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Abstract

The concept of shellability is an easy tool to verify whether the
corresponding simplicial complex is Cohen-Macaulay or not. This dis-
sertation aims at the detailed study of shellability and its generaliza-
tion to the nonpure case, based on the established work of Björner and
Wachs. Some of the fundamental properties of nonpure shellability are
taken into consideration.

We begin the report with a brief introduction to some of the basic
notions of commutative algebra and certain rudimentary topological
results. To each simplicial complex, we associate a quotient ring called
the Stanley-Reisner ring whose algebraic properties are firmly related
to the combinatorial properties of the simplicial complex. The study
of topological properties of shellable simplicial complex shows that it
has the homotopy type of a wedge of spheres of certain dimensions.

Along with the fundamental ideas and properties of posets, this
work also elaborate on the Möbius function, Möbius inversion and the
order complexes associated with posets. Shellability of a partially or-
dered set is studied by considering the order complex associated with it.

The method of lexicographic shellability in its general form is in-
troduced along with a detailed example of a nonpure lexicographically
shellable poset, the k-equal partition lattice. Finally, we exploit an easy
computation of Betti numbers of the k-equal partition lattice through
the study of standard tableaux of hook shape.
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Chapter 1

Introduction

Combinatorial commutative algebra is a moderately new, quickly
developing branch of mathematics. As the name infers, it lies at the
convergence of two more settled fields, commutative algebra and combi-
natorics, and as often as possible uses strategies for one field to address
issues emerging in the other. Richard Stanley was the first mathemati-
cian who introduced the application of commutative algebraic strate-
gies to crack combinatorial problems. Stanley converted the difficult
conjectures in algebraic combinatorics into statements from commuta-
tive algebra and proved them by means of homological techniques.

This dissertation aims at providing a detailed study on shellabil-
ity of simplicial complexes and spotlights on the generalization of the
same to the nonpure case. We begin the report with a brief introduc-
tion to some of the basic notions of commutative algebra and certain
rudimentary topological results. The second chapter of this report is
on Stanley-Reisner rings, where we see that to each simplicial complex
∆ on n vertices, we associated a quotient ring K[∆] of the polynomial
ring K[x1, x2, ..., xn] over a field K, called the Stanley-Reisner ring of
∆ in such a manner that the combinatorial properties of ∆ are related
with the algebraic properties of the K[∆].

At that point we went ahead to a definite study on partially ordered
sets, the tool that formalizes and generalizes the concepts of ordering
elements of a set. In the third chapter, along with the fundamental
ideas and properties of posets, we also elaborate on the Möbius func-
tion, Möbius inversion and the order complexes associated with posets.

In the last two sections of the report we build up a few of the fun-
damental properties of the idea of nonpure shellability. The report
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closes with the extension of the technique of lexicographic shellability
for posets from pure case to the general case and with a detailed sec-
tion on k-equal partition lattice, a case of a nonpure lexicographically
shellable poset.

1.1 Basics of Commutative Algebra

Here we will have a look at the essential definitions and results from
commutative algebra which will be utilized all through our investigation
in this report. All the results stated in this section can be found in
the standard texts on commutative algebra; like Atiyah-Macdonald
[1], Miller-Sturmfels [11], Herzog-Hibi [7] and Villarreal [15].

Definition 1.1.1. Let N = {0, 1, 2, . . . } and R be a commutative ring

with identity. If R has a decomposition R =
∞⊕
i=0

Ri as direct sum of

additive subgroups Ri such that RiRj ⊆ Ri+j for all i, j ≥ 0, then the
ring R is called a graded ring. The set {Ri : i ∈ N} is called the grading
and each Ri is said to be the ith homogeneous (or graded) component
of R.

The homogeneous component R0 is a subring of the graded ring
R and every Ri is an R0-module. Any element a ∈ R has an unique

expression, a =
∞∑
i=0

ai, where ai ∈ Ri and ai = 0 for all but finitely many

i ∈ N. This decomposition of each a ∈ R is known as the homogeneous
decomposition of a and each ai ∈ Ri is called the ith homogeneous (or
graded) component of a with degree i. An ideal I of R is said to be
graded if I is generated by the homogeneous elements.

Proposition 1.1.2. Let I be an ideal of the graded ring R =
∞⊕
i=0

Ri.

Then the following statements are equivalent.

1. For every a ∈ I, all its homogeneous components are in I.

2. The ideal I has a decomposition, I =
∞⊕
i=0

(I ∩Ri).

3. The ideal I is a graded ideal of R.
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Let R =
∞⊕
i=0

Ri be a graded ring. An R-module M is said to be

graded if it has a decomposition, M =
∞⊕
i=0

Mi as additive subgroups of

(M,+) such that RiMj ⊆ Mi+j for all i, j ≥ 0. Every x in M has

an unique homogeneous decomposition, x =
∞∑
i=0

xi, where xi ∈ Ri and

xi = 0 for all but finitely many i ∈ N. A submodule N of M , generated
by homogeneous elements is said to be a graded submodule of M . Let
M and M ′ be two graded R-modules. An R-module homomorphism
φ : M −→M ′ is graded if φ(Mi) ⊆M ′

i ,∀ i.

Proposition 1.1.3. Let R be a graded ring and M be a graded R-
module. Suppose N is an R-submodule of M , then the following con-
ditions are equivalent.

1. For every x ∈ N, all the homogeneous components of x belongs to
N.

2. N =
∞⊕
i=0

(N ∩Mi).

3. N is a graded submodule of M .

Theorem 1.1.4. Let R =
∞⊕
i=0

Ri be a graded ring. R is Noetherian if

and only if R0 is Noetherian and R is generated as an R0-algebra by
finitely many homogeneous elements of positive degree, that is, we have
R ' R0[x1, . . . , xn].

Theorem 1.1.5. Let R =
∞⊕
i=0

Ri be a graded Noetherian ring and M =

∞⊕
i=0

Mi be a finitely generated graded R-module. Then each Mi is finitely

generated R0-module.

Let R be a commutative ring. The Krull dimension of R, denoted
by dimR is defined as

dimR = sup
{
r : there exists a chain of length r in Spec(R)

}
.

For R-module M , the dimension, dimM is defined as

dimM = sup
{
r : there exists a r-chain of prime ideals in supp(M)

}
.
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Here, supp(M) = {P ∈ Spec(R) : MP 6= 0}. For a nonzero ring and a
nonzero R-module M , Spec(R) and supp(M) are both nonempty and
therefore both, dim(R) and dim(M) are non-negative integers or ∞.
By convention, dimension of a zero module is −1.

Let R =
∞⊕
i=0

Ri be a graded ring. Let us consider R0 to be Artinian

and R = R0[x1, . . . , xm] with deg(xi) = ei ≥ 1. Thus R0 is also Noethe-

rian and R becomes a Noetherian ring. Let M =
∞⊕
i=0

Mi be a finitely

generated graded R-module. Then M is Noetherian and each Mi is a
finitely generated R0-module. Hence, length `R0(Mi) of Mi is finite. We
associate a numerical function H

(
M,

)
, called the Hilbert function of

M , defined as H
(
M, i

)
= `R0(Mi). The Hilbert series of M is defined

as F
(
M, t

)
=
∞∑
i=0

H
(
M, i

)
ti.

Theorem 1.1.6. Let R =
∞⊕
i=0

Ri be a graded Noetherian ring such that

R = R0[x1, x2, . . . , xm], where xi ∈ Ri, ei ≥ 1 and R0 is an Artinian
ring. Suppose M =

⊕
i∈Z

Mi is a nonempty finitely generated graded

R-module. Then we have the following results.

1. The Hilbert series F
(
R, t

)
is a rational function of the form

F
(
R, t

)
=

fR(t)
m∏
i=1

(1− tei)
, fR(t) ∈ Z[t].

2. The Hilbert series of the module M is of the form

F
(
M, t

)
=

fM(t)
m∏
i=1

(1− tei)
.

Here, fM(t) ∈ Z[t, t−1] or fM(t) ∈ Z[t] if M =
∞⊕
i=0

Mi.

Remark. Let R =
∞⊕
i=0

Ri be a graded Noetherian ring with the above

mentioned properties. Let deg xi = ei = 1 for every i. Then

F(R, t) =
fR(t)

(1− tm)
and F(M, t) =

fM(t)

(1− tm)
.
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Proposition 1.1.7. Let R =
∞⊕
i=0

Ri be a graded ring such that we

have R = R0[x1, . . . , xm] with deg xi = 1 and R0 be an Artinian ring.
Let M be a nonzero finitely generated graded R-module. Then there
exists a unique polynomial PM(x) ∈ Q[x] of degree ≤ m − 1 such that
PM(i) = H

(
M, i

)
= `R0(Mi) for i � 0. (The unique polynomial

associated with the Hilbert function is called the Hilbert polynomial of
M.)

Let (R,m) be a Noetherian local ring. Let I be an ideal of R such

that
√
I = m. Clearly, R

I
is Artinian. Let M be a finitely generated

R-module. By induction on i, we prove that `R
I

(
M
IiM

)
is finite. Hence,

we get a numerical function, HS
(
M, i

)
= `R

I

(
M
IiM

)
. This numerical

function is called the Hilbert-Samuel function of M with respect to the
ideal I. We define the Hilbert-Samuel series as

χMI (t) =
∞∑
i=0

HS
(
M, i

)
ti.

The Hilbert-Samuel function is of a polynomial type and the polyno-
mial associated with it, P I

M(x) is called the Hilbert-Samuel polynomial
of M with respect to the ideal I. The degree of P I

M(x) is independent
of the choice of m-primary ideal I. Let d(M) be the degree of the
Hilbert-Samuel polynomial of M with respect to the ideal I.

Definition 1.1.8. Let (R,m) be a Noetherian local ring. For a finitely
generated nonzero R-module M , we define Chevalley dimension, δ(M)
as

δ(M) = inf{r : there exists a1, . . . , ar ∈ m with `

(
M

〈a1, ..., ar〉M

)
<∞}.

By convention, let δ(M) = −1 if M = 0.

Now we are in a position to state the dimension theorem.

Theorem 1.1.9 (Dimension theorem). Let (R,m) be a local Noetherian
ring and M be a finitely generated R-module. Then

dim(M) = d(M) = δ(M).
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Let R be a Noetherian ring and M be a nonzero finitely generated
R-module with dim(M) = d. A set of d elements a1, . . . , ad in m

such that `
( M

〈a1, . . . , ad〉M

)
<∞ is called a system of parameters. By

the dimension theorem, we conclude that every nonzero module has a
system of parameters.

Definition 1.1.10. Let M be a nonzero finitely generated R-module
and a1, . . . , ar be elements of a proper ideal of R. If ai is a nonzero

divisor of
M

〈a1, . . . , ai−1〉M
for 1 ≤ i ≤ r, then the sequence a1, . . . , ar

is called a M-regular sequence or a M-sequence of length r.

Remark. Every M -regular sequence can be extended to a system of
parameters for M .

An M -sequence {a1, . . . , ar} is said to be maximal, if {a1, . . . , ar, a}
is not an M -sequence for any a ∈ R.

Proposition 1.1.11. Let I be a proper ideal of R such that IM 6= M .
Then every maximal M-sequence of elements in I has the same number
of elements.

Definition 1.1.12. The number of elements in a maximal M -sequence
of an ideal I is called the I-depth of M , denoted as depth(I,M).

Let (R,m) be a Noetherian local ring and M be a finitely generated
R-module. The depth of the module M , depth(M) is given by the
m-depth, depth(m,M) of M .

Proposition 1.1.13. 1. Let M be a finitely generated R-module and
I be an ideal of R such that IM 6= M . Let {a1, . . . , al} be an M-
sequence in I. Then

depth

(
I,

M

〈a1, . . . , al〉M

)
= depth(I,M)− l.

2. Let (R,m) be a Noetherian local ring and M be nonzero finitely
generated R-module. Then

depth(M) ≤ min
{

dim
(R
P

)
: P ∈ Ass(M)

}
,
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where Ass(M) is the set of all associated primes of M . Therefore
we have,

depth(M) ≤ dim(M).

Definition 1.1.14. Let (R,m) be a Noetherian local ring and M be a
finitely generated R-module. Then M is said to be Cohen-Macaulay if
either M = 0 or depth(M) = dim(M) = dim

(
R
P

)
for all P ∈ Ass(M).

Proposition 1.1.15 (Depth Lemma). Let R be a Noetherian ring and
Mi, i = 1, 2, 3 be finitely generated R-modules. Suppose I is an ideal of
R such that IMi 6= Mi for i = 1, 2, 3 and there is a short exact sequence

0 −→ M1
f−→ M2

g−→ M3 −→ 0. Then one of the following inequality
holds.

1. depth(I,M1) = depth(I,M2) < depth(I,M3).

2. depth(I,M2) = depth(I,M3) ≤ depth(I,M1).

3. depth(I,M1)− 1 = depth(I,M3) < depth(I,M2).

We now associate numerical invariants, called Betti numbers, to
finitely generated modules over Noetherian local rings or finitely gen-
erated graded modules over standard polynomial rings.

Let R be a commutative ring. A complex F of R-modules is a
sequence of modules Fi and homomorphisms φi : Fi −→ Fi−1 such that
φi ◦ φi+1 = 0 for all i. Then the R-module

Hi(F) =
Ker(φi : Fi −→ Fi−1)

Im(φi+1 : Fi+1 −→ Fi)

is called the ith homology module. This measures the extent of deviation
of the complex from being exact.

Definition 1.1.16. Let R be a commutative ring and M be an R-
module. Then the complex

F : · · · −→ Fn
φn−→ Fn−1 −→ · · · −→ F1

φ1−→ F0 −→ 0

of free R-modules such that Coker(φ1) = M and F is exact except at
the 0th position. Then the complex F is called a free resolution of M
and the image Im(φi) of φi is called the ith syzygy module of M .
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If we have a free resolution F with Fn+1 = 0 and Fi 6= 0 for 0 ≤
i ≤ n, then F is said to be a finite free resolution of length n. Let

R =
∞⊕
i=0

Ri be a graded ring and M =
∞⊕
i=0

Mi be a graded R-module. A

free resolution F of M with graded homogeneous maps φi of degree 0
is called the graded free resolution. Consider a free or graded complex

F : · · · −→ Fn
φn−→ Fn−1 −→ · · · −→ F1

φ1−→ F0 −→ 0

over a polynomial ring R = K[x1, x2, . . . , xn]. If φi(Fi) is a subset of〈
X1, . . . , Xn

〉
Fi−1, then F is said to be minimal.

Theorem 1.1.17 (Hilbert syzygy theorem). Let R = K[x1, x2, . . . , xn]
be a polynomial ring. Then every finitely generated R-module has a
finite graded free resolution of the length ≤ n.

Definition 1.1.18. Let R = K[x1, x2, . . . , xn] be a polynomial ring
and the free complex

F : 0 −→ Fi
φi−→ Fi−1 −→ · · · −→ F1

φ1−→ F0 −→ 0

be a minimal free resolution of finitely generated Nn-graded module
M such that Fi =

⊕
a∈Nn

R[−a]βi,a . Then the invariant βi,a is called the

ithBetti number of M in degree a. It measures the minimum number
of generators required in degree a for any ith syzygy module of M .

The Betti numbers of an ideal I in a polynomial ringR = K[x1, .., xn]
has the information regarding the homological structure of the quotient

ring
R

I
.

1.2 Elementary Topological Results

Let ∆ be a simplicial complex on the vertex set [n] = {1, 2, . . . , n}
(simplicial complexes will be dealt in detail in the second chapter). De-
pending on the topological space associated with the simplicial com-
plex, we can characterize simplicial homology which formalizes the
number of holes of a given dimension in the simplicial complex.

Let ∆ be a simplicial complex on the vertex set [n]. Let Ci be the
free abelian group generated by the i dimensional faces of ∆, that is,
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we have, Ci =
⊕
A∈∆

dimA=i

ZA. We set Ci = 0 for i < 0 and i > dim ∆. The

group Ci is called the i-chain group of ∆ with coefficients from Z. The
chain complex C∗(∆) of ∆ over Z is of the form

C∗(∆): 0 −→ Cn
∂n−1−−−→ Cn−1 −→ · · · −→ C1

∂0−→ C0 −→ 0,

where ∂i : Ci+1 −→ Ci is a homomorphism given by

∂(A) =
i+1∑
k=1

(−1)k−1
(
A− {jk}

)
for A = {j1, . . . , ji+1} ∈ ∆. It can be verified that ∂i ◦ ∂i+1 = 0 ∀i.
The homomorphism ∂i : Ci+1 → Ci is called the boundary operator. The
elements in Ker(∂i) are called i-cycles of ∆ and elements in Im(∂i+1)
are i-boundaries of ∆. As ∂i ◦ ∂i+1 = 0 ∀i, we have Im(∂i+1) ⊂ Ker(∂i).
The ith homology group Hi(∆) of the simplicial complex ∆ is defined
as the quotient group

Hi(∆) =
Ker(∂i−1 : Ci −→ Ci−1)

Im(∂i : Ci+1 −→ Ci)
.

Remark. The rank of ith homology group of the simplicial complex
∆ gives the measure of the number of i-dimensional holes in ∆. This
number is known as the ith Betti number of ∆.

Proposition 1.2.1. 1. Let ∆ be a simplicial complex and Hi(∆) be
the ith homological group of ∆. Then Hi(∆) = 0 for i < 0 and
i > dim(∆).

2. Suppose the simplicial complex ∆ is connected. Then H0(∆) ∼= Z.

Definition 1.2.2. Let ∆ be a simplicial complex of dimension d − 1
on the vertex set [n]. Let fi be the number of i-dimensional faces of
∆. Then the Euler characteristics χ(∆) of ∆ is defined as

χ(∆) =
d−1∑
i=0

(−1)ifi.

9



Theorem 1.2.3 (Euler-Poincaré Theorem). For a simplicial complex
∆ of dimension d− 1,

χ(∆) =
d−1∑
i=0

(−1)iβi(∆).

For a simplicial complex ∆, we define a reduced chain complex with
coefficients from Z as the following chain complex (with coefficients
from Z)

C̃∗(∆): 0 −→ Cn
∂n−1−−−→ Cn−1 −→ · · · −→ C1

∂0−→ C0
ε−→ C−1 −→ 0,

where C−1 = Z and ε : C0 −→ C−1 is defined as ε
(∑

i

ai{i}
)

=
∑
i

ai.

The ithreduced homology group of the simplicial complex is defined as
H̃i(∆) = Hi(∆), if i ≥ 1 and rank

(
H̃0(∆)

)
= rank

(
H0(∆)

)
− 1.

Given a simplicial complex ∆ and a chain complex

C∗(∆): 0 −→ Cn
∂n−1−−−→ Cn−1 −→ · · · −→ C1

∂0−→ C0 −→ 0,

with coefficients from Z, we define cochains as Ck = HomZ

(
Ck,Z

)
. The

map δn : Cn−1 −→ Cn is called a coboundary map and is given by

δn(φ)

( ∑
dimFi=n

niFi

)
=

∑
dimFi=n

niδ(φ)(Fi),

where φ ∈ Cn−1 and Fi ∈ ∆. Hence we have δ(φ)(F ) = φ(∂F ) for any
F ∈ ∆. Since ∂i ◦ ∂i+1 = 0, we have δi+1 ◦ δi = 0, ∀i. Thus we have,
Im(δi) ⊆ Ker(δi+1). The ith cohomology group of ∆ is defined as the
quotient

H̃i
(
∆, Z

)
=

Ker(δi+1)

Im(δi)
.

Theorem 1.2.4. If H̃k

(
∆, Z

)
is a free abelian group, then

H̃k

(
∆, Z

) ∼= H̃k
(
∆, Z

)
.

Now, we give a brief introduction to homological theories for the
topological spaces. The following results are taken from Croom[5]. For
more details on algebraic topology, we refer to Bredon[3], Rotman[12]
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and Satya Deo[6]. Let X be a topological space and A be a subspace
of X. Let H be a function such that for each i ∈ Z, Hi(X,A) is an
abelian group, called the i-dimensional relative homology group of X
modulo A. For A = ∅ the group Hi(X, ∅) is the i-homology group
Hi(X). Let (X,A) and (Y,B) be two pairs and f : X −→ Y be an
admissible map with f(A) ⊂ B. We define a map ∗ such that for each
i ∈ Z, it determines a homomorphism

f ∗i : Hi(X,A) −→ Hi(Y,B),

called the homomorphism induced by f in dimension i. To each (X,A)
and i ∈ Z, the function ∂ assigns a homomorphism

∂ : Hi(X,A) −→ Hi−1(A),

called the boundary operator. The homology theory consists of the
functions H, ∗ and ∂ as defined above and they satisfies the following
axioms, called the Eilenberg-Steenrod Axioms.

1. (The Identity Axiom) If ι : (X,A) −→ (X,A) is the identity map,
then the induced homomorphism ι∗ : Hi(X,A) −→ Hi(X,A) is
the identity isomorphism for each i ∈ Z.

2. (The Composition Axiom) If the map f : (X,A) −→ (Y,B) and
g : (Y,B) −→ (Z,C) are admissible maps, then

(g ◦ f)∗i = g∗i ◦ f ∗i : Hi(X,A) −→ Hi(Z,C)

for each i ∈ Z.

3. (The Commutativity Axiom) If f : (X,A) −→ (Y,B) is an admis-
sible map and g : A −→ B is the restriction of f , then for each
i ∈ Z, the following diagram commutes.

Hi(X,A) Hi(Y,B)

Hi−1(A) Hi−1(B)

f∗i

∂ ∂

g∗i

4. (The Exactness Axiom) If ι : A −→ X and κ : (X, ∅) −→ (X,A)
are inclusion maps, then the homology sequence

· · · → Hp(A)
ι∗−→ Hp(X)

κ∗−→ Hp(X,A)
∂−→ Hp−1(A)→ . . .

is exact.
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5. (The Homotopy Axiom) If the maps f, g : (X,A) −→ (Y,B) are
homotopic, then the induced homomorphisms f ∗i and g∗i are equal
for each i ∈ Z.

6. (The Excision Axiom) If U is an open subset of X with U ⊂ A,
then the inclusion map e : (X − U,A− U) −→ (X,A) induces an
isomorphism

e∗i : Hi(X − U,A− U) −→ Hi(X,A)

for each i ∈ Z. The map e is called the excision of U .

7. (The Dimension Axiom) If X is a space with a single point, then
for each nonzero value of i,

Hi(X) = {0}.

The algebraic invariants, such as; homology or cohomology groups,
of the topological spaces can be computed using an algebraic tool
known as the Mayer-Vietoris sequence. The strategy of this tool is to
partition the entire space into subspaces whose homology or cohomol-
ogy groups can be easily computed. We can implement Mayer-Vietoris
sequence in all the homology theories that satisfies the Eilenberg-Steenrod
Axioms.

Theorem 1.2.5. Let X be a topological space and suppose U and V are
subspaces of X, whose interiors may not be disjoint such that U ∪V =
X. Then there exists a long exact sequence

· · · → Hi(U∩V )→ Hi(U)⊕Hi(V )→ Hi(U∪V )
δ−→ Hi−1(U∩V )→ . . .

Example 1.2.6. Let us consider X = S1 and compute the homology
group of S1 by the application of Mayer-Vietoris sequence. Let us
partition the space S1 as given in the diagram (Figure 1).

Consider the Meyer-Vietoris sequence

· · · Hi−1(U)⊕Hi−1(V ) Hi−1(U ∩ V )

Hi(S1) Hi(U)⊕Hi(V ) Hi(U ∩ V )

Hi+1(S1) Hi+1(U)⊕Hi+1(V ) · · ·

←→ ←→

←

→

δ

←→ ←→

←

→

δ

←→ ←→

12



Along with the exactness property of the Mayer-Vietoris sequence
and the fact that U and V are contractible and U ∩ V is a disjoint
union of two contractible spaces, we have Hi(S1) = 0 for all i > 1. The
homology group H0(U ∩ V ) w Z ⊕ Z and H0(U) ⊕ H0(V ) w Z ⊕ Z.
Therefore the Mayer-Vietoris sequence reduces to the sequence

0 −→ H1(S1) −→ Z⊕ Z
α−→ Z⊕ Z −→ H0(S1) −→ 0

where α : Z ⊕ Z −→ Z ⊕ Z is defined by (a, b) 7→ (a + b, a + b). We
have that the homology groups H1(S1) and H0(S1) are isomorphic
to the Ker(α) and Coker(α) respectively. For the map α, Ker(α) ={

(a,−a) : a ∈ Z
}
w Z and Coker(α) = Z⊕Z

Im(α)
w Z. Thus we have

Hi(S1,Z) =

{
Z if i = 0, 1,

0 if otherwise.

Remark. If the topological space X is the wedge of two spaces X1 and
X2 then we have

Hi(X) ∼= Hi(X1)⊕Hi(X2) for i ≥ 1.

13
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Chapter 2

Stanley-Reisner Rings

This chapter deals with a finite simplicial complex (a combinato-
rial object), to which one can associate an algebraic structure called
Stanley-Reisner ring. Further, we study relationship between combi-
natorial invariants of simplicial complexes (such as f -vectors) and al-
gebraic invariants of the corresponding Stanley-Reisner rings (such as
h-vectors). We also emphasis upon a special class of simplicial com-
plexes called pure shellable complexes and study their properties.

2.1 Simplicial Complexes

We shall start with recalling basic definitions and properties of sim-
plicial complexes.

Definition 2.1.1. Let V = [n] = {1, 2, . . . , n} and ∆ be a subset of
the powerset P([n]) of [n]. We say that ∆ is a simplicial complex on
the vertex set V if whenever F ∈ ∆ and G ⊆ F , then G ∈ ∆. In
other words, a simplicial complex ∆ on the vertex set [n] is a subset of
P([n]), which is closed under taking subsets.

Any F ∈ ∆ is called a face of ∆ and its dimension is given by
dimF = |F | − 1. A face with dimension i is said to be an i-face. The
dimension of a simplicial complex ∆ is given by

dim ∆ = max{dimF : F ∈ ∆}.

The maximal faces of ∆ under inclusion are called facets of ∆. A
simplicial complex ∆ is determined by its facets. If F1, F2, . . . , Fr are
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facets of ∆, we say that the simplicial complex ∆ is generated by the
facets F1, F2, . . . , Fr and we write ∆ = 〈F1, F2, . . . , Fr〉. The simplicial
complex generated by a single facet of dimension d is called a d-simplex.

Example 2.1.2. Let V = [4] be a vertex set. Consider the simplicial
complex ∆ =

{
{1}, {2}, {3}, {4}, {1, 2}, {1, 3}

}
. Then facets of ∆ are

given by {4}, {1, 2}, {1, 3}. Hence, ∆ =
〈
{4}, {1, 2}, {1, 3}

〉
. Clearly,

dim ∆ = 1.

Example 2.1.3. Let V = [5] be a vertex set. Consider the simplicial
complex ∆,{
{1}, {2}, {3}, {4}, {5}, {1, 2}, {1, 3}, {2, 3}, {3, 4}, {3, 5}, {4, 5}, {1, 2, 3}

}
.

The facets of ∆ are given by {1, 2, 3}, {3, 4}, {3, 5}, {4, 5}. Hence, we
can write ∆ =

〈
{1, 2, 3}, {3, 4}, {3, 5}, {4, 5}

〉
and dim ∆ = 2.

For any non-empty simplicial complex ∆, the emptyset ∅ ∈ ∆ is a
face of ∆ with dimension −1. The 0-dimensional faces of ∆ are called
vertices and 1-dimensional faces are called the edges of ∆.

Remark. Finite simplicial complexes can be conveniently represented
by diagrams. In fact, simplicial complex in Example 2.1.2 is represented
by the following diagram (Figure 1).

2

1

3

4

Figure 1

Similarly, the simplicial complex in Example 2.1.3 is represented by
the diagram (Figure 2).
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1

3

4

5

Figure 2

To every finite simplicial complex ∆, one can associate a topolog-
ical space, called its geometric realization |∆|. If X is a topological
space and suppose there exists a simplicial complex ∆ such that X is
homeomorphic to |∆|, then we say that X is a triangulable space and
∆ is a triangulation of X.

Example 2.1.4. Let ∆ =
{
∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}

}
be a

simplicial complex on the vertex set [3]. Then ∆ is represented by a
triangle as shown in the following diagram (Figure 3).

2

1

3

Figure 3

Clearly, simplicial complex ∆ gives a triangulation of the unit circle
S1 = {z ∈ C : | z |= 1}.

2.2 Combinatorial Invariants

Let ∆ be an arbitrary simplicial complex on a (finite) vertex set
V with dimension d − 1. Let fi be the number of i-faces in ∆. For a
non-empty simplicial complex ∆, the empty face ∅ ∈ ∆. Thus, we have
f−1 = 1. Also, f0 = |V |. Consider the d-tuple f(∆) = (f0, f1, . . . , fd−1).
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The d-tuple f(∆) is called the f-vector of ∆. This is an important
combinatorial invariant of ∆. We illustrate f-vector of a simplicial
complex in the following example.

Example 2.2.1. Consider a simplicial complex ∆ as given in the di-
agram (Figure 4). Clearly, f−1 = 1, f0 = 5, f1 = 6, f2 = 1 and
∆ is a simplicial complex of dim 2. Thus f -vector of ∆ is given by
f(∆) = (5, 6, 1).

Figure 4

Another important invariant associated to a finite simplicial com-
plex is its Euler characteristics.

Definition 2.2.2. Let ∆ be a finite simplicial complex on a vertex set
V . Let f(∆) = (f0, f1, . . . , fd−1) be the f -vector of ∆. Then the Euler
characteristics χ(∆) of ∆ is given by

χ(∆) =
d−1∑
i=0

(−1)ifi.

Also, the reduced Euler characteristic χ̃(∆) of ∆ is given by

χ̃(∆) =
d−1∑
i=−1

(−1)ifi = χ(∆) − 1.

A characterization of f -vector of a (finite) simplicial complex was
obtained by Joseph Kruskal[10] and Gyula Katona[8], independently.
We shall state the result of Kruskal and Katona without proof. In order
to state this theorem, we first recall the notion of Macaulay expansion
of a positive integer.
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Lemma 2.2.3. Each positive integer α has a unique expansion

α =

(
αi
i

)
+

(
αi−1

i− 1

)
+ · · ·+

(
αk
k

)
,

where i is a positive integer with αi > αi−1 > · · · > αk ≥ k ≥ 1. This
decomposition is called the Macaulay expansion of α.

Example 2.2.4. Consider α = 25 and i = 3. The greatest integer in
the required form lesser than or equal to 25 is 20 =

(
6
3

)
. The largest

integer of the form
(
α2

2

)
smaller than or equal to 5 = 25−

(
6
3

)
is 3 =

(
3
2

)
.

The largest integer of the form
(
α1

1

)
lesser than or equal to 2 = 25 −(

6
3

)
−
(

3
2

)
is 2 =

(
2
1

)
. Hence the Macaulay expansion of 25 with respect

to 3 is given by

25 =

(
6

3

)
+

(
3

2

)
+

(
2

1

)
.

Definition 2.2.5. Let α =
(
αi

i

)
+
(
αi−1

i−1

)
+ · · ·+

(
αk

k

)
be the Macaulay

expansion of α with respect to i. Then we define the symbol α〈i〉 and
α(i) by

α〈i〉 =

(
αi + 1

i+ 1

)
+

(
αi−1 + 1

i

)
+ · · ·+

(
αk + 1

k + 1

)
,

α(i) =

(
αi
i+ 1

)
+

(
αi−1

i

)
+ · · ·+

(
αk
k + 1

)
.

As in Example 2.2.4., we have α = 25 =
(

6
3

)
+
(

3
2

)
+
(

2
1

)
. Therefore,

25〈3〉 =

(
7

4

)
+

(
4

3

)
+

(
3

2

)
= 35 + 4 + 3 = 42

and

25(3) =

(
6

4

)
+

(
3

3

)
+

(
2

2

)
= 15 + 1 + 1 = 17.

Now we are in a position to state the celebrated theorem of Kruskal-
Katona.

Theorem 2.2.6 (Kruskal-Katona Theorem). Let f = (f0, . . . , fd−1)
be a sequence of positive integers. Then the following conditions are
equivalent :
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1. There exists a simplicial complex ∆ with f(∆) = f .

2. fj+1 ≤ f
(j+1)
j for 0 ≤ j ≤ d− 2.

Example 2.2.7. Consider the simplicial complex given in Example

2.2.1. The f -vector is given as f(∆) = (5, 6, 1). Let us compute f
(1)
0

and f
(2)
1 to see whether fj+1 ≤ f

(j+1)
j for j = 0, 1. Macaulay expansion

of f0 = 5 and j = 1 is 5 =
(

5
1

)
and that of f1 = 6 and j = 2 is 6 =

(
4
2

)
.

Thus f
(1)
0 =

(
5
2

)
= 10 ≥ f1 and f

(2)
1 =

(
4
3

)
= 4 ≥ f2.

2.3 Stanley-Reisner Rings

Richard Stanley associated a commutative ring (or a K-algebra)
K[∆] to every finite simplicial complex ∆. He demonstrated that the
combinatorial properties of ∆ are intimately related to the algebraic
properties of the K-algebra K[∆].

Definition 2.3.1. Let ∆ be a simplicial complex on the vertex set
V = [n]. Let K be a field and R = K [x1, x2, . . . , xn] be the standard
polynomial ring over K. For every subset A ⊆ [n], we associate a
square-free monomial xA =

∏
i∈A

xi. The monomial ideal I∆ generated

by square-free monomials xF such that F /∈ ∆ is called the face ideal
or Stanley-Reisner ideal of the simplicial complex ∆.

The square-free monomial
∏
i∈F

xi corresponding to the minimal non-

face F of ∆ is a minimal generator for I∆. Thus,

I∆ =
〈
xF : F is minimal non-face in ∆

〉
.

The face ideal I∆ of a simplicial complex ∆ is a radical ideal. There-
fore, I∆ can be written as intersection of prime ideals.

Proposition 2.3.2. The primary decomposition of face ideal I∆ of a
simplicial complex ∆ is given by

I∆ =
⋂
F∈∆

PF

where PF is the prime ideal generated by all xi such that i /∈ F . That
is,

PF =
〈
xi : i /∈ F

〉
.
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2

3

4

5

6

1

Figure 5

Example 2.3.3. Consider a simplicial complex ∆ as given in the di-
agram (Figure 5). Clearly the Stanley-Reisner ideal I∆ of ∆ is given
by

I∆ =
〈
X1X3, X1X4, X1X5, X1X6, X2X5, X2X6, X3X6, X4X6

〉
By primary decomposition of I∆,

I∆ =
〈
X3, X4, X5, X6

〉
∩
〈
X1, X5, X6

〉
∩
〈
X1, X2, X6

〉
∩
〈
X1, X2, X3, X4

〉
.

Definition 2.3.4. Let ∆ be a finite simplicial complex on the vertex
set [n]. Let K be a field and R = K [x1, x2, . . . , xn] be the polynomial

ring over the field K. The quotient ring K[∆] =
R

I∆

=
K [x1, . . . , xn]

I∆
is called the Stanley-Reisner ring of ∆.

Proposition 2.3.5. Let ∆ be a finite simplicial complex on the vertex
set [n] and K[∆] be the corresponding Stanley-Reisner ring. The Krull
dimension of K[∆] is given by

dimK[∆] = dim ∆ + 1.

Proof. Krull dimension of the ring K[∆] is given by

dimK[∆] = sup

{
dim

(
K[x1, . . . , xn]

PF

)
: F is a facet of ∆

}
.

Let F = {i1, i2, . . . , it}. Then,
K[x1, . . . , xn]

PF
' K[xi1 , . . . , xit ] and

dim

(
K[x1, . . . , xn]

PF

)
= t = |F |. Therefore, we write

dimK[∆] = sup
{

dimF + 1: F is a facet of ∆
}
.

Hence, we get that dimK[∆] = dim ∆ + 1.
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2.4 Hilbert Series of K[∆]

Let ∆ be a finite simplicial complex on the vertex set [n]. For the
polynomial ring R = K[x1, . . . , xn] over any field K,

K[x1, . . . , xn]a =

{
cxa if a ∈ Nn, c ∈ K
0 if ai < 0 for some i,

where xa = xa11 x
a2
2 . . . xann , a = (a1, a2, . . . , an) ∈ Nn. This shows that

the polynomial ring R is Nn-graded. The face ideal I∆ of ∆ is generated

by monomials. Hence I∆ is also Nn-graded. Therefore, the quotient
R

I∆
has Nn-grading given by(

R

I∆

)
a

=
Ra(
I∆

)
a

, ∀ a ∈ Nn.

Hence, the Stanley-Reisner ring K[∆] of the simplicial complex ∆ in-
herits a natural Nn-grading.

Proposition 2.4.1. Let ∆ be a finite simplicial complex and K[∆] be
the associated Stanley-Reisner ring. Then,
(a) dimK

(
K[∆]

)
= 1 ⇐⇒ xa /∈ I∆ ⇐⇒ supp(a) ∈ ∆, where

support of a ∈ Nn is given by supp(a) = {i : ai > 0}.
(b)The (coarse) Hilbert series F

(
K[∆], t

)
of the Stanley-Reisner ring

K[∆] is given by

F
(
K[∆], t

)
=

d∑
i=0

fi−1

(
t

1− t

)i
.

Proof. (a) Let a = (a1, a2, . . . , an) ∈ Nn. Then

xa ∈ I∆ ⇐⇒ XG divides xa for some G /∈ ∆.
⇐⇒ ai ≥ 1 for i ∈ G, where G /∈ ∆.
⇐⇒ G ⊆ supp(a), where G /∈ ∆.
⇐⇒ supp(a) /∈ ∆ (as G /∈ ∆).

(b) Let t = (t1, . . . , tn) and for a ∈ Nn, ta = ta11 t
a2
2 . . . tann . Then the

(fine) Hilbert series of the Stanley-Reisner ring K[∆] can be computed
as follows.
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F
(
K[∆], t

)
=

∑
a∈Nn,

supp(a)∈∆

ta

=
∑
F ∈ ∆

( ∑
a∈Nn,

supp(a)=F

ta

)

=
∑
F∈∆

(∏
i∈F

ti
1− ti

)
.

We compute the (coarse) Hilbert series F
(
K[∆], t

)
of the Stanley-

Reisner ring K[∆] by putting ti = t, ∀ i in the (fine) Hilbert series of
K[∆]. Thus, we get

F
(
K[∆], t

)
=

∑
F∈∆

(
t

1− t

)|F |

=
d∑
i=0

( ∑
F∈∆,
|F |=i

(
t

1− t

)i)

=
d∑
i=0

fi−1

(
t

1− t

)i
= 1 + f0

(
t

1− t

)
+ f1

(
t

1− t

)2

+ · · ·+ fd−1

(
t

1− t

)d
.

For a finite simplicial complex ∆, the Hilbert function of its Stanley-
Reisner ring K[∆] can be obtained from the Hilbert series.

Proposition 2.4.2. The Hilbert function for the Stanley-Reisner ring
K[∆] of a finite simplicial complex ∆ is given by

H
(
K[∆], n

)
=

1 if n = 0
d−1∑
i=0

fi
(
n−1
i

)
if n > 0.

The Hilbert polynomial PK(∆)(n) of the Stanley-Reisner ring K[∆]
is given by
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PK(∆)(n) =
d−1∑
i=0

fi

(
n− 1

i

)
.

Clearly, PK(∆)(n) = H
(
K(∆), n

)
for n > 0. We note that for n = 0,

PK(∆)(0) =
d−1∑
i=0

(−1)ifi = χ(∆). From this we can infer that the Hilbert

function and the Hilbert polynomial of the Stanley-Reisner ring K[∆]
are the same ∀ n ≥ 0 if and only if the Euler characteristic χ(∆) = 1.

2.5 h-vector of a Simplicial Complex

Let ∆ be a finite (d−1)-dimensional simplicial complex on the vertex
set [n]. The Hilbert series of the corresponding Stanley-Reisner ring
K[∆] can be written as

F
(
K[∆], t

)
=

d∑
i=0

fi−1

(
t

1− t

)i
=
h0 + h1t+ · · ·+ hdt

d

(1− t)d
,

where hi ∈ Z. The (d + 1)-tuple h(∆) = (h0, h1, . . . , hd) is called the
h-vector of the simplicial complex ∆.

Lemma 2.5.1. Let ∆ be a (d − 1)-dimensional simplicial complex.
The f-vector and h-vector of the simplicial complex are related to each
other. This relation is given by

hj =

j∑
i=0

(−1)j−i
(
d− i
j − i

)
fi−1

(
0 ≤ j ≤ d− 1

)
,

and

fj−1 =

j∑
i=0

(
d− i
j − i

)
hi

(
0 ≤ j ≤ d

)
.

Proof. The Hilbert series of the Stanley-Reisner ring K[∆] is given by

F
(
K[∆], t

)
=
h0 + h1t+ · · ·+ hdt

d

(1− t)d
.
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By equating F
(
K[∆], t

)
=

d∑
i=0

fi−1

(
t

1− t

)i
, we get

d∑
i=0

fi−1

(
t

1− t

)i
=
h0 + h1t+ · · ·+ hdt

d

(1− t)d
. (∗)

Therefore,
d∑
j=0

hjt
j =

d∑
i=0

fi−1t
i(1− t)d−i.

On comparing the coefficients of ti, we get

hj =

j∑
i=0

(−1)j−i
(
d− i
j − i

)
fi−1.

Now in order to get fj in terms of hi we substitute t =
r

1 + r
in (*).

d∑
j=0

hj

(
r

1 + r

)j
=

d∑
i=0

fi−1

(
ri

(1 + r)d

)
.

Thus,
d∑
j=0

hjr
j(1 + r)d−j =

d∑
i=0

fi−1r
i. On comparing the coefficients

of rj, we get

fj−1 =
d∑
i=0

(
d− i
j − i

)
hi.

This completes the proof.

Corollary 2.5.2. From the relation between f-vector and h-vector of
a simplicial complex ∆ with dimension (d − 1), we get the following
identities.

h0 = 1,
h1 = f0 − d,
hd = (−1)d−1χ̃(∆) and

fd−1 =
d∑
i=0

hi.
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Recall that a graded commutative ring R with identity is Cohen-
Macaulay if its Krull dimension dim(R) is same as the depth, depth(R).
That is, R is Cohen-Macaulay if dim(R) = depth(R).

Proposition 2.5.3. Let K be an infinite field. If the Stanley-Reisner
ring K[∆] of the simplicial complex ∆ is Cohen-Macaulay then the
h-vector h(∆) = (h0, h1, . . . , hd) of ∆ satisfies the inequality

0 ≤ hi ≤
(
hi − d+ i− 1

i

)
for 0 ≤ i ≤ d.

Proof. Let the Stanley-Reisner ring K[∆] be Cohen-Macaulay. This

implies that depth
(
M, K[∆]

)
= d, where M =

∞⊕
i=1

K[∆]i. Therefore

there exists a regular sequence in M, say y1, . . . , yd with degree equals
1. We can form an exact sequence

0 −→ K[∆](−1)
y1−→ K[∆] −→ K[∆]

〈y1〉
−→ 0.

Using this exact sequence, we compute the Hilbert series of
K[∆]

〈y1〉
as

F

(
K[∆]

〈y1〉
, t

)
= (1− t) F

(
K[∆], t

)
.

On repeating this process, the Hilbert series of
K[∆]

〈y1, . . . , yd〉
is given by

F

(
K[∆]

〈y1, . . . , yd〉
, t

)
= (1− t)d F

(
K[∆], t

)
= h0 + h1t+ · · ·+ hdt

d.

Let R =
K[∆]

〈y1, . . . , yd〉
. From the above expression, we get that

hi = dimK(Ri) ≥ 0. We know that R is generated over K by n−d ele-
ments of degree 1. Recall that the number of homogeneous monomials
in x1, x2, . . . , xn of degree i is given by

(
n−1+i

i

)
. Hence, we get

0 ≤ hi = dimK

(
Ri

)
≤
(
hi − d+ i− 1

i

)
.
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Figure 6

Example 2.5.4. Consider the simplicial complex ∆ represented as in
the Figure 6. The f -vector and h-vector of this simplicial complex
is f(∆) = (5, 6, 2) and h(∆) = (1, 2,−1, 0). As h2 = −1 < 0, the
Stanley-Reisner ring associated with the given simplicial complex is
not Cohen-Macaulay.

2.6 Shellable Simplicial Complex

Let ∆ be a finite simplicial complex and K be any field. The sim-
plicial complex ∆ is Cohen-Macaulay over K if the Stanley-Reisner
ring K[∆] associated with ∆ is a Cohen-Macaulay ring. The property
of Cohen-Macaulayness depends on the characteristic of the field K.
For instance, the minimal triangulation of RPn is Cohen-Macaulay if
characteristic of the field K, char(K) is not 2. When char(K) = 2
then ∆ is not Cohen-Macaulay. We now introduce a class of simplicial
complex ∆ with the property that the associated Stanley-Reisner rings
K[∆] are Cohen-Macaulay over any field K.

Definition 2.6.1. A pure simplicial complex ∆ of dimension d− 1 is
called a shellable simplicial complex if there exists a linear ordering of
facets say F1, F2, . . . , Ft such that the subcomplex 〈F1, F2, ..., Fi−1〉

⋂
〈Fi〉

is generated by a non-empty subset of maximal proper faces of Fi with
dimension d − 2, for 2 ≤ i ≤ t. The linear ordering F1, F2, . . . , Ft is
called a shelling of ∆.

For a finite simplicial complex ∆, let us denote the subcomplex
generated by the facets F1, F2, . . . , Fi as

∆i =
〈
F1, F2, . . . , Fi

〉
.
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Theorem 2.6.2. Let ∆ be a pure simplicial complex of dimension d−1.
Let F1, F2, . . . , Ft be a linear ordering of its facets. Then the following
are equivalent:

1. ∆ is shellable.

2. The set
{
F : F ∈ ∆i and F /∈ ∆i−1

}
has a unique minimal

element. That is, in each shelling step a unique minimal face has
been introduced.

3. For all i, j; 1 ≤ j < i ≤ t, there exists some k such that 1 ≤ k < i
and some ik ∈ Fi − Fj such that Fi − Fk = {ik}.

Proof. 1. =⇒ 2. Let the facet Fi = {i1, i2, . . . , im} and the subcom-
plex ∆i−1

⋂
〈Fi〉 = 〈i1, i2, ..., ij−1, ij+1, ..., im〉 such that 1 ≤ j ≤ r ≤ m.

Therefore, we get that {i1, i2, . . . , ir} is the unique minimal element of
the set {F : F ∈ ∆i and F /∈ ∆i−1}.
2. =⇒ 3. Consider a facet G such that it is the unique mini-
mal element of the set

{
F : F ∈ ∆i and F /∈ ∆i−1

}
. Then we have

G 6⊂ Fj, ∀ j < i. Hence, ∃ ik ∈ G − Fj. Since G ⊆ Fi, we have
ik ∈ Fi − Fj. Thus there exists some k such that 1 ≤ k ≤ i − 1 and
{ik} = Fi − Fk.
3. =⇒ 1. Let F ∈ 〈Fi〉

⋂
∆i−1. Then F ⊂ Fj for some j < i. We

have ik ∈ Fi − Fj. Thus, Fi − {ik} is the maximal proper face of 〈Fi〉
and Fi − {ik} ∈ 〈Fi〉

⋂
∆i−1 such that F ∈ Fi − {ik}. Therefore by the

definition of shellability of a simplicial complex, ∆ is shellable.

Example 2.6.3. Consider the finite simplicial complexes represented
in diagrams given below (Figure 7). The first simplicial complex, (a)
is not a shellable simplicial complex. The second simplicial complex,
(b) is a pure shellable simplicial complex.

(b)(a)

Figure 7
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Proposition 2.6.4. Every shellable simplicial complex is Cohen-Macaulay
over any field.

Proof. Let us look at a brief sketch of the proof. Let ∆ be a (d − 1)-
dimensional shellable simplicial complex on vertex set [n]. Let F1, F2, .., Ft
be a shelling for ∆ and PF i

be the associated prime for each of the facets
Fi.
Recall that for any two graded ideals I1 and I2 of a polynomial ring R
there exists a short exact sequence

0 −→ R

I1 ∩ I2

−→ R

I1

⊕ R

I2

−→ R

I1 + I2

−→ 0.

If
R

I1

and
R

I2

are Cohen-Macaulay of dimension d and
R

I1 + I2

is Cohen-

Macaulay of dimension d− 1, then from the depth lemma we conclude

that
R

I1 ∩ I2

is a Cohen-Macaulay ring of dimension d. This observation

along with induction on the number of facets will be used to prove the
proposition.
If t = 1, then the Stanley-Reisner ring K[∆] is a polynomial ring
which is already Cohen-Macaulay. Now assume that the proposition

holds for t − 1. Let I =
t−1⋂
i=1

PF i
and J = PF t

. Let K be any field and

R = K[X1, . . . , Xn]. Consider the exact sequence

0 −→ R

I ∩ J
−→ R

I

⊕ R

J
−→ R

I + J
−→ 0.

Now by induction hypothesis we can see that the ring
R

I
is Cohen-

Macaulay. Since
R

J
is a polynomial ring, it is also Cohen-Macaulay.

We also prove that
R

I + J
is Cohen-Macaulay. Now by using the ob-

servation stated above, we deduce that K[∆] =
R

I ∩ J
is a Cohen-

Macaulay ring of dimension d. Hence the simplicial complex ∆ is
Cohen-Macaulay.

Consider a shellable simplicial complex ∆. Let F1, F2, . . . , Ft be
a shelling of ∆. For 2 ≤ j ≤ t, ∆j−1

⋂〈
Fj
〉

is generated by rj
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maximal proper faces of Fj. We take r1 = 0. Then, the h-vector
h(∆) = (h1, . . . , hd) is given by

hi = |{j : rj = i}|.

This is known as the Mac-Mullen characterization of h-vectors of a
pure shellable simplicial complex.

Example 2.6.5. Consider the pure shellable simplicial complex ∆ rep-
resented by the diagram (Figure 8). Let F1 = {1, 2, 3}, F2 = {1, 2, 4},
F3 = {1, 3, 4}, F4 = {2, 3, 4} be a shelling of ∆. Clearly, r1 = 0, r2 =
1, r3 = 2, r4 = 3. Therefore, hi = 1 for 0 ≤ i ≤ 3.

2

1

3

4

Figure 8
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Chapter 3

Partially Ordered Sets

This chapter introduces the notion of partially ordered set (poset)
which formalizes and generalizes the concepts of ordering or sequencing
the elements of a set. Along with various properties of a poset, the
chapter highlights Möbius function and its properties.

3.1 Basic Concepts

This section covers some of the basic definitions and properties of
partially ordered sets.

Definition 3.1.1. Let P be a finite set. Let ≤ : P × P −→ P be a
relation defined on P which satisfies the following properties.

1. For every x ∈ P, x ≤ x (Reflexivity).

2. For x, y ∈ P, x ≤ y and y ≤ x =⇒ x = y (Anti-symmetry).

3. For x, y, z ∈ P, x ≤ y and y ≤ z =⇒ x ≤ z (Transitivity).

The relation ≤ on P is called a partial ordering on P . The set P with
a partial ordering ≤, denoted as (P, ≤), is called a partially ordered
set (or simply a poset).

Example 3.1.2. Given below are some examples of posets.

1. The set of natural numbers N = {0, 1, 2, 3, . . . } with usual order-
ing is a poset.
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2. For n ∈ N, let C(n) denotes the set {0, 1, 2, . . . , n}. Then C(n) is
a poset with usual ordering of natural numbers.

3. Let n ∈ N and [n] = {1, 2, 3 . . . , n} be the set of first n positive
integers. By convention, we take [0] = ∅. We define a poset
(B(n), ≤) as the set of all subsets of [n] with an ordering ≤
defined as A ≤ B if A ⊆ B for any A,B ∈ B(n). The poset
(B(n), ≤) is called a Boolean poset.

4. Let P = N − {0} be the set of positive integers. For n ∈ P, let
D(n) be the set of all positive divisors of n. For any two elements
d1, d2 ∈ D(n), the relation ≤ is defined as d1 ≤ d2 if and only if
d1 divides d2. Hence the set D(n) along with the given relation
≤ is a poset.

5. The set (L(n, q), ≤) of all subspaces of n-dimensional vector space
Fnq over Fq ordered by inclusion is a poset.

6. For n ∈ P consider the poset
(∏

(n), ≤
)

of all partitions of
[n] with ordering ≤ defined by refinement. For example, con-
sider n = 3. Then,

∏
(3) = {123 , 12|3 , 13|2 , 23|1 , 1|2|3},

where ab|c denotes the partition
{
{a, b}, {c}

}
and a|b|c denotes{

{a}, {b}, {c}
}

.

Recall that by a partition of a finite set A we refer to a set B
of subsets of A such that all elements of B are non-empty, mutually
disjoint and union of all elements of B equals the entire set A. In other
words, B = {B1, . . . , Bt} is a partition of A, if Bi 6= ∅, Bi ∩ Bj = ∅

for i 6= j and
t⋃
i=1

Bi = A. Let B and C be two partitions of the set A.

If every block of C is contained in a block of B, then B is said to be a
refinement of the partition C.

In a poset (P, ≤), we say that x and y are comparable if either x ≤ y
or y ≤ x. Otherwise, we say that x and y are incomparable. A poset is
called a totally ordered set if every pair of elements are comparable.

Let a, b ∈ (P, ≤). If a ≤ b and a 6= b, we write a < b (or b > a).
For a, b ∈ (P, ≤) with a ≤ b, we set [a, b] = {c ∈ P : a ≤ c ≤ b}. The
subset [a, b] is called a closed interval. Also, (a, b) = {c ∈ P : a < c < b}
is called an open interval.
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Definition 3.1.3. Let (P, ≤) be a finite poset. Consider any two
elements a, b in P such that a < b. If there exists no other element c
in P such that a < c < b, then we say that b covers a. In a finite poset
(P, ≤), the cover relation is given by

Cov(P, ≤) =
{

(a, b) ∈ P × P : b covers a
}
.

It is clear that the cover relation determines the poset. Plotting
the cover relation of a finite poset gives its Hasse diagram where each
element of P is represented as a vertex and line segments are drawn
from x to y if y covers x. In a Hasse diagram, usually larger elements
are placed above the smaller elements.

Example 3.1.4. Lets have a look at the Hasse diagrams of some of
the familiar posets.

1

3

0

2

C(3)

13|212|3

123

1|2|3

23|1

∏
(3)

{1}

{1, 2}

∅

{2}

B(2)

{1}

{1, 2}{1, 3}{2, 3}

{1, 2, 3}

∅

{2} {3}

B(3)
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2

2× 3

1

3

22 × 3

22

2

2× 3

1

3

22 × 3

22

22 × 32

2× 32

32

D(12) D(36)

Figure 1

Definition 3.1.5. Let (P, ≤) be a poset. Let C be a subset of P .
If any two elements of C are comparable then C is called a chain.
Equivalently, C is called a totally ordered subset of P . Let T be a
subset of (P, ≤). If no two distinct elements of T are comparable,
then T is called an antichain.

If a chain C has n elements say a1, a2, . . . , an, then these elements
can be arranged in an increasing order; a1 < a2 < · · · < an−1 < an. In
this case, chain C is of length n− 1 = |C| − 1. The length `(P ) of the
poset P is

`(P ) = max{`(C) : C is a chain of P}.

A chain C is said to be saturated if there is no element c ∈ P − C
satisfying a < c < b for any a, b ∈ C such that C ∪ {c} is a chain.
Hence, the chain a1 < a2 < · · · < an is saturated if and only if ai covers
ai−1 for i = 2, . . . , n. If a chain C in the poset (P, ≤) is inclusion wise
maximal, then it is said to be a maximal chain.

Definition 3.1.6. If every maximal chain of a poset (P, ≤) has the
same length n, then the poset (P, ≤) is called a graded poset of rank
n. For n ≥ 1, B(n), D(n),

∏
(n) are a few examples of graded posets.

In case of a graded poset (P, ≤), there exists a unique rank function
ρ : P −→ {0, 1, 2 . . . , n} defined as follows; ρ(x) = 0 if x ∈ P is the
minimal element and for x, y ∈ P, ρ(y) = ρ(x) + 1 if y covers x. The
value of x ∈ P under the rank function is called the rank of x.
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Definition 3.1.7. Let (P, ≤) and (Q, ≤′) be two finite posets. Let
f be a bijective map from (P, ≤) to (Q, ≤′) such that f and f−1 are
order preserving, that is a ≤ b in P if and only if f(a) ≤′ f(b) in Q.
Then, f is called an order isomorphism and the poset P is said to be
isomorphic to Q, written as P w Q.

Definition 3.1.8. Let (P, ≤) and (Q, ≤′) be any two posets. Then
the direct product P ×Q of P and Q is a poset on the cartesian product
of P and Q induced by the partial ordering (a, b) ≤̌ (ã, b̃) if a ≤ ã in

P and b ≤′ b̃ in Q.

Example 3.1.9. Let (P, ≤) and (Q, ≤′) be two posets as given in the
following Hasse diagram (Figure 2).

1

3

2

P

b

a

Q

Figure 2

The direct product P ×Q of P and Q is a poset, whose Hasse diagram
(Figure 3) is given below.

(1, a)

(3, a)

(3, b)

(1, b) (2, b)

(2, a)

Figure 3

Example 3.1.10. The poset B(n) is the direct product of n-copies of
C(1). We define a function φ : B(n) −→ C(1)× · · · × C(1)︸ ︷︷ ︸

n−copies

as
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φ(A) = χA, where χA is the characteristic function of A, A ⊆ [n].
Clearly, φ is a bijection. Let A, B be two subsets in B(n) such that
A ⊆ B. Therefore, χA(i) = χB(i) for all i ∈ A and χA(i) = 0, χB(i) =
1 ∀ i ∈ B−A. Hence χA ≤ χB in C(1)× · · ·×C(1). Thus, we see that
φ is order preserving. Similarly, φ−1 is also order preserving. Hence, φ
is an order isomorphism and we have B(n) w C(1)× · · · × C(1)︸ ︷︷ ︸

n−copies

.

Example 3.1.11. If n = pe11 p
e2
2 . . . pett ; ei ≥ 1 is the prime factoriza-

tion of n, then the poset D(n) can be expressed as the direct product
C(e1)× ...× C(et). Let the function φ : D(n) −→ C(e1)× · · · × C(et)
be defined as φ(d) = (α1, α2, . . . , αt), where d ∈ D(n) is given by
d = pα1

1 p
α2
2 . . . pαt

t . Clearly, φ is bijective. Let d1, d2 ∈ D(n) with

d1 ≤ d2. If d1 = pα1
1 p

α2
2 . . . pαt

t and d2 = pβ11 p
β2
2 . . . pβtt , then d1 di-

vides d2 implies that αi ≤ βi for 1 ≤ i ≤ t. Thus we get that
in the poset C(e1) × · · · × C(et), (α1, α2, . . . , αt) ≤ (β1, β2, . . . , βt).
Hence φ is an order preserving map and so is φ−1. Therefore, we write
D(n) w C(e1)× · · · × C(et).

For a finite poset (P, ≤), an element 0̂ ∈ P is called the least
element of P if 0̂ ≤ x ∀ x ∈ P . An element 1̂ ∈ P is called the largest

element if x ≤ 1̂ ∀ x ∈ P . We can obtain another poset P̂ from the
given poset (P, ≤) by associating 0̂ and 1̂ to P . If P is the poset given

in Example 3.1.9, then the Hasse diagram of P̂ is given by

1

3

2

1̂

0̂

P̂

Figure 4
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3.2 Incidence Algebra of a Finite Poset

Given a finite poset (P, ≤), we consider a C-algebra called the in-
cidence algebra.

Definition 3.2.1. Let f be a C-valued function defined on P ×P such
that f(x, y) = 0 whenever x � y. Such a function f : P × P −→ C is
called an incidence function.

Let I(P ) be the set of all C-valued incidence functions. Then I(P )
is a C-vector space with respect to pointwise addition and pointwise
scalar multiplication defined as

(f+g)(x, y) = f(x, y)+g(x, y) and (αf)(x, y) = αf(x, y), ∀ x, y ∈ P,

where f, g ∈ I(P ) and α ∈ C.

Definition 3.2.2. The set of all incidence functions, I(P ) forms a
C-algebra with a convolution product defined as

(f ∗ g)(x, y) =
∑
x≤z≤y

f(x, y)g(z, y), ∀ f, g ∈ I(P ).

This C-algebra I(P ) is called the incidence algebra of P .

3.2.1 Properties of Incidence Algebra

The identity element of I(P) is the Kronecker delta function δ defined
as

δ(x, y) =

{
1 if x = y,

0 if x 6= y.

For f ∈ I(P ), we have (f ∗ δ)(x, y) =
∑

x≤z≤y
f(x, y)δ(z, y) = f(x, y).

This implies that f ∗ δ = f. Similarly, δ ∗ f = f.

Proposition 3.2.3. An incidence function f ∈ I(P ) is a unit in I(P)
if and only if f(x, x) 6= 0, ∀ x ∈ P .

Proof. Let f ∈ I(P ) be a unit. Then there exists a function g ∈ I(P )
such that f ∗g = g∗f = δ. Thus, (f ∗g)(x, x) = 1 or f(x, x)g(x, x) = 1.
Hence f(x, x) 6= 0, ∀ x ∈ P . Conversely, assume that f(x, x) 6= 0,
∀ x ∈ P . We shall define g recursively such that f ∗ g = δ. For any
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x ∈ P, let g(x, x) =
1

f(x, x)
. If x < y then (f ∗ g)(x, y) = 0, implies

that
f(x, x)g(x, y) +

∑
x<z≤y

f(x, z)g(z, y) = 0.

For x < z ≤ y, we have `
(
[z, y]

)
< `
(
[x, y]

)
. Thus by induction, we

may assume that g(z, y) has already been defined. If y covers x, then

g(x, y) = − f(x, y)g(y, y)

f(x, x)
.

Therefore, since f(x, x) 6= 0, we obtain

g(x, y) = − 1

f(x, x)

∑
x<z≤y

f(x, z)g(z, y).

Proposition 3.2.4. The incidence algebra I(P ) of a poset (P, ≤) is
commutative if and only if (P, ≤) is an antichain.

Proof. If (P, ≤) is an antichain, then f ∈ I(P ) implies that f(x, y) = 0
if x 6= y. Now (f ∗ g)(x, y) = 0 = (g ∗ f)(x, y) if x 6= y. For any x ∈ P,

(f ∗ g)(x, x) = f(x, x)g(x, x) = g(x, x)f(x, x) = (g ∗ f)(x, x).

Thus, f ∗ g = g ∗ f . Hence, I(P ) is commutative.
On the other hand, assume that I(P ) is commutative. Suppose the
poset (P, ≤) is not an antichain. Thus, P have distinct comparable
elements. Therefore, we can choose a pair (a, b) ∈ P × P such that b
covers a. Let

f(x, y) =

{
1 if (x, y) = (a, b),

0 otherwise,
and g(x, y) =

{
1 if x = y = b,

0 otherwise.

Now,
(f ∗ g)(a, b) = f(a, a)g(a, b) + f(a, b)g(b, b) = 1,

and
(g ∗ f)(a, b) = g(a, a)f(a, b) + g(a, b)f(b, b) = 0.

Hence f ∗ g 6= g ∗ f , a contradiction to I(P ) being commutative.
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Definition 3.2.5. Let I(P ) be the incidence algebra associated with
a finite poset (P, ≤). We define the chain function, η : P ×P −→ C as

η(x, y) =

{
1 if x < y,

0 otherwise.

We can see that ηt(x, y) = (η ∗ · · · ∗ η)︸ ︷︷ ︸
t−times

(x, y) gives the number of

chains of length t from x to y in the poset (P, ≤). Since (P, ≤) is a
finite poset, there exists a saturated chain with maximal length and
therefore ηm = 0 for some m. This proves that the chain function

η ∈ I(P ) is a nilpotent element. Thus we have (δ − η)−1 =
∞∑
t=0

ηt.

3.2.2 Möbius Inversion Formula

For an incidence algebra I(P ) associated with a finite poset (P, ≤)
we define the zeta function ζ : P × P −→ C as

ζ(x, y) =

{
1 if x ≤ y,

0 if x � y.

Clearly, ζ(x, x) 6= 0 implies that it is invertible. The inverse of the zeta
function ζ is called the Möbius function µ. That is, µ ∗ ζ = ζ ∗ µ = δ.
An recursive definition of the Möbius function is given as

µ(x, x) = 1, ∀ x ∈ P,

and
µ(x, y) = −

∑
x≤z<y

µ(x, z).

Equivalently, we can define the Möbius function as µ(x, x) = 1, ∀ x ∈ P
and µ(x, y) = −

∑
x<z≤y

µ(z, y).

Lemma 3.2.6. Suppose (P, ≤P ) and (Q, ≤Q) are finite posets.
Then for x, x′ ∈ P and y, y′ ∈ Q we have µP×Q

(
(x, y), (x′, y′)

)
=

µP (x, x′)µQ(y, y′) where, µP×Q is the Möbius function of the direct
product (P × Q, ≤), µP and µQ are the Möbius functions of P and
Q respectively.
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Proof. Let x, x′ ∈ P and y, y′ ∈ Q. Since Möbius function is the
inverse of zeta function, we have µ ∗ ζ = δ. Thus, the Möbius function
of the direct product P ×Q is given as

∑
(x,y)≤(x′,y′)

µP×Q

(
(x, y), (x′, y′)

)
=

{
1 if x = x′ and y = y′

0 otherwise. (1)

Now,
∑

(x,y)≤(x′,y′)

µP (x, x′)µQ(y, y′) =
∑

x ≤P x′

y ≤Q y′

µP (x, x′)µQ(y, y′). Thus we

get,
∑

(x,y)≤(x′,y′)

µP (x, x′)µQ(y, y′) =

( ∑
x ≤P x′

µP (x, x′)

)( ∑
y ≤ y′

µQ(y, y′)

)
.

Hence,

∑
(x,y)≤(x′,y′)

µP (x, x′)µQ(y, y′) =

{
1 if x = x′ and y = y′

0 otherwise. (2)

From (1) and (2), we get µP×Q = (µP )(µQ).

Proposition 3.2.7. Let (P, ≤) be a finite poset and f, g : P −→ C
be functions on P . Then, we have g(x) =

∑
y≤x

f(y), ∀ x ∈ P if and

only if f(x) =
∑
y≤x

g(y)µ(y, x), ∀ x ∈ P . This is known as the Möbius

inversion formula.

Proof. The incidence algebra I(P ) of the finite poset (P, ≤) acts on
the vector space of C−valued functions on P, CP = {f : P −→ C}. For

any f ∈ CP , x ∈ P and θ ∈ I(P ), we define (fθ)(x) =
∑
y≤x

f(y)θ(y, x).

We observe that (fδ)(x) =
∑
y≤x

f(y)δ(y, x) = f(x) and for θ, φ ∈ I(P ),

we need to prove that
(
(fθ)φ

)
(x) = f(θ ∗ φ). From the definition, we

can write

(
(fθ)φ

)
(x) =

∑
y≤x

(fθ)(y)φ(y, x) =
∑
y≤x

(∑
z≤y

f(z)θ(z, y)

)
φ(y, x).
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Hence, we get(
(fθ)φ

)
(x) =

∑
z≤y≤x

f(z)θ(z, y)φ(y, x) =
∑
z≤x

f(z)
∑
z≤y≤x

θ(z, y)φ(y, x).

By the definition of convolution product, we know that(
(fθ)φ

)
(x) =

∑
z≤x

f(z)(θ ∗ φ)(z, x). Hence,
(
(fθ)φ

)
(x) =

(
f(θ ∗ φ)

)
(x).

This illustrates that (f, θ) 7−→ fθ is an action of I(P ) on CP . Now,
g(x) =

∑
y≤x

f(y), ∀ x ∈ P is equivalent to g = fζ. Also, f(x) =∑
y≤x

g(y)µ(y, x), ∀ x ∈ P is equivalent to f = gµ. Therefore, the

Möbius inversion formula can be stated as g = fζ ⇐⇒ f = gµ, which
follows at once from the action of I(P ) on CP .

Remark. On computing the Möbius inversion formula of the poset
B(n) ordered by inclusion, we can observe that the inclusion-exclusion
principle is a special case of the Möbius inversion formula.

3.3 Order Complex of a Poset

To every finite poset one can associate a simplicial complex, called
the order complex of the poset.

Definition 3.3.1. Let (P, ≤) be a finite poset. A simplicial complex
∆(P ) associated with P such that the i-dimensional face of ∆(P ) is a
chain of length i in P is called an order complex.

Since subsets of a chain is also a chain, therefore ∆(P ) is indeed
a simplicial complex. Also elements of P corresponds to vertices of
∆(P ).

Example 3.3.2. Let us look at some posets and order complexes as-
sociated with them (Figure 5).

41



4

6

2

5

1 3

P

2

4

1 3

5

6

∆(P )

1

2

3

C(2)

31

2

∆
(
C(2)

)

2

4

1

3B(2)

2

4

1

3

∆
(
B(2)

)

Figure 5

In the order complex ∆(P ) of a finite poset (P, ≤), number of faces
with dimension i is equal to the number of i-chains (chains of length i)
in P .
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Proposition 3.3.3 (Hall’s Theorem). Let (P, ≤) be a finite poset and

P̂ be the poset obtained by adjoining 0̂ and 1̂ to P . Then,

µP̂ (0̂, 1̂) =

|P |∑
i=0

(−1)iCi,

where Ci is the number of i-chains from 0̂ to 1̂ in P .

Proof. Möbius function is the inverse of zeta function and hence we
have µP̂ (0̂, 1̂) = ζ−1

P̂
(0̂, 1̂). We can write ζ as δ + (ζP̂ − δ) and by using

the fact that (ζP̂−δ) = ηP̂ , we get µP̂ (0̂, 1̂) = (δ+ηP̂ )−1(0̂, 1̂). We know

that ηP̂ is nilpotent and ηi
P̂

(0̂, 1̂) gives the number of i-chains from 0̂

to 1̂, then we get

µP̂ (0̂, 1̂) =
∞∑
i=0

(−1)iηi
P̂

(0̂, 1̂) =
∞∑
i=0

(−1)iCi.

Since Ci is the number of i-chains from 0̂ to 1̂ in the poset P̂ , we
have C0 = 0, C1 = 1, C2 = |P | = f0(∆(P )) and so on. In general,

Ci+2 = fi
(
∆(P )

)
.

Thus, µP̂ (0̂, 1̂) = −1+f0(∆(P ))−f1(∆(P ))+· · ·+(−1)|P |−2f|P |−2(∆(P )).
By comparing this expression with that of reduced Euler characteristic
of ∆(P ), we get

µP̂ (0̂, 1̂) = χ̃
(
∆(P )

)
.

Definition 3.3.4. For a non-empty simplicial complex K with ∅ ∈ K,
we assign a poset F(K) of all faces of K ordered by inclusion. This
poset F(K) is called the face poset of the simplicial complex K.

Example 3.3.5. Let (P, ≤) be a poset whose Hasse diagram and order
complex ∆(P ) are given as Figure 6.
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The face poset of the order complex ∆(P ) in Figure 6 is shown in
the Hasse diagram (Figure 7).

1 32 4

12 13 23 34

123

F
(
∆(P )

)

Figure 7

Let K be a simplicial complex with f -vector (f0, f1, . . . , fd−1). The
Möbius function µ of the poset obtained by attaching 1̂ to the face
poset of K is given as

µ(x, y) =

{
(−1)`(x,y) if x ≤ y,

0 otherwise,

where `(x, y) is the length of [x, y].
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Remark. The order complex ∆
(
F
(
∆(P )

))
of the face poset F

(
∆(P )

)
of ∆(P ), gives the first Barycentric subdivision of the simplicial com-
plex ∆(P ) associated with a finite poset P .

For example, consider the poset P given in Example 3.3.5. The
order complex of the poset F

(
∆(P )

)
given in Figure 7 is represented

by the diagram (Figure 8).

1

2

3

4

12 23

13

123 34∆
(
F
(
∆(P )

))

Figure 8

Clearly, Figure 8 represents the first Barycentric subdivision of the
order complex ∆(P ) shown in Figure 6.
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Chapter 4

Shellable Nonpure
Complexes and Posets

This chapter draws ideas from one of the works of Björner and Wachs
[2] in which they generalizes the concept of shellability of a simplicial
complex by dropping the notion of purity. We define doubly indexed f -
vectors and h-vectors for the purpose of nonpure simplicial complexes.
Topological properties of shellable simplicial complexes indicate that
the shellable simplicial complexes have the homotopy type of wedge of
spheres of suitable dimensions. We also discuss the theory of lexico-
graphic shellability by extending the technique from pure to nonpure
posets.

4.1 Shellable Simplicial Complex

In this section, we familiarize the notion of shellability of a simplicial
complex in a general perspective irrespective of whether the simplicial
complex is pure or not.

Definition 4.1.1. Let A and B be two sets such that A ⊆ B. Then
the interval [A,B] = {C : A ⊆ C ⊆ B} is called a Boolean interval.

The Boolean interval, [∅, A] = Ā is a simplicial complex on the
vertex set A. In fact, Ā = P(A) and is called a simplex.

Definition 4.1.2. A simplicial complex ∆ defined on some (finite)
vertex set V is said to be shellable if its facets can be arranged in a
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linear order F1, F2, . . . , Ft such that the subcomplex
( k−1⋃
i=1

F i

)⋂
F k is

pure with dimension equal to (dimFk − 1) for 2 ≤ k ≤ t. A choice
of linear ordering on facets of a shellable simplicial complex is called a
shelling.

Some examples of shellable and nonshellable simplicial complexes
are given below in Figure 1.

F1

F2 F3

F4

F5 F1

F2

F3 F4

F5

F6

Shellable

F2
F1 F3 F1 F2

Non shellable

Figure 1

Lemma 4.1.3. Let ∆ be a shellable simplicial complex. If F1, F2, . . . , Ft
is a shelling of ∆, then the dimension of ∆ is same as that of the first
facet F1 in the shelling.

Proof. Let us assume that dimFi < dimFk, for all 1 ≤ i < k, where
k ≤ t. Since Fi * Fk for 1 ≤ i < k, there exists at least one element in
Fi that is not in Fk. Hence we have, dim(Fi∩Fk) ≤ dimFi−1. By our
assumption, we conclude that dim(Fi ∩ Fk) ≤ dimFk − 2. Therefore

we get that, dim

(( k−1⋃
i=1

F i

)⋂
F k

)
≤ dimFk− 2. This contradicts the

fact that ∆ is shellable.

48



Shellability of a simplicial complex can also be verified using the
following criteria.

Lemma 4.1.4. For a simplicial complex ∆, the ordering F1, F2, . . . , Ft
of facets is a shelling if and only if for all i and k such that 1 ≤ i <
k ≤ t there exists a j with 1 ≤ j < k and an element x ∈ Fk − Fi such
that Fi ∩ Fk ⊆ Fj ∩ Fk = Fk − {x}.

Proof. Let F1, F2, . . . , Ft be a shelling of the simplicial complex ∆.

By definition of shellability, ∆̃k =
( k−1⋃
i=1

F i

)⋂
F k is a pure simpli-

cial complex of dimension equal to dimFk − 1 for 2 ≤ k ≤ t. Thus,

for 1 ≤ i < k ≤ t, we can see that Fi ∩ Fk is a face of ∆̃k and hence

Fi ∩ Fk is contained in a maximal face, say Fj ∩ Fk of ∆̃k. As ∆̃k is
pure and is of dimension dimFk − 1, Fj ∩ Fk = Fk − {x} for some
x ∈ Fk − Fi. This implies that there exists an element x ∈ Fk such
that Fi ∩ Fk ⊆ Fj ∩ Fk = Fk − {x}.
Now, in order to prove the converse let F1, F2, . . . , Ft be an order-
ing of facets of ∆ such that Fi ∩ Fk ⊆ Fj ∩ Fk = Fk − {x}, for all
1 ≤ i < k ≤ t with 1 ≤ j < k. This implies that every face Fi ∩ Fk of

∆̃k =
( k−1⋃
i=1

F i

)⋂
F k is contained in a maximal face of ∆̃k of the form

Fk − {x} for some x ∈ Fk − Fi. Therefore ∆̃k =
k−1⋃
i=1

F i ∩ F k is a pure

simplicial complex with dimension dimFk − 1. Hence, the ordering
F1, F2, . . . , Ft of facets of ∆ is a shelling.

The concept of shellability can also be reformulated in terms of
partitioning. For this, we need the following results.

Lemma 4.1.5. Consider a simplicial complex ∆. Let F be a facet of
∆ and R ⊆ F . Let ∆′ be the subcomplex generated by facets of ∆ other
than F . Then the following conditions are equivalent.

1. The set F −∆′ is equal to the Boolean interval [R,F ],

2. F ∩∆′ =
⋃
x∈R

F − {x}.

Proof. 1. =⇒ 2. Given, F − ∆′ = [R,F ]. Thus, for some G in F ,
G does not belong to ∆′ if and only if R ⊆ G. By taking the contra-
positive argument, we have that for G ∈ F and G ∈ ∆′ if and only if
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R * G. This implies that there exists x ∈ R such that x /∈ G. Thus

we can conclude that G ∈ F ∩∆′ if and only if G ⊆ F − {x}, for some

x ∈ R. Therefore, we have F ∩∆′ =
⋃
x∈R

F − {x}.

2. =⇒ 1. Since we have F ∩∆′ =
⋃
x∈R

F − {x}, the set F−∆′ contains

all the subsets of F that contains R. Clearly, F −∆′ = [R,F ].

Definition 4.1.6. Let ∆ be a shellable simplicial complex and let
F1, F2, . . . , Ft be a shelling of ∆. For facet Fk in the shelling, we define
a set R(Fk) as

R(Fk) = {x ∈ Fk : Fk − {x} ∈ ∆k−1},

where ∆k−1 =
k−1⋃
i=1

F i. The set R(Fk) is called the restriction of the

facet Fk.

Clearly, F k ∩∆k−1 =
⋃

x∈R(Fk)

Fk − {x}. Therefore by Lemma 4.1.5,

we have F k − ∆k−1 = [R(Fk), Fk]. This indicates that R(Fk) is the
unique minimum new face introduced in the k-th shelling step. In fact,
we can say that a Boolean interval [R(Fk), Fk] has been added up each
time a new facet Fk is added to the subcomplex ∆k−1. This shows that,
the simplicial complex ∆ can be build inductively as a disjoint union
of Boolean interval

∆ =
t∐
i=1

[R(Fi), Fi].

This decomposition of the simplicial complex can be used to charac-
terize shellability in a different perspective.

Proposition 4.1.7. Let ∆ be a simplicial complex and F1, F2, . . . , Ft be
an ordering of facets of ∆. Consider a map R : {F1, F2, . . . , Ft} −→ ∆.
Then, the following conditions are equivalent.

1. The ordering F1, F2, . . . , Ft is a shelling of ∆ and the map R is
its restriction map.

2. The simplicial complex ∆ can be decomposed as ∆ =
t∐
i=1

[R(Fi), Fi],

and R(Fi) ⊆ Fj implies i ≤ j for all i, j.
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Proof. 1. =⇒ 2. The decomposition of ∆ into disjoint union of
Boolean intervals has been already shown. Since R(Fi) is the unique
minimum new face introduced in the i-th shelling step, R(Fi) ⊆ Fj
implies i ≤ j for all i, j.

2. =⇒ 1. Since ∆k−1 =
k−1∐
i=1

[R(Fi), Fi],∆k =
k∐
i=1

[R(Fi), Fi] and

R(Fk) * Fi for 1 ≤ i ≤ k − 1, we see that F k − ∆k−1 = [R(Fk), Fk].

Thus by Lemma 4.1.5, ∆k−1 ∩ F k =
⋃

x∈R(Fk)

Fk − {x}. Hence the sub-

complex ∆k−1 ∩ F k is pure with dimension equal to dimFk − 1. Thus
by definition, ∆ is shellable and R is its restriction map.

For any shellable simplicial complex there is a shelling in which the
facets are arranged in the order of decreasing dimension.

Proposition 4.1.8 (First rearrangement lemma). Let ∆ be a shellable
simplicial complex of dimension d−1 with F1, F2, . . . , Ft as a shelling of
∆ and R be its restriction map. Let Fi1 , Fi2 , . . . , Fit be a rearrangement
constructed by placing first all the facets of dimension d − 1 in the
induced order and then followed by lesser dimensional facets in order
of decreasing dimension. This rearrangement is also a shelling of ∆
and has the same restriction map R as the initial shelling.

Proof. To prove that Fi1 , Fi2 , . . . , Fit is a shelling of ∆ with same re-
striction map R, it is enough to show that

R(Fij) ⊆ Fik =⇒ j ≤ k.

Suppose to the contrary, there exists indices a and b such that a < b
with |Fa| < |Fb| andR(Fa) ⊆ Fb. Let b be the minimal such index. It is
clear that R(Fa) ⊆ Fb, since Fb * Fa. Thus, R(Fa) ⊆ A ⊆ Fb for some
set A = Fb − {x}. Since Fi1 , Fi2 , . . . , Fit is just a rearrangement of the
shelling F1, F2, . . . , Ft, we can say that A ⊆ Fc for some c < b. Hence,
R(Fa) ⊆ Fc =⇒ a < c. Since the facets are rearranged according
to the order of decreasing dimension, for c < b we get |Fc| ≥ |Fb|.
Therefore,

a < c, |Fa| < |Fc| and R(Fa) ⊆ Fc.

But c < b, contradicts the minimality of b.

51



Proposition 4.1.9 (Second rearrangement lemma). Let F1, F2, . . . , Ft
be a shelling of ∆ and R be its restriction map. Let Fi1 , Fi2 , . . . , Fit
be a rearrangement of the given shelling such that the facets F with
R(F ) 6= F is placed first in the induced order and then all the other
facets are considered in an arbitrary order. Then this rearrangement is
also a shelling with restriction map R.

Proof. For the rearranged ordering Fi1 , Fi2 , . . . , Fit , let R(Fij) 6= Fij
for all 1 ≤ j ≤ a and R(Fij) = Fij if j > a. Suppose R(Fij) ⊆ Fik . If
j > a, then R(Fij) = Fik and this implies j = k. Suppose j ≤ a. If
a < k, then j < k. So suppose that k ≤ a also. Then R(Fij) 6= Fij and
R(Fik) 6= Fik . Now, R(Fij) ⊆ Fik implies that ij ≤ ik. Hence j ≤ k.
Thus by Proposition 4.1.7, Fi1 , Fi2 , . . . , Fit is a shelling of ∆.

Let ∆ be a simplicial complex and consider 0 ≤ r ≤ s ≤ dim ∆. If
r ≤ dimF ≤ s for all the facets F of ∆, then ∆ is said to be (r, s)-pure.
Let us define

∆(r,s) = {A ∈ ∆: dimA ≤ s, A ⊆ F for some facet F with dimF ≥ r}.

Dimension of all the facets in ∆(r,s) ranges from r to s. Hence, ∆(r,s)

is (r, s)-pure. The s-skeleton ∆(0,s) of ∆ is the set of all facets F of ∆
with dimF ≤ s and ∆(s,s) is the subcomplex generated by all s-faces
of ∆.

Theorem 4.1.10. If a simplicial complex ∆ is shellable, then ∆(r,s) is
also shellable, where r ≤ s.

Proof. Given a shellable simplicial complex, we can always have a
shelling in which the facets appear in order of decreasing dimension.
The facets with dimension less than r that appear towards the end of
the shelling can be removed in order to get a shelling of ∆(r,d−1), where
dim ∆ = d− 1. Suppose r < d− 1. We only have to show that ∆(r,d−2)

is shellable. Let

∆(r,d−1) =
t∐
i=1

[Ri, Fi]. (4.1)

Let first k facets of the shelling be of dimension d− 1. For 1 ≤ r ≤ k,
consider the elements of Fi − Ri to be ordered as x1, x2, . . . , xgi . Let
Rij = Ri∩{x1, x2, . . . , xj−1} and Fij = Fi∩{xj}, for 1 ≤ j ≤ gi. Then,
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we can write [Ri, Fi] = {Fi}
gi∐
j=1

[Rij , Fij ]. Thus, the simplicial complex

∆(r,d−2) can be partitioned as

∆(r,d−2) =

(
k∐
i=1

gi∐
j=1

[Rij , Fij ]

)∐(
t∐

i=k+1

[Ri, Fi]

)
. (4.2)

Let the facets Fij and Fi be ordered in the lexicographic order. In
(4.1), Ri ⊆ Fj =⇒ i ≤ j and we can deduce the same for (4.2). This
induces a shelling for ∆(r,d−2).

4.2 Enumeration of Faces of Non-pure Complexes

This section is about the face numbers and the h-triangle of non-pure
simplicial complexes. A doubly indexed f -numbers fi,j and h-numbers
hi,j are defined that refine the usual f -vectors and h-vectors for the
non-pure case.

Let ∆ be a (d − 1)-dimensional simplicial complex. Let fi be the
number of i-dimensional faces of ∆. The numbers fi are called the face
numbers of ∆ with f−1 = 1. The d-tuple, f(∆) = (f0, f1, . . . , fd−1) is
called the f -vector of ∆. The (d + 1)-tuple, h(∆) = (h0, h1, . . . , hd) is
called the h-vector of ∆ and is defined in general by

H(y) = F (y − 1),

where H(y) =
d∑
i=0

hiy
d−i and F (y) =

d∑
i=0

fi−1y
d−i are polynomials. We

have

F (y − 1) =
d∑
i=0

fi−1(y − 1)d−i =
d∑
i=0

fi−1

d∑
j=i

(−1)k
(
d− i
k

)
yd−i−k.

By replacing i+ k with j and interchanging the summations we get

F (y − 1) =
d∑
j=0

yd−j
j∑
i=0

(−1)j−i
(
d− i
j − i

)
fi−1.
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We recall that f -vector and h-vector of ∆ are related by the expression,

hj =

j∑
i=0

(−1)j−i
(
d− i
j − i

)
fi−1. Therefore, we get

F (y − 1) =
d∑
j=0

hjy
d−j = H(y).

Hence, the functional relation H(y) = F (y − 1) can be used to define
the h-vector of ∆.

Definition 4.2.1. Let ∆ be a simplicial complex. For any face A ∈ ∆,
cardinality |A| of A is called the size of A and δ(A) given by

δ(A) = max
{
|F | : A ⊆ F ∈ ∆

}
is called the degree of the face A.

Remark. In general, for any face A ∈ ∆, |A| ≤ δ(A). For any facet
F ∈ ∆, degree of F is same as its size.

Definition 4.2.2. Let ∆ be a (d− 1)-dimensional simplicial complex.
The doubly indexed f -numbers fi,j of ∆ are defined as the number of
faces of degree i and size j. The h-numbers hi,j are defined as

hi,j =

j∑
k=0

(−1)j−k
(
i− k
j − k

)
fi,k.

The triangular integer arrays f = (fi,j)0≤j≤i≤d and h = (hi,j)0≤j≤i≤d
given as

f0,0

f1,0 f1,1

f2,0 f2,1 f2,2
...

. . .
fd,0 fd,1 · · · fd,d

and

h0,0

h1,0 h1,1

h2,0 h2,1 h2,2
...

. . .
hd,0 hd,1 · · · hd,d

are called the f -triangle and h-triangle of ∆, respectively.
Clearly, the number fi,j gives the number of faces in ∆(i−1,i−1)−∆(i,i)

with size j. The number of facets of ∆ with different sizes can be
obtained from the diagonal entries of the f -triangle. Moreover, the
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usual face numbers can be calculated from summing the column. That
is, we have

fj−1 =
∑
i≥j

fi,j.

For a pure simplicial complex ∆ with dimension d− 1, degree of all
its faces is equal to d and therefore, fi,j = 0, for all 0 ≤ j ≤ i ≤ d− 1.
Hence, only the last row of the f -triangle and h-triangle of ∆ has non-
zero entries for the case of pure simplicial complex. On re-indexing
these entries, we can get the usual f -vector and the h-vector of ∆.

Proposition 4.2.3. Consider a (d−1)-dimensional simplicial complex
∆. Let the two-variable polynomials F (x, y) and H(x, y) be defined as

F (x, y) =
∑

0≤j≤i

fi,jx
iyi−j and H(x, y) =

∑
0≤j≤i

hi,jx
iyi−j.

1. The doubly indexed h-numbers can be expressed in terms of these
polynomials as H(x, y) = F (x, y − 1).

2. The fact that the column sums of f-triangle give the usual face

numbers can be expressed as F (y) = ydF
(

1
y
, y
)
.

Proof. 1. By definition, F (x, y − 1) =
∑

0≤j≤i
fi,jx

i(y − 1)i−j. Using the

binomial expansion of (y − 1)i−j, we get

F (x, y − 1) =
i∑

j=0

fi,jx
i

i−j∑
k=0

(−1)k
(
i− j
k

)
yi−j−k.

Let us put i+ j = m, and we get

F (x, y − 1) =
i∑

j=0

fi,jx
i

i∑
m=j

(−1)(m−j)
(
i− j
m− j

)
yi−m.

On interchanging the summations, we get

F (x, y − 1) =
i∑

m=0

xiyi−m
m∑
j=0

(−1)(m−j)
(
i− j
m− j

)
fi,j.
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By definition, hi,j =

j∑
k=0

(−1)j−k
(
i− k
j − k

)
fi,k. Hence the given equation

can be written as

F (x, y − 1) =
∑

0≤m≤i

hi,mx
iyi−m = H(x, y).

2. Using the definition of the two-variable polynomial F (x, y), we can
write

ydF

(
1

y
, y

)
= yd

i∑
j=0

fi,j

(
1

y

)i
yi−j =

∑
0≤j≤i

fi,jy
d−j.

We can split the summation
∑

0≤j≤i
fi,jy

d−j as
d∑
j=0

(∑
j≤i

fi,j

)
yd−j. Since

we have fj−1 =
i∑

j=0

fi,j, we get

ydF

(
1

y
, y

)
=

d∑
j=0

fj−1y
d−j = F (y).

The usual h-vector of a simplicial complex can be expressed in terms
of the h-triangle using generating functions.

Proposition 4.2.4. The usual h-vector of a simplicial complex can

be expressed in terms of the h-triangle as H(y) = (y − 1)dH

(
1

y
, y

)
,

which is equivalent to

hi =
i∑

j=0

(−1)i−j
d−i+j∑
s=j

hs,j

(
d− s
i− j

)
, i = 0, 1, . . . , d.

Proof. Using the definition of h-vector H(y) = F (y − 1) and applying
Proposition 4.2.3. to the definition, we get

H(y) = F (y − 1) = (y − 1)dF

(
1

y − 1
, y − 1

)
= (y − 1)dH

(
1

y − 1
, y

)
.
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Hence, we get H(y) = (y − 1)dH
(

1
y−1

, y
)
. Using the definition of the

polynomials H(y) and H
(

1
y−1

, y
)
, we get

d∑
i=0

hiy
d−i =

∑
0≤j≤i≤d

hi,j(y − 1)d−iyi−j

=
d∑
j=0

d∑
i=j

hi,j

d−i∑
k=0

(
d− i
k

)
(−1)d−i−kyk+i−j.

Let us set k + i− j = t, and we get

d∑
i=0

hiy
d−i =

d∑
j=0

d∑
i=j

hi,j

d−i∑
t=i−j

(
d− i

t− i+ j

)
(−1)d−j−tyt

=
d∑
t=0

d−t∑
j=0

j+t∑
i=j

hi,j

(
d− i

t− i+ j

)
(−1)d−j−tyt.

Now, let us substitute t = d− s in the above equation to get

d∑
i=0

hiy
d−i =

d∑
s=0

(
s∑
j=0

(−1)s−j
d−s+j∑
i=j

hi,j

(
d− i
s− j

))
yd−s.

On interchanging the summations, we get

d∑
i=0

hiy
d−i =

d∑
i=0

(
i∑

j=0

(−1)i−j
d−i+j∑
s=j

hs,j

(
d− s
i− j

))
yd−i.

On comparing the coefficients of yd−i, we reach at the conclusion that

hi =
i∑

j=0

(−1)i−j
d−i+j∑
s=j

hs,j

(
d− s
i− j

)
.

Example 4.2.5. Let ∆ be the simplicial complex generated by the
facets {1, 2, 3}, {3, 4, 5}, {1, 4}, {1, 5}, {2, 4} and {2, 5}. The f -
triangle for ∆ is
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0
0 0
0 0 4
1 5 6 2

By using the formula hi,j =

j∑
k=0

(−1)j−k
(
i− k
j − k

)
fi,k, let us compute the

h-triangle. Hnce, we have
h0,0 = 0,
h1,0 = f1,0 = 0,
h1,1 = −f1,0 + f1,1 = 0,

h2,0 =

(
2

0

)
f2,0 = 0,

h2,1 = −
(

2

1

)
f2,0 +

(
1

0

)
f2,1 = 0,

h2,2 =
2∑

k=0

(−1)2−k
(

2− k
2− k

)
f2,k = 4,

h3,0 = f3,0 = 1,

h3,1 = −
(

3

1

)
f3,0 +

(
2

2

)
f3,1 = 2,

h3,2 =
2∑

k=0

(−1)2−k
(

3− k
2− k

)
f3,k = −1, and

h3,3 =
3∑

k=0

(−1)3−k
(

3− k
3− k

)
f3,k = 0.

Therefore, the h-triangle is

0
0 0
0 0 4
1 2 -1 0

We can say that the simplicial complex ∆ in Example 4.2.5. is not
shellable, because the pure simplicial complex ∆(2,2) as shown in the
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diagram (Figure 2) is not shellable.

2

1

3

5

4

Figure 2

We will further prove that appearance of negative value in the h-
triangle implies that the corresponding simplicial complex is not shellable.

Lemma 4.2.6. Let ∆ be a (d−1)-dimensional simplicial complex with
(fs,j)0≤j≤s≤d and (hs,j)0≤j≤s≤d as the f-triangle and the h-triangle of ∆
respectively. Then the following properties hold.

1. The value of hd,0 is always 1 and hs,0 = 0 for 0 ≤ s ≤ d− 1.

2.
s∑
j=0

hs,j = fs,s.

3. The reduced Euler characteristic of ∆ is given in terms of the

doubly indexed h-numbers as
d∑
j=0

(−1)j−1hj,j.

4. The h-vector (h
′
s,j)0≤j≤s≤c of the (c− 1)-skeleton ∆(0,c−1) is given

by

h
′

s,j =

hc,j +
d∑

s=c+1

j∑
i=0

(
s− c− 1 + j − i

j − i

)
hs,i for s = c,

hs,j for all 0 ≤ j ≤ s < c.

5. The h-vector (h
′′
s,j)0≤j≤s≤c of the subcomplex ∆(c−1,c−1) generated

by (c− 1)-facets of ∆ is given by

h
′′

s,j =

{
h
′
c,j for s = c,

0 for all 0 ≤ j ≤ s < c.
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Proof. 1. The empty set ∅ is contained in all the facets F of ∆. Thus,
we say that degree of ∅ is d, the cardinality of the facet with maximal
dimension. Hence, we have fi,0 = 0 for 0 ≤ i ≤ d − 1 and fd,0 = 1.
Therefore, we get

hs,0 =

{
1 for s = d,

0 for all 0 ≤ s < d.

2. By the definition of doubly indexed h-number,

s∑
j=0

hs,j =
s∑
j=0

j∑
k=0

(−1)j−k
(
s− k
j − k

)
fs,k.

On interchanging the summation and by equating j − k with l, we get

s∑
j=0

hs,j =
s∑

k=0

(
s−k∑
l=0

(−1)l
(
s− k
l

))
fs,k =

s∑
k=0

(1− 1)s−kfs,k = fs,s.

3. We have the relation H(x, y) = F (x, y− 1). Put x = −1 and y = 0,
to get

H(−1, 0) = F (−1, 1) =
∑

0≤j≤i≤d

(−1)jfi,j.

On equating H(−1, 0) =
∑

0≤j≤d
(−1)jhj,j, we get

∑
0≤j≤d

(−1)jhj,j =
d∑
j=0

(−1)j
d∑
i=j

fi,j.

Using the relation between the usual face number and fi,j, we have

∑
0≤j≤d

(−1)jhj,j =
d∑
j=0

(−1)jfj−1 = −χ̃(∆).

Hence, we express the reduced Euler characteristics of ∆ in terms of
the h-vector as

χ̃(∆) =
d∑
j=0

(−1)j−1hj,j.
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4. For the (c − 1)-skeleton ∆(0,c−1), the f -vector (f
′
s,j)0≤j≤s≤c is given

as

f
′

s,j =


fs,j for s < c,∑
i≥c

fi,j for s = c,

0 for s > c.

(4.3)

Using this, we compute the h-vector (h
′
s,j)0≤j≤s≤c. By using the defi-

nition of doubly indexed h-vector and (4.3), we have

h
′

s,j = hs,j for all 0 ≤ j ≤ s < c.

For s = c, we have the following expression.

h
′

c,j =

j∑
k=0

(−1)j−k
(
c− k
j − k

)( d∑
s=c

fs,j

)

=

j∑
k=0

(−1)j−k
(
c− k
j − k

)
fc,j +

j∑
k=0

(−1)j−k
(
c− k
j − k

)( d∑
s=c+1

fs,j

)
By using the definition of hc,j and expressing fs,j in terms of h-vector,
we get

h
′

c,j = hc,j +
d∑

s=c+1

j∑
k=0

(−1)j−k
(
c− k
j − k

) j∑
r=0

(
s− r
j − r

)
hs,r.

By interchanging the summation, we get

h
′

c,j = hc,j +
d∑

s=c+1

[
j∑
r=0

(
j∑

k=r

(−1)j−k
(
c− k
j − k

)(
s− r
j − r

))]
hs,r. (4.4)

Now, we need to show that
(
s−c−1+j−r

j−r

)
=

j∑
k=r

(−1)j−k
(
c−k
j−k

)(
s−r
j−r

)
. Con-

sider (1 − x)s−c−1+j−r = (1 − x)s−r 1
(1−x)c+1−j . Using the binomial ex-

pansion, we get
s−c−1+j−r∑

k=0

(−1)k
(
s−c−1+j−r

k

)
xk =

[
s−r∑
l=0

(−1)l
(
s−r
l

)
xl
][

∞∑
i=0

(
c+1−j+i−1

i

)
xi
]
.

Let l = k − r and the right hand side becomes,[
s∑

k=r

(−1)k−r
(
s− r
k − r

)
xk−r

][
∞∑
i=0

(
c+ 1− j + i− 1

i

)
xi

]
.
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On comparing the coefficients of xj−r and summing the right hand side
over r ≤ k ≤ j (since fork > j, the quantity

(
c−k
j−k

)
does not make any

sense), we get(
s− c− 1 + j − r

j − r

)
=

j∑
k=r

(
c− k
j − k

)(
s− r
j − r

)
. (4.5)

From equations (4.4) and (4.5), we can write

h
′

c,j = hc,j +
d∑

s=c+1

j∑
i=0

(
s− c− 1 + j − i

j − i

)
hs,i.

5. For the subcomplex ∆(c−1,c−1), the f -vector (f
′′
s,j)0≤j≤s≤c is of the

form

f
′′

s,j =


∑
i≥c

fi,j for s = c,

0 for otherwise.
(4.6)

From equation (4.3), we have f
′
c,j =

∑
i≥c

fi,j. Therefore, we get that the

h-vector (h
′′
s,j)0≤j≤s≤c of ∆(c−1,c−1) is of the form

h
′′

c,j = h
′

c,j

and
h
′′

s,j = 0 for all 0 ≤ j ≤ s < c.

For pure simplicial complexes, we have seen the Mac-Mullen char-
acterization of h-vector. Similar combinatorial characterization of h-
triangle is given as the following theorem.

Theorem 4.2.7. Let ∆ be a shellable simplicial complex of dimension
d−1 with the restriction map R. Let the (hi,j)0≤j≤i≤d be the h-triangle
of ∆, then

hi,j = number of facets F with |F | = i and |R(F )| = j.
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Proof. Since ∆ is a simplicial complex, we can write

∆(i−1,i−1) −∆(i,i) =
∐
|F |=i

[R(F ), F ] ∀ 1 ≤ i ≤ d. (4.7)

We know that fi,j is the number of size j faces in ∆(i−1,i−1) − ∆(i,i)

and let h̃i,j denotes the number of facets F in ∆ with |F | = i and
|R(F )| = j. Therefore, we can write the equation (4.7) as

i∑
j=0

fi,jy
i−j =

i∑
j=0

h̃i,j

(
i∑

k=j

(
i− j
k − j

)
yi−k

)
.

Let us substitute k − j with l in the above equation, then

i∑
j=0

fi,jy
i−j =

i∑
j=0

h̃i,j

(
i−j∑
l=0

(
i− j
l

)
y(i−j)−l

)
=

i∑
j=0

h̃i,j(y+1)i−j. (4.8)

We have F (x, y−1) = H(x, y),
s∑
j=0

fs,jx
iys−j =

s∑
j=0

hs,jx
s(y+ 1)s−j. On

comparing the coefficients of xi, we get

i∑
j=0

fi,jy
i−j =

i∑
j=0

hi,j(y + 1)i−j. (4.9)

From equation (4.8) and (4.9), we can conclude that

hi,j = h̃i,j.

This indicates that the h-triangle of a shellable complex has only
non-negative entries.

4.3 Topological Properties

A pure shellable simplicial complex of dimension (d − 1) has the
homotopy type of wedge of (d − 1)-spheres. This section generalizes
this fact for the non-pure shellable simplicial complex case. We consider
the geometric realization (topological space) of the simplicial complex
throughout the section whenever dealing with a simplicial complex.
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Theorem 4.3.1. Let ∆ be a (d − 1) dimensional shellable simplicial
complex. Then ∆ has the homotopy type of a wedge of spheres, con-
taining hj,j copies of the (j − 1)-spheres for 1 ≤ j ≤ d.

Proof. Since ∆ is a shellable simplicial complex, for a particular shelling
of ∆, let us define

τ =
{

Facets F in the shelling such that R(F ) = F
}
.

Let ∆∗ = ∆−τ . By the second rearrangement lemma, we can conclude
that the facets of ∆∗ with induced ordering forms a shelling of ∆∗ with
the same restriction map R as ∆. Let us denote the kth facet in the

shelling of ∆∗ as Fk and ∆∗k =
k⋃
i=0

F i. We know that R(Fk) is the

proper face of the facet Fk, which is not contained in any of the facets
in ∆∗.

The simplex ∆∗1 is contractible, then up to homotopy it is equivalent
to a point. We construct the space ∆ by attaching facets one by one
to a simplex starting with ∆∗1. On attaching F2 to the simplex ∆∗1, we
observe that all the faces of F2, except R(F2), can be collapsed into
a point. Hence, the new subcomplex is contractible. When we attach
facets F ∈ τ , then we see that all the proper faces of F are already
collapsed to a point and therefore, this introduces a sphere attached to
that point. Thus, each (j − 1)-facet F ∈ τ is deformed to a (j − 1)-
sphere attached to the common point. Clearly, we see that there are

hj,j =
∣∣∣{F ∈ τ : |F | = j}

∣∣∣ such spheres.
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Example 4.3.2. A shellable simplicial complex and its homotopy type
is shown in the diagram (Figure 3).

4.4 Lexicographically Shellable Posets

For any finite poset P , we can associate an order complex ∆(P )
such that the i-face of ∆(P ) is a chain of length i in P . Properties
such as purity, shellability and topological properties of a poset can be
understood by studying the order complex associated to it. The the-
ory of lexicographic shellability deals with methods to study the order
complexes through labeling the cover relations of a posets. This sec-
tion generalizes the case to that of nonpure posets (that is, nongraded
posets).

Let P be a bounded poset with a top element 1̂ and a bottom
element 0̂ and we denote P = P − {0̂, 1̂}. For any poset P , we can
adjoin new elements 0̂ and 1̂ such that 0̂ < x < 1̂ for all x ∈ P and

form a new poset P̂ = P ∪ {0̂, 1̂}. The notation x → y is used to
denote that y covers x. The covering relation of any poset P is given
by E(P ) =

{
(x, y) ∈ P × P : x→ y

}
and M(P ) denotes the set of all

maximal chains in P . If a chain x0 < x1 < · · · < xk is maximal in the
interval [x0, xk], then it is called unrefinable.

For a bounded poset P , let ME(P ) be the set of elements of the
form (m,x→ y) ∈ M(P )× E(P ) where m is any maximal chain of P
and x, y ∈ m. Now, let us get familiarize with several types of cover
relation labelings of a poset.

Definition 4.4.1. A map λ : E(P ) −→ Λ, where Λ is some poset, is
called an edge labeling of poset P .

Examples of edge labeling of pure and non-pure posets are illus-
trated in Figure 4, where Λ = [n] for some n ≥ 1.
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Definition 4.4.2. A map λ : ME(P ) −→ Λ, where Λ is any poset, is
the called chain-edge labeling of a poset P if it satisfies the following
condition.

If any two maximal chains m : 0̂ = x0 → x1 → · · · → xk = 1̂ and
m′ : 0̂ = x′0 → x′1 → · · · → x′n = 1̂ agree along its first d edges, that is,
xi = x′i for i = 0, 1, . . . , d, then λ(m,xi−1 → xi) = λ(m′, x′i−1 → x′i) for
i = 1, 2, . . . , d.

Given an edge labeling λ, we can naturally form a chain-edge label-
ing λ′ by letting λ′(m,x → y) = λ(x → y) for all maximal chains m
with an edge x→ y.

An example of chain-edge labeling (not induced by edge labeling)
is illustrated in Figure 5.
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Let P be a bounded poset and λ be a chain-edge labeling of P . For
each maximal chain m : 0̂ = x0 → x1 → · · · → xn = 1̂, we can associate
an ordered string λ(m) =

(
λ(m,x0 → x1), . . . , λ(m,xn−1 → xn)

)
. The

length of the maximal chain m decides the length of the above tuple
λ(m).

Definition 4.4.3. Let P be a bounded poset. Let [x, y] be an interval
of P with an unrefinable chain r from 0̂ to x. The pair

(
[x, y], r

)
is

called a rooted interval with root r. This is denoted as [x, y]r.

A maximal chainm of the interval [x, y] is considered as the maximal
chain of rooted interval [x, y]r and the chain r∪m obtained by adjoining
m to the root r, becomes the maximal chain of the interval [0̂, y].

Let λ be a chain-edge labeling of the bounded poset P and [x, y]r
be a rooted interval in P . Consider m to be a maximal chain in [x, y]r.
Let m′ and m′′ be maximal chains of P that contains the chain r ∪m
and let `(r∪m) = d. The first d elements of λ(m′) and λ(m′′) are equal,
thus a

(
d− `(r)

)
-tuple can be associated with the maximal chain m by

deleting these first d entries. This is illustrated in the given diagram
(Figure 6).

Let Λ∗ be the set of all λr(m) associated with maximal chains m
of the bounded poset P . The set Λ∗ is a poset under the lexicographic
partial ordering defined as

(a1, a2, . . . , ap) ≤L (b1, b2, . . . , bq)

if and only if either ai = bi for i = 1, 2, . . . , p and p ≤ q or ai 6= bi for
some i and ai < bi for the least such i.
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Definition 4.4.4. Let P be a bounded poset and λ : ME(P ) −→ Λ
be a chain-edge labeling of P . If there exists a unique maximal chain
m in every rooted interval [x, y]r of P , such that the tuple λr(m) =
(a1, . . . , ap) satisfies a1 < a2 < · · · < ap in Λ, then the labeling λ
is called the chain-rising labeling (CR-labeling). The unique maximal
chain m is called the rising chain in [x, y].

The concept of rising chain can be varied to form the alternative
CR-labeling, where the rising chain is weakly increasing, that is, the
tuple λr(m) = (a1, . . . , ap) is such that a1 ≤ a2 ≤ · · · ≤ ap.

Definition 4.4.5. Let P be a bounded poset and λ : ME(P ) −→ Λ be
a CR-labeling with the unique rising chain m for every rooted interval
[x, y]r. If the tuple λr(m) is lexicographically strictly first than all
λr(m

′) for any other maximal chain m′, then the labeling λ is called a
chain-lexicographic labeling (CL-labeling).
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A CR- or CL-labeling from an edge labeling λ : E(P ) −→ Λ, is called
an edge rising (ER-) or edge lexicographic (EL-) labeling respectively.

Definition 4.4.6. A bounded poset that has an EL- or CL-labeling is
called as EL- or CL-shellable.

Example 4.4.7. The diagram in Figure 7 (a) and (b) shows alter-
native EL-labeling. Figure 7 (c) is the Hasse diagram of a non-pure
poset which has a standard EL-labeling with strictly increasing rising
chain. The rising chains in [0̂, 1̂] of the corresponding posets have been
highlighted in the diagram (Figure 7).
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Lemma 4.4.8. Let λ : ME(P ) −→ Λ be a CR-labeling. For every
rooted interval [x, y]r, let a1, a2, . . . , ak be atoms of [x, y] and a1 belongs
to the unique rising chain of [x, y]r, then λ(x → a1) < λ(x → ai) for
i = 2, . . . , k, if and only if λ is a CL-labeling. Here, λ(x → ai) is the
edge labeling induced by the chain-edge labeling λ and r is the root.

Proof. Suppose λ : ME(P ) −→ Λ be a CL-labeling. Then for every
rooted interval [x, y]r, there is a unique rising chain m : x = x0 →
x1 → ..→ xn = y. By definition, λr(m) < λr(m

′) for all other maximal
chains m′ of [x, y]r.

Let a1, a2, . . . , ak be atoms of [x, y] and a1 belongs to m, that is,
x1 = a1. Then we need to show that λ(m,x → a1) < λ(m′, x → ai)
for i = 2, . . . , k. If λ(m′, x → a1) < λ(m,x → ai), then the maximal
chain m can not be lexicographically strictly first. Thus, we just have
to verify that λ(m,x → a1) = λ(m′, x → ai) is not possible for any
value of i. Without loss of generality, we consider the case for i = 2.
Let us consider the rooted interval [a2, y]r′ , where r′ = r ∪ (x → a2)
and let η : a2 = z0 → z1 → · · · → zn−1 = y be the unique rising chain
in [a2, y]r′ . If λ(η, a2 → z1) < λ(m, a1 → x2), then m′ : x→ a2 → z1 →
· · · → zn−1 = y is a maximal chain in [x, y]r such that λr(m

′) < λr(m).
This gives a contradiction. Thus,

λ(η, a2 → z1) ≥ λ(m, a1 → x2) > λ(m,x→ a1) = λ(m′, x→ a1).

This implies that m′ is also a rising chain of [x, y]r, contradicting the
uniqueness of m. Thus we have, λ(x → ai) � λ(x → a1) or in other
words, λ(x→ a1) < λ(x→ ai) for i = 1, 2, . . . , k.

Conversely, suppose that the given condition is true. Since λ is a
CR-labeling, for every rooted interval [x, y]r, there is a unique rising
chain m : x = x0 → x1 → · · · → xn = y in [x, y]r. Let the chain
m′ : x = y0 → y1 → · · · → yt = y be another maximal chain (different
from m) in [x, y]r. Without loss of generality, we may assume that
x1 6= y1. From the given condition, λ(x → x1) < λ(x → y1). This
implies that λr(m) < λr(m

′). Hence, the given labeling λ is a CL-
labeling on the poset P.

Definition 4.4.9. Let P be a bounded poset and λ : ME(P ) −→ Λ
be a CR-labeling of P . Let m : 0̂ = x0 → x1 → · · · → xk+1 = 1̂ be
a maximal chain of P . If λ(m,xi−1 → xi) ≮ λ(m,xi → xi+1) in the
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ordered string λ(m), then λ(m) is said to have a descent at i, 1 ≤ i ≤ k.
The set

D(m) =
{
i : λ(m,xi−1 → xi) ≮ λ(m,xi → xi+1)

}
is called the descent set of m.

If for some maximal chain m, D(m) = {1, 2, . . . , k}, then the maxi-
mal chain m is said to be falling. The set R(m) = {xi ∈ m : i ∈ D(m)}
is called the restriction of m.

For alternative EL-labelings with weakly increasing rising chains,
the definition of descent set of a maximal chain will be altered to

D(m) =
{
i : λ(m,xi−1 → xi) � λ(m,xi → xi+1)

}
.

Accordingly, the definition of restriction R(m) and that of a falling
chain will be modified. In alternative EL-labeling the falling chains are
strictly falling and that in the standard EL-labeling are weakly falling.

For a maximal chain m of P , let m = m −
{

0̂, 1̂
}

. Obviously, we
can see that R(m) ⊆ m.

Proposition 4.4.10. Let P be a bounded poset. A CR-labeling of P
induces a Boolean interval partition as given below.

∆
(
P
)

=
∐
m∈M

[
R(m),m

]
,

where ∆
(
P
)

is the order complex associated with the poset P = P −{
0̂, 1̂
}

.

Proof. Consider a chain c : y1 < y2 < · · · < ye in P . Let us construct
a maximal chain containing c by the following means. Let m1 be the
unique rising chain of the interval [0̂, y1] and m2 be the rising chain of
[y1, y2]m1 . In similar manner, assume mi+1 to the rising chain of the
rooted interval [yi, yi+1]m1∪m2∪···∪mi

and continue the process until we
obtain a maximal chain m = m1 ∪m2 ∪ · · · ∪me+1. By construction
we get, R(m) ⊆ c ⊆ m.

In order to prove the uniqueness, let m′ be some maximal chain such
that R(m′) ⊆ c ⊆ m′. Since R(m′) ⊆ c, the descent set of m′∩ [yi−1, yi]
is empty for any i = 1, 2, . . . Thus, m′ is uniquely determined.
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If a bounded poset P has CR- or CL-labeling, then naturally all
the intervals [x, y] in P have such a labeling. This fact is stated in the
following lemma.

Lemma 4.4.11. Let λ : ME(P ) −→ Λ be a CR-labeling (or CL-labeling)
of a bounded poset P and let [x, y]r be a rooted interval in P . Then the
labeling λr : ME

(
[x, y]

)
−→ Λ is CR-labeling (or CL-labeling) of the

interval [x, y].

Proof. Given a CR- or CL-labeling λ : ME(P ) −→ Λ, let m be the
rising chain of P and λr(m) = (a1, a2, . . . , ak) with a1 < a2 < · · · <
ak. Consider the rooted interval [x, y]r with l(r) = d. Let m′ be the
maximal chain in [x, y] such that m′ ⊆ m. Let λr : ME([x, y]) −→ Λ
be the labeling induced by λ such that λr(xi−1 → xi) = λ(xi−1 → xi).
Therefore, λr(m

′) = (ad+1, . . . , aj) is a of λ(m). Hence, ad+1 < · · · < aj
implies that m′ is the rising chain of the interval [x, y].

It is interesting to note that the Möbius function of a bounded
poset P can be computed from a CR-labeling on P . We can choose an
arbitrary root r. If the CR-labeling is induced from an EL-labeling or
x = 0̂, then there is no need to choose the root r.

Proposition 4.4.12. The Möbius function µ(x, y) of a bounded poset
with CR-labeling is computed as the difference between the number of
even length falling chains in and the number of odd length falling chains
in the rooted interval [x, y]r.

Proof. Since we know that the CR-labeling is hereditary on intervals, it
is enough to give the proof for x = 0̂ and y = 1̂. We have seen that CR-
labeling induces a Boolean interval partition ∆

(
P
)

=
∐

m∈M

[
R(m),m

]
.

By the theorem of Phillip Hall (Proposition 3.3.3) we know that µ(x, y)
is the number of odd length chains subtracted from the number of even
length chains in the poset P . If R(m) 6= m, then the Boolean interval[
R(m),m

]
does not contribute anything to the computation of µ(x, y).

Whereas if the chain m is a falling chain then R(m) = m and its
contribution is −(1)`(m).

Example 4.4.13. The poset given in Figure 4 (a) has only one falling
chain whose length is 3, so µ

(
0̂, 1̂
)

= −1. Poset shown in Figure 4 (b)
has two falling chains, one with a length of 2 and the other has length
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3, therefore µ
(
0̂, 1̂
)

= 0. The poset in Figure 4 (c) has one falling chain

of length 2 and another one with length 3, so µ
(
0̂, 1̂
)

= 2.

Theorem 4.4.14. Let P be a bounded poset. If P is CL-shellable,
then the order complex ∆

(
P
)

is shellable. More precisely we can say
that given a CL-labelling of P any ordering of the maximal chains of P
that extends the lexicographic partial order of their labels is a shelling,
whose restriction map equals the map R(m) = {xi : i ∈ D(m)}.

Proof. Given a CR-labeling λ of the poset P we have the Boolean
interval partition ∆

(
P
)

=
∐

m∈M

[
R(m),m

]
. In order to prove that the

order complex ∆
(
P
)

is shellable it is enough to prove that if R(m) ⊆
m′ for m 6= m′, then λ(m) < λ(m′) in the lexicographic order.

Let m : 0̂ = x0 → x1 → x2 → . . . and m′ : 0̂ = x′0 → x′1 →
x′2 → . . . be any maximal chains in P and consider i be minimal such
that xi+1 6= x′i+1. We consider y ∈ P to be the minimal element
such that y ∈ m ∩ m′ and xi = x′i < y. Since R(m) ⊆ m′, we can
conclude that R(m) ⊆ m′ ∩m. Therefore there is no descent along the
chain m ∩ [xi, y]. This implies that the chain m ∩ [xi, y] is the rising
chain of the rooted interval [xi, y]m∩[0̂,xi]

. By Lemma 4.4.8. we have

λ(m,xi → xi+1) < λ(m′, x′i → x′i+1), hence the order complex ∆
(
P
)

is
shellable.

The homology facets of a CL-shellable poset are the falling chains
m with R(m) = m. We generalize the topological properties of a
lexicographically shellable poset as in the theorem stated below.

Theorem 4.4.15. Let P be a CL-shellable poset. Then the order com-
plex ∆

(
P
)

has the homotopy type of wedge of spheres. For any fixed

CL-labeling, the ith homology group of ∆
(
P
)
,

H̃i

(
∆
(
P
)
, Z
) ∼= Znumber of falling (i+2)-chains.

Remark. From the above theorem, we conclude that ith Betti number
of the order complex ∆

(
P
)

equals the number of falling chains of length
i+ 2.

The approach of recursive atom ordering is an alternative way to
study the lexicographic shellability. The elements of a poset that covers
0̂ are called the atoms.
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Definition 4.4.16. Let P be a bounded poset. If the length of P
equals one or if `(P ) > 1 and P consists of atoms a1, a2, . . . , at ordered
in such a way that

1. For all j = 1, 2, . . . , t the interval [aj, 1̂] admits a recursive atom

ordering such for some i < j such that the atoms in [aj, 1̂] that is

in the interval [ai, 1̂] are placed first in the ordering.

2. For all i < j, if we have ai, aj < y for some y ∈ P , then there is a

k < j and an atom z in [aj, 1̂] such that ak < z ≤ y.

Then the poset P is said to admit a recursive atom ordering.

A recursive atom ordering of the dual poset (P ∗, ≤) of P is called
the recursive coatom ordering of P. It turns out that a bounded poset
P admits recursive atom ordering if and only if P is CL-shellable.
Thus we can produce an integer CL-labeling for the poset P. Hence
we can conclude that as similar to the pure case, any poset P with
a fixed CL-labeling ME(P ) −→ Λ also admits an integer CL-labeling
ME(P ) −→ (Z, ≤).

The weakly increasing rising chains in an alternative EL-labeling
can be converted into a strictly increasing rising chain by considering
the poset of labels as Λ′ = Λ×Z and relabel m : 0̂ = x0 → x1 → · · · →
xk = 1̂ as

λ′(m, xi−1 → xi) = (λ(m, xi−1 → xi), i).

This relabeling converts a alternative EL-labeling to a strictly increas-
ing CL-labeling. Furthermore, a strictly increasing CL-labeling can be
converted to a weakly increasing CL-labeling by taking Λ × Z as the
label poset and then relabeling m : 0̂ = x0 → x1 → · · · → xk = 1̂ as

λ′(m, xi−1 → xi) = (λ(m, xi−1 → xi), −i).

During these conversions, the descent set D(m) and the restriction
R(m) remains the same. These relabelings are illustrated in the dia-
gram given below (Figure 8).
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Chapter 5

Partition Lattice

In this chapter we mainly discuss about a specific example of lexico-
graphically shellable nonpure poset called the k-equal partition lattice.
We shall have a brief glance through the n-partition lattice, which is
pure shellable and then take up the nonpure case, the k-equal partition
lattice and study its properties. Whenever we deal with the topologi-
cal properties of a given lattice L, we usually consider L = L−

{
0̂, 1̂
}

.
The Betti numbers for the k-equal partition lattice have been obtained
following the work of Björner and Wachs[2].

5.1 Order Complex of Partition Lattice

Let (P, ≤) be a poset and z ∈ P . The element z is said to be an
upper bound of two elements x and y in P if we have z ≥ x and z ≥ y.
An upper bound z ∈ P is called the least upper bound or the supremum
of x, y ∈ P , if it is the minimum of all possible upper bounds of x and
y. We denote the supremum of x and y as x∨y. If u ≤ x and u ≤ y for
some u ∈ P , then u is called the lower bound of x and y. The maximum
of all the lower bounds of x and y is called the greatest lower bound or
the infimum and is denoted as x ∧ y.

Definition 5.1.1. A poset L for which every pair of elements x, y ∈ L
has a supremum and an infimum is called as a lattice.

The set of all partitions of [n] denoted by Πn which is a poset with
respect to the partial ordering defined by refinement is a lattice and
is called as the partition lattice. Every maximal chain in the partition
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lattice Πn is of length n − 1. Therefore Πn is a graded poset of rank
n−1. Moreover, the order complex ∆(Πn) is a pure shellable simplicial
complex.

The following diagram (Figure 1) illustrate the poset Πn and its
order complex ∆(Πn) for n = 3, 4.

Π3 ∆
(
Π3

)

Π4 ∆
(
Π4

)
Figure 1

If π = {B1, B2, . . . , Bt} ∈ Πn, then the interval [π, 1̂] is isomorphic
to the partition lattice of the set [t] ∼= {B1, B2, . . . , Bt}. That is, we
have [π, 1̂] ∼= Πt.

The order complex ∆
(
Πn

)
is shellable and therefore it has the ho-

motopy type of wedge of spheres. This can be stated as given below.

Theorem 5.1.2. The order complex ∆
(
Πn

)
of the poset Πn is homo-

topic equivalent to a wedge of (n− 1)! spheres of dimension n− 3.

This theorem also reflects in the computation of the Möbius function
of the partition lattice Πn

(
See [14]

)
.

Example 5.1.3. The order complex ∆
(
Π4

)
in Figure 1 is homotopic

equivalent to wedge of 3! = 6 spheres. This is illustrated in the follow-
ing diagram (Figure 2).
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Proposition 5.1.4. The Möbius function of the partition lattice Πn of
all partitions of the set [n] is

µ
(
0̂, 1̂
)

= (−1)n−1(n− 1)!.

Let us compute the Möbius functions of the lattices Π3 and Π4 by
hand and verify Proposition 5.1.4.

−1−1
−1

1

2

(a)

−6

2 2 2 2 1 1 1

−1 −1 −1 −1 −1 −1

1

(b)
Figure 3

The Hasse diagram (Figure 3) indicates the Möbius function values
of Π3

(
Figure 3(a)

)
and Π4

(
Figure 3(b)

)
.

From the Möbius function values given in the diagram (Figure 3),

79



we observe that for the partition lattice Π3 (Figure 3(a)),

µ
(
0̂, 1̂
)

= 3− 1 = 2 = (−1)3−1(3− 1)!.

For the partition lattice Π4 in Figure 2(b),we get

µ
(
0̂, 1̂
)

= −11 + 6− 1 = −6 = (−1)4−1(4− 1)!.

5.2 k-equal Partition Lattice

Let Πn be the partition lattice on the set [n] with refinement as
the partial ordering. The k-equal partition is a sublattice of the pure
partition lattice.

Definition 5.2.1. For 2 ≤ k ≤ n, let Πn,k be a set of all partitions in
Πn having no blocks of sizes 2, 3, . . . , k−1. Under the induced ordering,
the set Πn,k is a lattice and is called the k-equal partition lattice.

Remark. For k = 2, we have Πn,k = Πn. All the results of Πn remains
the same for Πn,2.

Suppose σ covers π in Πn,k. Let us consider the set of labels Λ to
be a totally ordered set

1 < 2 < · · · < n < 1 < 2 < · · · < n.

We define an edge-labeling λ : E(Πn,k) −→ Λ according to one of the
following covering relations in Πn,k.

1. If σ is obtained from π by merging singletons and creating a new
k-block B, then λ(π → σ) = max B.

2. If σ is formed by merging a non-singleton block B of π with a
singleton block {a}, then λ(π → σ) = a.

3. If σ is obtained from π by merging any two non-singleton blocks
B1 and B2, then λ(π → σ) = max(B1 ∪B2).

Theorem 5.2.2. The edge labeling λ : E(Πn,k) −→ Λ of Πn,k defined
above is an EL-labeling.
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Proof. This can be proved in three steps. First of all we prove the
theorem for an upper interval [π, 1̂] then for the case where π = 0̂ and
finally we prove it for a general interval [π, σ] in Πn,k.

Let [π, 1̂] be an upper interval in Πn,k. Suppose π has p ≥ 1 non-
singleton blocks B1, B2, . . . , Bp with bi = max Bi and b1 < b2 < · · · <
bp. Let {a1}, {a2}, . . . , {aq} be the q singleton blocks in π ordered
such that a1 < a2 < · · · < aq. Let us construct a maximal chain

m of [π, 1̂] with length p + q − 1 in the following manner. We start
by merging the blocks B1 and B2 and form a new block B1 ∪ B2.
Then add the blocks B3, B4, . . . Bp one by one to the newly formed
blocks. Once all the non-singleton blocks are merged, start merging
the singletons a1 < a2 < · · · < aq one by one in each successive steps.
Thus we obtain a maximal chain m whose label is given by λ(m) =
(b2, b3, . . . , bp, a1, . . . , aq). Clearly we can observe that the labels are

strictly increasing, b2 < b3 < · · · < bp < a1 < · · · < aq. Hence the

maximal chain is the unique rising chain in [π, 1̂] and by construction
λ(m) is lexicographically strictly first.

Now let us take π = 0̂, the case where the partition π has only
singleton blocks. In this case we construct the rising chain by first
forming the k-block {1, 2, . . . , k} and then adding the elements k +
1, k + 2, . . . one by one to the newly formed blocks. This gives us the
unique rising chain m with the label λ(m) = (k, k + 1, . . . , n) which is
lexicographically strictly first.

Now consider a general interval [π.σ] in the k-equal partition lat-
tice Πn,k. Assume that the partition σ has r non-singleton blocks
C1, C2, . . . , Cr. Let us merge all the blocks of π contained in Ci to-
gether and keep all the other blocks of π as it is to construct a new
partition πi for i = 1, 2, . . . , r. Each interval [π, πi] is isomorphic to
an upper interval in the k-equal partition lattice on the set Ci. Thus
the same mode of construction used in case of an upper interval can
be considered to form a maximal chain mi in the interval [π, πi] with a
unique rising label λ(mi) that is lexicographically first in the interval
[π, πi]. Since the entries of λ(mi) ∈ Ci and that of λ(mj) ∈ Cj, for
i 6= j, we have that λ(mi) ∩ λ(mj) = ∅.

Let the set {x1, x2, . . . , xt} be the collection of all entries occurring
in any λ(mi) for i = 1, 2, . . . , r such that x1 < x2 < · · · < xt. A
maximal chain m in [π, σ] can be constructed by building up the chains
mi in parallel so that we get the label λ(m) = (x1, x2, . . . , xt). In the jth
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step of the construction we identify i such that xj ∈ λ(mi) and merge
all the blocks of mi that contributes the label xj in λ(mi). Thus we
get a unique rising chain m that is lexicographically first in the interval
[π, σ]. This shows that the labeling λ in Πn,k is an EL-labeling.

As the lattice Πn,k admits EL-labeling, we say that it is lexico-
graphically shellable. Therefore it is homotopic equivalent to wedge of
spheres.

Proposition 5.2.3. The order complex ∆n,k = ∆(Πn,k) has the ho-

motopy type of wedge of spheres. Let β̃dn,k be the rank of the reduced

homology group H̃d(∆n,k). Then β̃dn,k is nonzero if and only if

d = n− 3− t(k − 2) for some t, 1 ≤ t ≤
⌊
n
k

⌋
and

β̃
n−3−t(k−2)
n,k = (t−1)!

∑
0=i0≤···≤it=n−tk

t−1∏
j=0

(
n− jk − ij − 1

k − 1

)
(j+1)ij+1−ij .

Proof. By Theorem 4.4.15, we know that the number β̃dn,k is the number
of falling chains of length d+2 in ∆n,k. Let us construct a falling chain
m in ∆n,k. The falling chain m has a label λ(m) such that all the
unbarred labels comes first followed by the barred ones. Therefore the
construction of m is carried out in two stages, the first stage where
we create the k-blocks and merges the singletons and the second stage
where the non-singleton blocks are combined.

Suppose that by the end of the first stage of construction t number
of k-blocks have been created. This results in the availability of t
non-singleton blocks and n− tk singletons for the second stage. Total
t+n−tk steps are taken to finish the first stage, that is t steps to create
the t k-blocks and then a n−tk steps to merge the remaining singletons.
In the second stage we merge the t available non-singletons in t−1 steps.
Hence the length of the falling chain is exactly n− 1− t(k − 2).

Let us count the number of falling chains of length n− 1− t(k− 2)
in ∆n,k. First k-block created in the first stage of construction should
include the entry n in it. This process is continued till the tth k-block
is formed. Then the remaining singletons are merged into the blocks
one by one. Let 0 = i0 ≤ i1 ≤ · · · ≤ it = n − tk. Suppose ij+1 − ij
singletons are merged between the formation of (j + 1)st k-block and
(j + 2)nd k-block, for j = 0, 1, . . . , t− 2 and with the j = t− 1 step we
create the tth k-block. As mentioned earlier, the first k-block should
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carry the value n in it, then there are
(
n−1
k−1

)
ways of creating it. We have

i1− i0 singletons left to merge in order to get the second k-block. Thus
the largest i1 singletons are also added to the first k-block. Therefore
for j = 0 case, we can have

(
n−1
k−1

)
initial segments of the falling chain.

After the formation of the first k-block there will be n−k−i1 singletons
available and the largest among these singletons should be definitely
considered when the second k-block is constructed. Hence there is a
choice of k − 1 elements from the available n − k − i1 − 1 singletons.
Once the second k-block is created, we take the top i2 − i1 elements
and add it one by one to the two k-blocks formed. Thus these elements
have two choices, either they can be merged into the first k-block or to
the second k-block. This give rise to

(
n−k−i1−1

k−1

)
2i2−i1 possibilities. All

the other blocks of the first stage can be created in the same manner.
Therefore in general, the number of initial segments of the falling chain
available after the first stage is

t−1∏
j=0

(
n− jk − ij − 1

k − 1

)
(j + 1)ij+1−ij .

In the beginning of the second stage we have t blocks of size ≥ k.
Let it be B1, B2, . . . , Bt such that maxB1 < maxB2 < · · · < maxBt.
In order to construct the falling chain we merge B1 to one of the t− 1
blocks, then this union is merged to the remaining t− 2 blocks and so
on. This process can be carried out in (t− 1)! number of ways. So, the
total number of falling chains of length n− 1− t(k − 2) is

(t− 1)!
∑

0=i0≤···≤it=n−tk

t−1∏
j=0

(
n− jk − ij − 1

k − 1

)
(j + 1)ij+1−ij .

By equating d + 2 = n− 1− t(k − 2), we get d = n− 3− t(k − 2)
and we can conclude that

β̃
n−3−t(k−2)
n,k = (t−1)!

∑
0=i0≤···≤it=n−tk

t−1∏
j=0

(
n− jk − ij − 1

k − 1

)
(j+1)ij+1−ij .

The Betti numbers β̃
n−3−t(k−2)
n,k of ∆n,k can be computed by counting

the falling chains in an alternative and simpler way, that is in terms of
standard tableaux of hook shape.
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Let Dk,1j , for j ≥ 0 be the diagram constructed with k cells in the
first row, the arm and one cell in each of the remaining j rows which
is known as leg of the diagram. The construction Dk,1j is known as a
hook shaped Ferrers diagram.

Definition 5.2.4. For j1, j2, . . . , jt ≥ 0 and t ≥ 1, let Dk(j1, j2, . . . , jt)
be the skew diagram consisting ofDk,1ji , i = 1, 2, . . . , t.Dk(j1, j2, . . . , jt)
is constructed by joining the northeast corner of Dk,1ji to the south-
west corner of Dk,1ji+1 for i = 1, 2, . . . , t − 1. The new construction,

Dk(j1, j2, . . . , jt) is called a broken hook diagram of type (n, k, t), where
n = j1 + j2 + · · ·+ jt + kt is the total number of cells in the diagram.

12 5 4

7

2

14 8 1

11

16 15 13

10

9

6

3

Figure 4

If the cells of a broken hook is filled with distinct numbers from
{1, 2, . . . , n}, then it is called a tableau of the broken hook diagram.
A tableaux is said to be a standard tableau if the entries in each row
from left to right and that from top to bottom along each column are
arranged in the decreasing order. If the entry n is filled in the northwest
corner cell of the leftmost hook of a standard tableaux T , then T is said
to be left standard. An example of a left standard tableau of D3(4, 1, 2)
is shown in the diagram (Figure 4).

Let T be a left standard tableau of the broken hook shape
Dk(j1, j2, . . . , jt) of size n and let Ti be the hook tableau formed by
restricting T to its ith hook Dk,1ji . For each left tableau T we will
associate a falling chain mT of length n − 1 − t(k − 2). This falling
chain will be constructed from the top of the tableau to its bottom in
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two steps. In the first step we separate the Ti blocks from rest of the
entries of Dk(j1, j2, . . . , jt) in a decreasing order of i = t, t − 1, . . . , 2.
This construction gives rise a partition just below 1̂ with two blocks, one
consisting the entries of Tt. Then we have a partition with three blocks,
one with the Tt entries and another with Tt−1. As the construction of
the falling chain reaches the end of first stage, we have t number of
non-singleton blocks T1, T2, . . . , Tt.

In the second stage of construction either remove a singleton from
the bottom of the leg of any one of the Ti or split the arm of any one
of the Ti into k singletons if all the cells of its leg has been already
peeled off. At each step of the second stage, the choice will be either
the smallest entry on the bottom of a leg or the arm with the smallest
maximum depending on the smallest value among the both.

The covering relations in the first stage has all labels equal to n
and that in the second stage are unbarred and equals the entry in the
cells that are peeled off from the bottom of the leg or the maximum
of the decomposed arm. Thus we form a unique falling chain mT in
association with the given left standard tableau T .

Proposition 5.2.5. Let Tn,k,t be the set of all standard tableaux con-
sisting the broken hook diagram of type (n, k, t), for 1 ≤ t ≤

⌊
n
k

⌋
. The

Betti numbers of the order complex ∆n,k = ∆(Πn,k) is given by

β̃
n−3−t(k−2)
n,k =

∑
j1+j2+···+jt=n,

ji≥k

(
n− 1

j1 − 1, j2, . . . , jt

) t∏
i=1

(
ji − 1

k − 1

)
.

Proof. Since we can associate a falling chain of length n− 1− t(k− 2)
to a left standard tableau of broken hook diagram of type (n, k, t), we
will just count the number of left standard tableaux of broken hook
shape Dk(j1 − k, j2 − k, . . . , jt − k) in order to get the Betti number

β̃
n−3−t(k−2)
n,k .

We know that in a left standard tableau, the entry n is fixed in the
left most cell. Therefore we are left with numbers 1, 2, . . . , n− 1 which
has to be filled among the available t hooks. This can be carried out

in

(
n− 1

j1 − 1, j2, . . . , jt

)
number of ways.
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In each left standard tableau Ti, the maximal entry is in the left
most cell. Thus in order to fill the arms, we need to choose k − 1
entries from the available ji − 1 entries for each Ti. Thus the arms

of the tableau can be filled in
t∏
i=1

(
ji−1
k−1

)
number of ways and each left

standard tableau can be filled in
(

n−1
j1−1,j2,...,jt

) t∏
i=1

(
ji−1
k−1

)
number of ways.

Then the summand∑
j1+j2+···+jt=n,

ji≥k

(
n− 1

j1 − 1, j2, . . . , jt

) t∏
i=1

(
ji − 1

k − 1

)

counts the total number of left standard tableaux of broken hook shape

Dk(j1 − k, j2 − k, . . . , jt − k), which equals β̃
n−3−t(k−2)
n,k .
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