that either A must know at least three of them

or not know at least three of them .Suppose A knows B,C,D. Then if B and D also

knows each other then we got three people A,B,D who knows each other.Or if none of

B,C,D knows each other ,then again we got three people who do not know each other.

Consider the other case :suppose A does not not three of them,let say D,E,F are those

three people.Now if D,F are also unknown to each other then we got a set of three

people who do not know mutually each other.And if D,E,F know mutually each other

then we got a set of three people who mutually know each other. so we are done.

Definition 2.1.1. An r − coloring of a set S is a map

χ : S −→ [r].
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For some element s ∈ S, we will call χ(s) the color of s. A set T ⊆ S is said to be

monochromatic under χ if χ is constant on T.

Now we will introduce arrow notation that will be used throughout this Ramsey

theory:

Definition 2.1.2. We write

n −→ (l)

if given any 2 − coloring of [n]2, there is a set T ⊆ [n], |T | = l so that [T ]2 is

monochromatic.

Definition 2.1.3. We write n −→ (l1, · · · , lr) if, for every r − coloring of [n]2, there

exists i, 1 ≤ i ≤ r, and a set T ⊆ [n], |T | = li so that [T ]2 is colored i.

In case l1 = · · · = lr = l we use the shorthand

n −→ (l)r.

That is , every r− coloring of [n]2 yields a monochromatic [l]2. If the number of colors

r is not indicated it is assumed to be 2. Thus n −→ (l), n −→ (l)2, and n −→ (l, l)

denote the same thing.

Definition 2.1.4. We will denote the Ramsey Function by R(l1, · · · , lr), which de-

notes the minimal n such that

n −→ (l1, · · · , lr).

2.2 Ramsey’s Theorem - For graph

Theorem 1. Ramsey Theorem - For graph: The Ramsey function R is well defined

, that is for all l1, · · · , lr there exists n so that

n −→ (l1, · · · , lr).

We first give the proof of this theorem for case r = 2.
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Proof For proving this theorem we will be using a double induction on l1 and

l2. We know that R(l, 2) = R(2, l) = l so, first step of induction is true. Now

assume by induction that R(l1, l2 − 1) and R(l1 − 1, l2) exists.We claim that n =

R(l1, l2 − 1) +R(l1 − 1, l2) = R(l1, l2).

Claim: R(l1, l2 − 1) +R(l1 − 1, l2) −→ (l1, l2).

Proof: Fix a 2-coloring χ of [n]2.n = R(l1, l2 − 1) +R(l1 − 1, l2).

Fix one element x ∈ [n] and set

Lx = {y ∈ [n] : χ(x, y) = 1}.

Mx = {y ∈ [n] : χ(x, y) = 2}.

= [n]− Lx − {x}.

Then |Lx|+ |Mx| = n− 1 so that either

a) |Lx| ≥ R(l1−, l2). or

b) |Mx| ≥ R(l1, l2 − 1).

Assume the case (a) first. Apply the definition of R, and we say either there ex-

ists T ⊆ Lx, |T | = l2 such that [T ]2 is colored 2 or there exists S ⊆ Lx, |S| = l1 − 1 so

that [S]2 is colored 1. If we take S∗ = S ∪ {x}. Then since S ⊆ Lx all {x, s}, s ∈ S
are colored 1. Then |S∗| = l1 and [S∗]2 is colored 1, so we are done for this case.Case

b)is symmetric.

The proof for l1, l2, · · · , lr follows same as the above argument , here we can use

induction on l1, l2, · · · , lr to show that :

2 +
r∑
i=1

R(l1, l2, · · · , li − 1, · · · , lr)− 1→ (l1, l2, · · · , lr)

so we are done.

2.3 Ramsey’s Theorem :For hypergraph

We now consider coloration of [n]k, where k is an arbitrary integer. This generalizes

the case k = 2.

5



Definition 2.3.1. n −→ (l1, · · · , lr)k if, for every r− coloring of [n]k there exists

i, 1 ≤ i ≤ r, and a set T, |T | = li so that [T ]k is colored i.

In the case l1 = · · · = lr = l we use the shorthand

n −→ (l)kr .

we say in this case that every r− coloring of [n]k yields a monochromatic [l]k. If the

number of colors r is not indicated it is assumed to be 2. Thus n −→ (l)k, n −→ (l)k2,

and n −→ (l, l)k are identical relations.If k is not given it is also assumed to be 2.

The Ramsey function for k− sets is indicated by Rk :

Rk(l1, · · · , lr) = min{n0 : for n ≥ n0, n −→ (l1, · · · , lr)k},

Rk(l, r) = min{n0 : for n ≥ n0, n −→ (l)kr},

Rk(l) = min{n0 : for n ≥ n0, n −→ (l)k}.

Theorem 2. Ramsey’s theorem: The function R is well defined; that is , for all

k, l1, · · · , lr there exists n0 so that , for n ≥ n0,

n −→ (l1, · · · , lr)k.

Proof We will give the proof using induction. The case for k = 1 is done in Ramsey’s

theorem -for graph.So the first step of induction is true.Now let χ : [n]k −→ {1, · · · , r}
be an r− coloring . By induction hypothesis, let

t = Rk−1(l, r).

now we choose some arbitrary elements y1, · · · , yk−2 ∈ [n] and denote

Sk−2 = [n] \ {y1, · · · , yk−2}

Now we can define points yi and sets Si as follows:

(i) If Si is defined , then choose any yi+1 ∈ Si
(ii) If yi+1 is defined then divide Si \ {yi+1} into equivalence classes by

x ≡ y ⇔ (∀T ⊆ {y1, · · · , yi+1}, |T | = k − 1)

6



χ(T ∪ {x}) = χ(T ∪ {y})

and choose Si+1 equal to the maximal class.

So the number of these equivalence classes is atmost r(
i+1
k−1). Because equivalence class

has been determined by the color of
(
i+1
k−1

)
sets.

It is clear from the construction that

Si+1 ⊆ Si \ {yi+1} (2)

and

|Si+1| ≥
(|Si| − 1)

r(
i+1
k−1)

from this relation

ui+1 =
ui − 1

r(
i+1
k−1)

, uk−2 = n− (k − 2).

surely n = 2r
∑t−1
i=k−1 (i+1

k−1) suffices. Next consider y1, · · · , yt sequence. Assume that

1 ≤ i1 < · · · < ik−1 < s ≤ t. now from (2) and (i)

ys ∈ Ss−1 ⊆ Sik−1+1.

Further by definition of equivalence relation:

χ(yi1 , · · · , yik−1
, ys) = χ(yi1 , · · · , yik−1

, x) ∀x ∈ Sik−1+1 (3).

And we can say that (3) is true for x = yr where ik−1 < r < t. It follows that we can

define the coloring χ∗ of (k − 1) elements subsets of {y1, · · · , yt} by the condition :

χ∗(yi1 , · · · , yik−1
) = χ(yi1 , · · · , yik−1

, ys) ∀ik−1 < s ≤ t. (4)

Now here we are almost done.By the induction hypothesis and the choice of t the

sequence y1, · · · , yt has a subsequence d1, · · · , dl which is monochromatic under χ∗,

that is :

Every subset of {d1, · · · , dl} with (k− 1) element, has the same color ,say red , under

χ∗. Then for all sequences with indices 1 ≤ j1 < · · · < jk−1 ≤ l we will have

χ(dj1 , · · · , djk−1
, djk) = χ∗(dj1 , · · · , djk−1

) = red.

7



This follows from (4). So we have to found an subset of [n] with l− elements such

that its all subsets with k− elements, have the same color under our original coloring

χ. This completes the proof.

2.4 Compactness Principle

Now we will just state the “Tychonoff theorem” which says that :

Theorem 3. An arbitrary product of compact spaces is compact in the product

topology.

Definition 2.4.1. Let H = (V,E) be a hypergraph and W ⊆ V. And the restriction

of H to W is denoted by HW , is a hypergraph HW = (W,EW ) ,

EW = {X ∈ E : X ⊆ W}.

Theorem 4. Let H = (V,E) be a hypergraph where all X ∈ E are finite (but V

need not be). Suppose that , for all W ⊆ V,W finite,

χ(HW ) ≤ r.

Then

χ(H) ≤ r.

Proof Let T be the set of all functions f : V → [r]. We topologize T by giving

[r] the discrete topology and giving T the induced function space topology.In other

words , for all x1, · · · , xn ∈ V, y1, · · · , yn ∈ [r].

We will show that T is homeomorphic to direct product of |V | copies of [r].That means

there is a homeomorphism :

φ : T →
∏
i∈|V |

[r]

.

we will show that this is a homeomorphism.

8



• φ is continuous.

consider

φ : T →
∏
i∈|V |

[r]

given by

f 7→ (f(a1), f(a2), f(a3), · · · )

take ([r]|V |, τ) where τ is the induced function topology on [r]|V |.Where

Sx1,x2,··· ,xn,y1,y2,··· ,yn = {f : f(xi) = yi}

is a basis foe the topology on [r]|V | and is both open and closed.

so φ will be continuous because

φ−1(f(a1), f(a2), · · · ) = f

and this f is in the basis of the topology. Hence it is open.Hence φ is continuous.

• Now we will show that φ−1 is continuous.

take

φ−1 :
∏
i∈|V |

[r]→ T

given by

(yi)i∈X 7→ g

where

g : V 7→ [r]

define as

xi 7→ yi

and g are in the basis. Hence g−1 will be open. Hence φ−1 is open.

Hence φ :
∏

i∈|V |[r] → T is a homeomorphism.Hence T is compact, because it

is the direct product of |V | copies of [r] and [r] is compact because it is a finite

set with discrete topology.Hence by Tychnoff theorem T is compact.

Now for every finite W ⊆ V we denote FW to be the set of functions f ∈ T such

9



that no X ∈ E,X ⊆ W is monochromatic. The set FW is the collection of those

functions that are r− colorations when restricted to W. Since each FW is the union

of a finite number of slices Sw1,··· ,wn,y1,··· ,yn(W = {w1, · · · , wn}) hence is closed.And

each FW 6= φ because , we assumed that , there is an r− coloring of each finite set W.

Clearly , if W ⊆ W ′, FW ⊇ F ′W . We can apply this on sets ,if W1, · · · ,Wm are finite

subsets of V then

FW1 ∩ · · · ∩ FWm ⊇ FW1∪···Wm .

Now because W1, · · · ,Wm are finite subsets so W1∪· · ·∪Wm, so their finite union will

again be finite, so FW1∪···∪Wm 6= φ. Thus {EW : W ⊆ V,Wfinite} is a finite family

of closed sets which satisfies the finite intersection property that means any finite

intersection of the FW is nonvoid. And in a compact topological space, if a family of

closed sets F satisfies the finite intersection property then ∩F 6= φ; that means there

exists f : V → [r], f ∈ FW for all W ⊆ V,W finite. This f is the desired coloring ,

for if X ∈ E, so X is finite, f ∈ FX , and therefore X is not monochromatic under f.

So we are done.

10



Chapter 3

Van Der Waerden’s Theorem

3.1 Van Der Waerden’s Theorem

Theorem 5. If we partition the positive integers into two classes then there will be

at least one class which must be containing arbitrarily long arithmetic progressions.

A more generalized version of the above statement can be said in the way: If we

partition the positive integers into r- classes then there will be at least one class which

must be containing arbitrarily long arithmetic progressions.

We can make two modifications :

• For each k we will partition only a finite initial segment of integers (depending on

k) so in this we are forcing at least one class to contain an arithmetic progression

of k terms.

• Second, we are allowing the partition of the sets of integers into r classes instead

of just two.

Thus modified statement is as follows:

There exists an positive integer W (k, r) for all positive integers k and r so that ,

if we partition the set of integers 1, 2, · · · ,W (k, r) into r classes, then there will be at

least one class which will contain a k− term arithmetic progression.

11



3.1.1 An Example

We will give an example that will clearify the statement of the theorem:

Example 2. W (3, 2)

To motivate the proof of the general theorem, we first examine a small cases. Let

us consider the case k = 3, r = 2. We claim that we can take W (3, 2) = 325. For

this, assume that integers {1, 2, · · · , 325} = [1, 325] are arbitrarily partitioned into

two classes(because here r = 2) . Now divide them into 65 blocks of length 5, that is ,

[1, 325] = [1, 5] ∪ [6, 10] ∪ · · · ∪ [321, 325],

which we say that block B1 consisting the numbers from 1 to 5 and block B2 consisting

the numbers from 6 to 10 and so on. Since we have to split these integers into r = 2

classes, that is , they are 2-colored , there are just 25 = 32 possible ways to 2-color

a block Bi. Thus , out of the first 33 blocks Bi there will be two blocks that will be

2-colored in exactly the same way (by Pigeon-Hole principle), say B11 and B26. Now

focus at the 2-coloring of B11 = {51, 52, 53, 54, 55}. Of the first three elements of B11

that is {51, 52, 53}, at least two of them must have the same color say x and x + d.

Since x and x+d belong to {51, 52, 53}, x+2d belongs to B11. (This is why we choose

Bi to have length of 5.) If x + 2d has the same color x (and x + d), we are done.

Thus we may assume that it has the other color. But if the integer 205 ∈ B41 is red

then 55,130,205 is one colored and 51, 128,205 is another colored.So we got arithmetic

progression of length 3.

3.1.2 l-equivalence

Definition 3.1.1. Consider [0, l]m : we define (m+ 1) l-equivalence classes of [0, l]m.

We call (x1, x2, · · · , xm), (x
′
1, · · · , x

′
m) ∈ [0, l]m l-equivalent if they agree up through

their last occurrences of l.

Example 3. We will discuss one example of this l-equivalence: take

l = 4,m = 2

that is [0, 4]2 = {0, 1, 2, 3, 4}2 = {0, 1, 2, 3, 4}×{0, 1, 2, 3, 4} Then according to the defi-

nition of l-equivalence there will be 3 equivalence classes : {(0, 0), (0, 1), (0, 2), (0, 3), (1, 0), (1, 1), (1, 2), (1, 3), (2, 0)

12



, (2, 1), (2, 2), (2, 3), (3, 0), (3, 1), (3, 2), (3, 3)} second equivalence class will be {(4, 0), (4, 1), (4, 2), (4, 3)},
the third equivalence class will be {(4, 4)}

Definition 3.1.2. S(l,m): For any r,∃N(l,m, r) so that for any function β : [1, N(l,m, r)]→
[1, r] there always exists positive integers a, d1, · · · , dm such that β(a+

∑m
i=1midi) re-

mains constant on each l-equivalence class of [0, l]m.

Example 4. We will discuss this definition by an example:

l = 4,m = 2, r = r.

there exists N(4, 2, r) so that for any function C : [1, (4, 2, r)] → [1, r], there exists

positive integers a, d1, d2, · · · , dm such that

C(a+ 0d1 + 0d2) = C(a+ 0d1 + 1d2) = · · · = C(a+ 1d1 + 0d2) = · · ·

and

C(a+ 4d1 + 0d2) = C(a+ 4d1 + 1d2) = · · · = C(a+ 4d1 + 3d2) = constant.

and

C(a+ 4d1 + 4d2) = constant.

Claim: S(l, 1) is equivalent to Van Der Waerden’s Theorem.

Proof Consider [0, l]m = [0, l]1 simply 2 equivalence classes will be {0, 1, · · · , l − 1}
and {l} there exists N(l,m, r) = N(l, 1, r) so that for any function

C : [1, N(l, 1, r)]→ [1, r]

there exists positive integers a, d1, · · · , dm so that

C(a+ 0d1) = C(a+ 1d1) = · · · = C(a+ (l − 1)d1)

13



and that is l-term arithmetic progression.

3.1.3 Van Der Waerden’s Theorem: Generalized Proof

Theorem 6. S(l,m) holds for all l,m ≥ 1.

Proof Note that S(1, 1) is true.Because consider [o, 1]1 here equivalence classes will

be {0} and {1}. For {0} :

C(a+ 0d1) = constant.

and

C(a+ 1d1) = constant.

Now first we will prove

(i) S(l,m) =⇒ S(l,m+ 1).

Proof Assume induction hypothesis. and let

T = N(l,m, r) and T ′ = N(l, 1, rT )

Now we claim that we can choose :

N(l,m+ 1, r) = T (T ′ + 1).

so let

φ : [1, (T ′ + 1)T ]→ [1, r]

be an r− coloring . This induces a coloring

φ′ : [1, T ′]→ [1, rT ].

by φ′(k) = φ′(k′) if and only if φ(kT + j) = φ(k′T + j) for j ∈ (0, T ] So clearly φ′ is

well defined.

Now by induction hypothesis on T ′ there exists a′ and d′ such that

φ′(a′ + xd′) = constant

on x ∈ [0, l − 1] or x = l.

Now we can apply induction hypothesis S(l,m) to the interval [a′T + 1, (a′ + 1)T ]

14



length of the interval = T − 1 : there exists numbers a, d1, · · · , dm such that

a+
m∑
i=1

xidi ∈ [a′T + 1, (a′ + 1)T ]

for xi ∈ [0, l]. And

φ(a+
m∑
i=1

xidi) = constant

on l-equivalence classes (m+ 1). We set d′i = di for i ∈ [i, T ] and d′m+1 = d′T.

Then we have to show that

φ(a+
m+1∑
i=1

) = constant (1)

on l-equivalence classes (m + 2). First in the class where xm+1 = l there is just one

element namely (l, l, · · · , l). In other classes xm+1 we gets the values 0, 1, · · · , l − 1.

Let us consider such a fixed class. By the choice of a′ and d′

φ′(a′ + xm+1d
′) = φ′(a′)

for xm+1 = 0, · · · , l − 1. Consequently by definition of φ′

φ((a′ + xm+1d
′)T + j) = φ(a′T + j) (2)

for j ∈ [0, T ] and xm+1 ∈ [0, l − 1.]

But the choice of numbers a and di we have:

a+
m∑
i=1

xidi = a′T + j

for some j = 1, · · · , T.

φ(a+
m∑
i=1

xidi) = constant (3)

in l-equivalence classes. Therefore (1) follows from (2) and (3):

a+
m+1∑
i=1

xid
′
i = xm+1d

′T + a+
m∑
i=1

xidi = (a′ + xm+1d
′)T + j

15



. Hence we are done.

implication (ii)S(l,m)∀ =⇒ S(l + 1, 1)

Our claim is that we will be able to choose

N(l + 1, 1, r) = N(l, r, r) + q.

So consider the coloring

φ : [1, N(l, r, r) + q]→ [1, r]

by induction hypothesis there exists numbers a, d1, · · · , dm such that

a+
r∑
i=1

xidi ≤ N(l, r, r)

for xi ∈ [0, l]. and

φ(a+
r∑
i=1

xidi) = constant (4)

on l-equivalence classes (r + 1). Now by pigeon hole principle there exists numbers w

and y, 0 ≤ w < y ≤ r such that

φ(a+
w∑
i=1

ldi) = φ(a+

y∑
i=1

ldi) (5)

Now denote

a′ = a+
w∑
i=1

ldi

and

d′ =

y∑
i=w+1

di

There exists 2 (l + 1)− equivalence classes (since m = 1): [0, · · · , l] and {l + 1}. The

latter is singleton so that for sure φ(a′ + xd′) is constant.

What remains to show is that

φ(a′ + xd′) = constant (6)
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for x = 0, · · · , l. Now by (5) we have

φ(a′ + 0d′) = φ(a+
w∑
i=1

ldi) = φ(a+

y∑
i=1

ldi) = φ(a′ + ld′).

In the l-equivalence class

{(x1, · · · , xr) : xi = l} for i ≤ w and xj ∈ [0, l− 1] otherwise; (4) is valid . So for any

x ∈ [0, l − 1] we have :

φ(a′ + 0d′) = φ(a+
w∑
i=1

ldi +
r∑

i=w+1

0di)

= φ(a+
w∑
i=1

ldi +

y∑
i=w+1

xdi +
r∑

i=y+1

0di)

= φ(a′ + xd′).

Hence (6) is proved . Hence the whole induction step is proved.
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Chapter 4

Van der Waerden’s theorem : proof

with Topological Dynamics

4.1 Topological Dynamics

In this section we will be proving the theorem of van Der Waerden’s with the help of

topological Dynamics.

In this section X is a compact metric space and T be a homeomorphism from X

to X.

Definition 4.1.1. A point x ∈ X is said to be recurrent for the T if for some

nk →∞, T nkx→ x.

Definition 4.1.2. We will call (X,G) a dynamical system if X is compact space and

G be a group of homeomorphisms from X to X. If G is a cyclic group G = {T n} then

we denote the corresponding system by (X,T ).

Definition 4.1.3. A dynamical system (X,G) is said to be minimal if no proper

closed subset Y ⊂ X is invariant by all the transformations of G.

Definition 4.1.4. We will say that a dynamical system (X,G) is homogeneous if

there exists a group G′ of homeomorphisms of X commuting with the transformations

of G and such that (X,G′) is minimal.More generally let us call a closed subset

A ⊂ X homogeneous with respect to the system (X,G) if there is a group G′ of

homeomorphisms of X commuting with G and such that G′ leaves A invariant , and

(A,G′) is minimal.
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lemma 1. Let (X,G) be a dynamical system with X a compact metric space. Then

(X,G) is minimal if and only if for every ε > 0 there exists a finite set of transforma-

tions S1, S2, · · · , SN ∈ G such that for any x, y ∈ X, mini d(Six, y) < ε.

Proof Assume that (X,G) is minimal.We will show that for any ε > 0 there exists

a finite set of transformations such that mini d(Six, y) < ε Let V be an open subset

of X, ,consider ∪S∈GS−1V is an open set , G-invariant set, and it is equal to all of X.

Consider the compliment of this set, that will be closed , and that will be inside X so

that contradicts the assumption that (X,G) is minimal.Hence ∪S∈GS−1V is open set

and equal to X. And this is G-invariant because its complement is G-invariant.Now

since X is compact ,a finite sub -covering covers X. Letting V over a finite cover of

X by sets of diameter < ε we get the condition of lemma.

Now we will prove the converse , Because X is compact so a finite subcover covers

X that means ∪S∈GS−1V = X and complement of ∪S∈GS−1V will be empty set.that

means there is no proper closed subset contained in X. Hence (X,G) is minimal.

proposition 1. Let (X,T ) be a dynamical system with X a compact metric space

and let A be a homogeneous closed subset of X. Suppose that for every ε > 0 we can

find x, y ∈ A and n ≥ 1 with d(T nx, y) < ε, then for every ε > 0 we can find z ∈ A
with d(T nz, z) < ε, for some n ≥ 1.

Proof As assumed in the statement that for every ε > 0 we can find some n ≥ 1

with d(T nx, y) < ε for some pair of points x, y ∈ A.
claim: The point y can in fact be chosen arbitrarily in A.

Because it is given that A is homogeneous , so by the definition of homogeneous subset

,we take , let G be the group acting minimally on A that commutes with T , and let

S1, S2, · · · , SN ∈ G satisfy:

min
i
d(Six, y) < ε/2 x, y ∈ A (1).

This is true because of previous lemma. Now we choose x0, y0 and n0 so that

d(T n0x0, y0) < δ (2)

where δ is so small that d(x, x′) < δ implies all d(Sjx, Sjx
′) < ε/2 this is true by the

continuity of Sj .

Because of the definition of Sj it is clear that Sj are continuous and we know that
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allSj commutes with T , so from (2)we get d(SjT
n0x0, Sjy0) = d(T n0Sjx0, Sjy0) <

ε/2 (3), and combining this with (1) we obtain

min
i
d(T n0Sjx0, y) < ε

for any y ∈ A. After establishing this we choose an arbitrary point z0 ∈ A and we

find z1 ∈ A, n1 ∈ N with

d(T n1z1, z0) < ε/2 (4).

Repeat the process for z1, finding z2 ∈ A, n2 ∈ N with

d(T n1z1, z0) < ε2 (5)

where ε2 is so small that (i)ε2 < ε/2, (ii) if we replace z1 by T n2Z2, the inequality of

(4) is still valid. Now we will proceed inductively. Assume z0, z1, · · · , zr have been

chosen in A as well n1, n2, · · · , nr ∈ N and ε2, · · · , εr with εj < ε/2 and

d(T njzj, zj−1) < εj, j = 1, 2, · · · , r (6).

we find εr+1 < ε/2 so that (6) is valid when zr is replaced by a point whose distance

from it is less than εr+1. Then find zr+1 ∈ A and nr+1 ∈ N with

d(T nr+1zr+1, zr) < εr+1.

So from all these we finally get that

d(T nj+nj−1+···+ni+1zj, zi) < ε/2 (7)

whenever i < j. Since A is compact we have for some pair i < j, d(zi, zj) < ε/2, and

this together with (7) gives

d(T nzj, zj) < ε

for n = nj + nj−1 + · · ·+ ni+1. Hence claim is proved, hence proposition.

Definition 4.1.5. Upper semi continuous function: A function f : X → R∪{−∞,∞}
is said to be upper semi continuous at x0 ∈ X if for every ε > 0, there exists open

neighborhood U of x0 such that f(x) ≤ f(x0) + ε ∀x ∈ U.
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proposition 2. Under the hypotheses of proposition 1 we can find a point x ∈ A

which is recurrent for (X,T ).

Proof Let F (x) = infn∈N d(T nx, x). We will check that F (x) is upper semi continu-

ous:

Let U be an open neighborhood around x0. Take a sequence of points {xn} which

converges to x0. Now because the transformations T i are continuous so we can say

{T nxn} → {T nx0}. From the real analysis we can say that d(T nxn, xn)→ d(T nx0, x0)

hence ,

|d(T nxn, xn)− d(T nx0, x0)| < ε ∀n ≥ N.

From here we conclude that

|d(T nxn, xn)| − |d(T nx0, x0)| < ε.

From here ,

d(T nxn, xn) < d(T nx0, x0) + ε.

Taking inf on both sides,

inf(d(T nxn, xn)) < inf(d(T nx0, x0)) + ε.

Hence we proved that F (x) is upper semi continuous.

Now from the proposition 1 we conclude that F (x) is not bounded from below on A.

Take x0 ∈ A be a point of continuity when F is restricted to A. Assume that F (x0) >

0.Then F (x) > δ > 0 in an open subset V of A. Now because A is homogeneous so

for some finite set of transformations Si which commute with T , we will get

A ⊂ ∪Ni=1S
−1
i V .

Now take η > 0 be such that d(x1, x2) < η implies d(Six1, Six2) < δ for all Si. Then

on each S−1i V, F (x) ≥ η. Since F is not bounded from below on A we must have

F (x0) = 0. Hence x is recurrent point for (X,T ).

Theorem 7. Let X be a compact metric space and T1, T2, · · · , Tp commuting home-

omorphisms of X. Then there exists a point x ∈ X and a sequence nk → ∞ with

T nki x→ x simultaneously for i = 1, 2, · · · , p.

22



Proof Let G be the group generated by T1, T2, · · · , Tp. Because as given in statement

that T1, T2, · · · , Tp are commuting homeomorphisms so by the definition of homoge-

neous subset , if necessary we can suppose without loss of generality that (X,G) is

a homogeneous system.Now we will proceed with induction. The case p = 1 follows

from proposition (1) of this chapter.Now by the induction hypothesis assume the the-

orem is true for (p− 1) transformations and suppose T1, T2, · · · , Tp are p commuting

homeomorphisms . Now form the p-fold product

X(p) = X ×X × · · · ×X

and let 4(p) denote the diagonal consisting of p− tuples (x, · · · , x). Let

T = T1 × T2 × · · · × Tp

on X(p). Note that G acts X(p) by Ti × Ti × · · ·Ti and that 4(p) is a homogeneous

subset of (X(p), T ).

Claim: A = 4(p) satisfies the hypothesis of the proposition 1 with respect to T.

Proof: let’s take Ri = TiT
−1
p i = 1, 2, · · · , p− 1. and suppose that Rnk

i x→ x for

i = 1, 2, · · · , p− 1. For any ε > 0 and appropriate n we will have

d(T n1 × · · · × T np Z∗, x∗) < ε.

with

Z∗ = (T−np x, T−np x, · · · , T−np x).

x∗ = (x, · · · , x).

Hence A = 4(p) satisfies the hypothesis of proposition (1) of this chapter; so by

proposition (1) we conclude that the system (Xp, T ) and the subset 4(p) yields the

theorem .So there exists a point x ∈ X and a sequence nk → ∞ with T nki x → x

simultaneously for i = 1, 2, · · · , p. Hence we are done.

Theorem 8. Let (X,G) be a homogeneous dynamical system and T1, T2, · · · , Tp p

commuting transformations in G. If U is any nonempty open set in G , there exists

n ≥ 1 with

T n1 U ∩ T n2 ∩ · · · ∩ T np U 6= φ.

Proof By the previous theorem we can say that ,since (X,G) is homogeneous U

contains some x with T nki x→ x, i = 1, 2, · · · , p and as soon as T nki x ∈ U for all
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i we obtain an element which is common in all T n1 U, T
n
2 U, · · · , T np U. So intersection of

all these will be nonempty .Hence we are done.

Theorem 9. (Van Der Waerden.) For any finite partition N = C1 ∪ C2 ∪ · · · ∪ Cr
there is a Cj containing arithmetic progression of arbitrary finite length.

Proof let N = C1∪C2∪· · ·∪Cr be a given partition of N, and let ∧ = {1, 2, · · · , r}
and form Ω = ∧Z , the space of ∧− valued sequences. Define the shift S : Ω → Ω by

Sω(n) = ω(n+ 1). We endow Ω with a metric

d(ω, ω′) = inf{ 1

k + 1
: ω(n) = ω′(n) for |n| < k}.

Then Ω is compact and S is a homeomorphism of Ω. Let ξ ∈ Ω be defined by

ξ(n) = j ⇔ n ∈ Cj if n > 0,

ξ(n) = 1 n ≤ 0.

Let X be the set of limit points of the sequence {Snξ }n=1,2,3,···. Clearly we will have

SX = X. Now set Ti = Si for i = 1, 2, · · · , p and apply theorem 6 of this chapter to

(X,T1, T2, · · · , Tp). And according to the theorem 6 there will exists some η ∈ X with

d(T n1 η, η) <
1

2
, d(T n2 η, η) <

1

2
, · · · , d(T np η, η) <

1

2

But this means that η(0) = η(n) = η(2n) = · · · = η(pn). Finally choose m with

d(Smξ, η) < 1/(pn+ 1). We then have

Smξ(0) = Smξ(n) = Smξ(2n) = · · · = Smξ(pn).

And implies

ξ(m) = ξ(m+ n) = ξ(m+ 2n) = · · · = ξ(m+ pn).

But this says that Cξ(m) contains an arithmetic progression of length p+ 1. Hence we

are done.
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Chapter 5

Proximality, Idempotents and

Hindman’s theorem

5.1 Proximality, Idempotents and Hindman’s the-

orem

Definition 5.1.1. For the dynamical system (X,T ) ,we say a pair of points x1, x2 ∈ X
are proximal if for some sequence {nk} ∈ N

d(T nkx1, T
nkx2)→ 0

Now we will illustrate this notion by taking X = ∧Z, the space of all ∧ - valued

sequences.And T be the shift transformation on X.

T : X → X

defined as

T (ω(n)) = ω(n+ 1)

we adopt a metric on X:

d(ω, ω′) = inf{ 1

k + 1
: ω(n) = ω′(n)for|n| ≤ k}

so that two sequences are close if they agree on a large interval centered about 0.We

will say that two sequences ω1, ω2 ∈ X are proximal if and only if there are arbitrary

long interval (nk, nk + lk) ⊂ N with
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ω1(n) = ω2(n) n ∈ ∪(nk, nk + lk)

Definition 5.1.2. A subset H ⊂ N is called an IP-sequence if there exists a sequence

p1, p2, p3, · · · , pn, · · · of elements in H such that H consists of all finite sums

{pi1 + pi2 + · · · pin , i1 < i2 < · · · < in, n = 1, 2, 3, · · · }

5.1.1 An IP-sequence is an approximation to a semigroup.

Proof Let p1, p2, p3 ∈ H where H is an IP-sequence.

we need to show that :

p1 + (p2 + p3) = (p1 + p2) + p3

consider the left hand side : (p2 + p3) will be in H because H is an IP-sequence. so

now p1 + (p2 + p3) that will again be in H, because H is an IP-sequence.

Similarly (p1 + p2) + p3 will be in H.

Hence

p1 + (p2 + p3) = (p1 + p2) + p3.

Here IP refers for the ”Idempotence”. They also stands for ”Infinite-dimensional

parallelepiped” which gives another description of IP- sets.

5.1.2 Infinite Dimensional Parallelepiped:

Definition 5.1.3. set of sums {pi1 + pi2 + · · · pin , i1 < i2 < · · · < in, n =

1, 2, 3, · · · } together with 0 form an infinite dimensional parallelepiped:

{0, p1} ∪ {p2, p2 + p1} ∪ {p3, p3 + p1} ∪ {p3 + p2 + p1} ∪ · · ·

5.1.3 An analysis of the dynamical system (X,T):

Let XX denotes the set of all mappings continuous or not from X to X.

Claim: XX is compact in product topology.
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Proof We will show that XX is homeomorphic to direct product of |X| copies of

X.That means there is a homeomorphism :

α : XX →
∏
i∈X

X

.

we will show that this is a homeomorphism.

• α is continuous.

consider

α : XX →
∏
i∈X

X

given by

f 7→ (f(a1), f(a2), f(a3), · · · )

take (XX , τ) where τ is the induced function topology on XX .Where

Sx1,x2,··· ,y1,y2,··· = {f : f(xi) = yi}

is a basis foe the topology on XX and is both open and closed.

so α will be continuous because

α−1(f(a1), f(a2), · · · ) = f

and this f is in the basis of the topology. Hence it is open.Hence α is continuous.

• Now we will show that α−1 is continuous.

take

α−1 :
∏
i∈X

X → XX

given by

(yi)i∈X 7→ g

where

g : X 7→ X
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define as

xi 7→ yi

and g are in the basis. Hence g−1 will be open. Hence α−1 is open.

Hence α :
∏

i∈X X → XX is a homeomorphism.Hence XX is compact(by Ty-

chonoff theorem).

Claim: XX forms a semigroup.

Proof take f1, f2, f3 ∈ XX note that f1 ◦ (f2 ◦ f3) : X 7→ X . similarly (f1 ◦ f2) ◦ f3 :

X 7→ X. Hence

(f1 ◦ f2) ◦ f3 = f1 ◦ (f2 ◦ f3)

Hence XX forms a semigroup.

Claim: The one sided multiplication

ψf0 : XX → XX

given by

f 7→ ff0

is continuous for any f0.

Proof consider

ψ−1f0 (Sx,y) = {f ∈ XX : ψf0(f) ∈ Sx,y}

.

= {f ∈ XX : ff0 ∈ Sx,y}

.

= {f ∈ XX : ff0(x) = y}
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.

= S(f0(x),y)

and this is open.Hence ψf0 : XX → XX is a continuous map.

Claim: The left multiplication

φf0 : XX → XX

given by

f 7→ f0f

is continuous if f0 is continuous.

Proof consider

φ−1f0 (Sx,y) = {f ∈ XX : φf0(f) ∈ S(x,y)}

.

= {f ∈ XX : f0 ◦ f ∈ S(x,y)}

.

= {f ∈ XX : f0 ◦ f(x) = y}

.

= {f ∈ XX : f0(f(x)) = y}

take U to be open neighbourhood of y in X then

= {f ∈ XX : f0(f(x)) ∈ U}

.

= {f ∈ XX : f(x) ∈ f−10 (U)}

but given that f0 is continuous hence f−10 (U) is open.Hence

{f ∈ XX : f(x) ∈ f−1(U)}

is open.Hence φf0 is continuous.
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• Now take E = cl{T n : n ∈ Z} ⊆ XX .

we say f ∈ E if and only if for all x1, x2, · · · , xs ∈ X, ε > 0,∃n ∈ N such that

ρ(f(xi), T
n(xi)) < ε 1 ≤ i ≤ s.

E is a closed subset of a compact XX space , Hence E is compact.

Claim: E is closed under composition.

Proof Set f, g ∈ E. We need to show that fg ∈ E
for some n ∈ N,

ρ(f(g(xi)), T
n(g(xi)) <

ε

2
1 ≤ i ≤ s

.∃δ > 0 so that ρ(x, y) < λ =⇒ ρ(T nx, T ny) < ε
2

for some m ∈ Z,

ρ(g(xi), T
m(xi) < δ 1 ≤ i ≤ s

. Hence

ρ(T n(g(xi)), T
nTm(xi) <

ε

2

and so ρ(fg(xi), T
n+m(xi) < ε. Hence fg ∈ E.

• E is called the enveloping semigroup of (X,T ). E is a compact semigroup for

which multiplication on one side is continuous.

lemma 2. If E is a compact semigroup for which one-sided multiplication x 7→ xx0

is continuous, then E contains an idempotent, i.e., an element u with u2 = u.

Proof Let A denote the family of compact semigroups A ⊆ E. A 6= φ as E ∈ A. Let

A be the minimal subset of E satisfying (i)AA ⊂ A (ii)A is compact. The existence

of such a minimal set A is given by Zorn’s lemma.(If C ⊆ A is a chain then ∩C ∈ A.

As all A ∈ C are compact hence ∩C 6= φ .)

Take u ∈ A then Au is compact because given that right multiplication is continuous

.So AuAu ⊂ Au. But we have assumed that A is minimal so, Au = A. In particular

for some v ∈ A we will have vu = u.Take A′ = {v ∈ A|vu = u}. By one sided

continuity A′ is closed , and clearly A′A′ ⊂ A′. So A′ = A whence u2 = u.

lemma 3. If E be the enveloping semigroup of a dynamical system(X,T ) and u ∈ E
is an idempotent, then for every point x ∈ X, x and ux will be proximal.
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Proof As in the discussion above for the topology on XX if u ∈ E and ε > 0

and x1, x2, x3, · · · , xm are points of X, then there is n such that d(T nxi, uxi) < ε for

i = 1, 2, ...,m . In particular we can find n with

d(T nx, ux) < ε

and because multiplication from the left is continuous in an enveloping semigroup

so,we will have

d(T nux, u2x) < ε

But we know from the above lemma that u2 = u, u2x = ux so we get

d(T nux, ux) < ε

from (i) and (ii) above we have

d(T nx, T nux) < 2ε.

Hence x and ux will be proximal.

proposition 3. Let (X,T ) be a dynamical system, x ∈ X, and let Z be the set of

limit points of the forward orbit {T nx}n∈N. If Y is any minimal set in Z, then there

is a point y ∈ Y such that x and y are proximal.

Proof From the definitions of E and Z we see that Ex = Z. Let F = {s ∈ E|sx ∈
Y }, then Fx = Y. F will be closed. and since EF ⊂ F, F 2 ⊂ F. By lemma 2, F

contains an idempotent u. So ux ∈ Y and proposition follows from the lemma 3 .

5.1.4 Hindman’s Theorem

We now consider the setup:

• ∧ = {1, 2, · · · , r} finite set.

• Ω = ∧Z = space of ∧− valued sequences.

• Ω is endowed with the metric for which it is compact.

31



• The transformation :

S : Ω 7→ Ω.

defined as

Sω(n) = ω(n+ 1).

(Ω, S) be a dynamical system.

• we wish to characterize the points of Ω which belongs to minimal sets for the

system (Ω, S).

• we will define block as a finite ordered sequence of elements of ∧. Denote as:

b = b(1)b(2) · · · b(l) ∈ ∧l.

whose length is l. b is said to occur in b′ at (t+ 1) if

b(i) = b′(i+ 1) 1 ≤ i ≤ |b|

|b| is the length of b.

• Ω0 is an infinite sequence in Ω.

proposition 4. Let ω0 ∈ Ω. ω0 belongs to the minimal set of (Ω, S) if and only if it

has the following property : If b is a block in ω0 then ∃ a length L = L(b) such that

b occurs in Ω0 provided the length of b′ is atleast L.

Proof Let X be orbit closure of ω0. i.e. X = {Snω0} ⊂ Ω.

⇒ Suppose ω0 ∈ X and X is a minimal set.

⇔ if ξ ∈ X then ω0 ∈ {Snξ}
⇔ d(Siξ, ω0) < ε

⇔ for any word b occurring in ω0, the word occurs in ξ.

But since ξ ∈ {Snω0}, any word b′ which occurrs in ξ also occurs in ω0. Hence any

word b′ of length L(b) that occurs in ξ has the word b occurring in it.

⇐ Now we will prove the other direction, we are using lemma 1 of chapter 4, here

with G = {Sn}. Suppose b occurs in ω0 at place (t+ 1). Choose ε > 0 so that if ω ∈ Ω

and d(ω, ω0) < ε then b occurs in ω at place (t+ 1). By lemma 1 of chapter 4, ∃ some

sequence of powers of S take S, S2, S3, · · · , SL has the property that for any ω ∈ X
some d(Siω, ω0) < ε. Hence X is minimal.
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Theorem 10. {Hindman’s Theorem} For any finite partition N = C1 ∪C2 ∪ · · · ∪Cr
there is some Cj containing a IP-set.

Proof Consider N = C1 ∪ C2 ∪ · · · ∪ Cr and form Ω = ∧Z (space of ∧− sequences )

where ∧ = {1, 2, · · · , r}. Define ω1 by

ω1(n) =

j if n > 0 and n ∈ Cj
1 if n ≤ 0

now by the proposition 2 of this chapter there is a point ω0 ∈ Ω which is proximal to

ω1 such that ω0 ∈ minimal set of (Ω, S). Let ω0(0) = j0. We shall show that the set

Cj0 contains an IP-set.

since ω0 and ω1 are proximal so from the discussion from the begining of this section

we say that there are arbitrary large blocks occur in both ω0 and ω1 at identical

places.Now we will use the condition of proposition 3 which is valid for ω0. Begin with

the block b0 = {j0}. b0 occurs in any block of length L(b0) in ω0 and we can find such a

block that occurs at same positive position in ω1 and ω0. Let p1 be that simultaneous

position of b0 in ω0 and ω1 in two such blocks. Now consider the block

b1 = ω0(0)ω0(1) · · ·ω0(p1).

any sufficiently long block in ω0 has b1 occurring in it and can find such a block in ω1

and ω0 at the same position. Let p2 > 0 be such position. Then from these we will

have

ω1(p2)ω1(p2 + 1) · · ·ω1(p2 + p1) = ω0(p2)ω0(p2 + 1) · · ·ω0(p2 + p1).

= ω0(0)ω0(1) · · ·ω0(p1)

this gives us

ω1(p2 + p1) = ω0(p2 + p1) = ω0(p1) = j0.

ω1(p2) = ω0(p2) = j0 = ω0(0).

ω1(p1) = ω0(p1) = j0.

From here we conclude that p1, p2 and p1+p2 ∈ Cj0 .We now construct of {p1, p2, · · · , pn, · · · }
inductively. Assume that we have found p1, p2, · · · , pn such that for any pα = pi1 +
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· · ·+ pis , i1 < i2 < · · · < is ≤ n. we have ω1(pα) = ω0(pα) = j0. Form the block

bn = ω0(0)ω0(1) · · ·ω0(pα).

bn occurs in ω0 whose length is atleast L(bn) and there are such blocks which occurs

in both ω0 and ω1 at the same positive place.And let pn+1 be that positive position.

Then from here we conclude that

ω1(pn+1)ω1(pn+1 + 1) · · ·ω1(pn+1 + (p1 + · · ·+ pn))

= ω0(pn+1)ω0(pn+1 + 1) · · ·ω0(pn+1 + (p1 + · · ·+ pn))

= ω0(0)ω0(1) · · ·ω0(p1 + · · ·+ pn).

This gives

ωo(pn+1 + pα) = ω0(pn+1 + pα) = j0 = ω0(pα)

as required . We now have for any i1 < i2 < · · · < is, pi1 + pi2 + · · ·+ pi0 ∈ Cj0 .
So we are done.

5.1.5 Hindman’s theorem implies proposition 0.6

In the previous section we proved Hindman’s theorem with the help of proposition

0.6. The goal of this section is to prove the proposition 0.6 with the help of Hindman’s

theorem. We will introduce some terminology here:

• F =set of finite subsets of N. α, β, · · · are elements of F. Here α+ β denotes the

union of α and β when α and β are disjoint.

An IP- system of integers is a set {nα} that satisfies

nα+β = nα + nβ.

While an IP- system of commuting transformations is a set Tα indexed by α ∈ F

and satisfying

Tα+β = TαTβ.

•
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Definition 5.1.4. Sub IP-systems: Let us say that {n̂α} is a sub IP-system of

{nα}, determined by {αj}j∈N if α′js are disjoint and

n̂j = nαj j ∈ N.

• Consider F as directed set with partial order:

α < β ⇔ maxα < max β.

If {xα}α∈F ⊂ X a metric space we write

limxα = x.

If {xα}(F,<) converges to x as a net i.e. to any ε > 0 there is some α0 such that

for all α0 < α

d(xα, x) < ε.

We will state this proposition which will be helpful in provin the next lemma:

proposition 5. If {xα}α∈F ⊂ X a compact metric space then there is a sub IP-net

{x̂α}α∈F ⊂ X that converges.

lemma 4. If {Tα} is an IP-system of continuous mappings of a compact metric space

X, y ∈ X, there is a sub IP-system {T̂α} such that

lim T̂αy = x

exists, moreover

lim T̂αx = x.

Proof We see that first part is clear from the above proposition.Now assume that

(i) holds and that ε > 0 is given. Choose α0 so that for α > α0

d(T̂αy, x) <
ε

2
.

Because it is given that T̂α is continuous , there is a δ = δ(α) such that if

d(z, x) < δ
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then

d(T̂αz, T̂αx) <
ε

2
.

Now find β > α so that

d(T̂ βy, x) < δ.

then

d(T̂αT̂ βy, T̂αx) <
ε

2

And because T̂α is a sub IP-system so ,

d(T̂αT̂ βy, T̂αx) = d(T̂α+βy, T̂αx) <
ε

2
(i).

since α > α0, β > α hence α + β > α0 so

d(T̂α+βy, x) < ε/2 (ii)

from (i) and (ii)

d(T̂αx, x) < d(T̂αx, T̂αT̂ βy) + d(T̂α+βy, x) <
ε

2
+
ε

2

so

d(T̂αx, x) < ε.

Hence we are done.

proposition 6. Let (X,T ) denote the dynamical system and y ∈ X , let Z be the

set of limit points of the forward orbit {T n}n∈N. If M is any minimal set in Z, there

is a point y ∈ Y such that x and y are proximal.

Proof Discussion:If y ∈ X is given let M be any minimal set contained in the

positive orbit closure of y. Our goal is to construct an IP-system {nα} such that

lim d(T nαy,M) = 0 (1).

Once we have constructed the IP-system {nα} then the proof is completed by applying

lemma 4 of this chapter to obtain a sub IP-system T n̂α such that

limT n̂αy = x
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and

limT n̂αx = x (2).

Here we see that from (1), x ∈M, while by (2) x and y are proximal . So in this way

we will be done.

Now to construct {nα} so that (1) holds, let n1 satisfy

d(T n1y,M) < 1.

Having found nα, maxα ≤ m such that

d(T nαx,M) < 1/maxα (3)

use the fact TM = M to find a neighborhood U of M so that for all z ∈ U,

d(T jz,M) < 1/(m+ 1), 0 ≤ j ≤ n(1,2,··· ,m)

and then use the fact that M is in the positive orbit closure of y to find nm+1 with

T nm+1y ∈ U. this extends (3) to all α with maxα ≤ m+1, and thus by induction {nα}
is completely constructed.So by the previous lemma and by (2) x and y are proximal.
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Chapter 6

The IP version of Van Der

Waerden’s theorem

In this section we will state one lemma and theorem that will be useful for IP-version

of Van Der Wearden’s theorem:

lemma 5. Let (Tα, X) be an IP-system of continuous maps of a compact metric space

X and suppose that A ⊂ X is closed and

limTαA ⊃ A,

where we use the Hausdorff topology on closed sets.Then

inf
a∈A,α∈F

d(Tαa, a) = 0.

Now we will state a theorem which will allow us to prove the IP-version of Van

Der Waerden’s theroem.

Theorem 11. Let Sα1 , S
α
2 , · · · , Sαk be k-commuting IP-systems of homeomorphisms

of X, a compact metric space , that all commute with a group G that acts minimally

on X. If U ⊂ X is any open set , there is some α0 ∈ F such that

∩ki=1S
α0
i U 6= φ.
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6.1 IP -version of Van Der Waerden’s theorem:

Theorem 12. For any finite partition N = C1 ∪ C2 ∪ · · · ∪ Cr , there is a Cj such

that for any l = 1, 2, 3, · · · there is a number d ∈ Cj and a number e such that the

arithmetic progression e+ id, 0 ≤ i ≤ l, is contained in Cj.

Proof Let consider a finite partition {C1, C2, · · · , Cr} of N. Now introduce Ω =

∧Z ,∧ = {1, 2, · · · , r}; where ω is ∧− sequences let S denote the shift , and define

ω1(n) = j Cj,

= 1 n ≤ 0

Now according to proposition 2 of chapter 5 , we say that there is a point ω0 ∈ Ω

proximal to Ω1 and such that ω0 belongs to a minimal set M of (Ω, S). Let ω0(0) = j0;

we shall show that the set Cj0 fulfills the condition of theorem .

Now by Hindman’s theorem of chapter 5 in we recall that Cj0 contains an IP - set

{nα}. Now for any k, apply theorem 10 of this chapter to the system T inα , 1 ≤ i ≤ k

and the open set

U = {ω ∈M : ω(0) = j0},

which is non-empty .We thus find some α0 with :

∩ki=1T
inα0U 6= φ.

This gives a set of n for which ω0(n+ inα) = j0 and which intersects any sufficiently

large interval. Since ω1 is proximal to ω0 we can find a long interval along which ω0

and ω1 agree and we deduce that

ω1(n+ id) = j0

for d = nα0 ∈ Cj0 and 1 ≤ i ≤ k. this completes the proof.
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