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Abstract

We have used theoretical models to study individual motion of active particle

as well as collective dynamics and pattern formation in active particles. There are

many examples of active units that you can see in biological and complex physico-

chemical systems are motile cells, patterns which is localized in reaction-diffusion

system, chemically powered nano-rods or macroscopic animals. So here i am using

the stochastic differential equations to study the individual and collective motion of

point-like active particles in harmonic trap potentials. We characterized the active

system by using radial distribution and virial pressure.

We performed parallel-molecular dynamic simulations on a model for active sys-

tems for diferent Peclet numbers and for several system sizes. We have shown from

numerical studies that this active colloidal system phase separates. Then we have

also studied the dynamics of a brownian circle swimmer in a trap potential which

is harmonic. I have also shown the results in different conditions like time-varying

self-propulsion and harmonic tap potential and found the periodic trajectories which

is stable in the absence of brownian noise and if we include noise then the trajectories

become spiral and collapse into trap center.
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Chapter 1

Introduction

How do we distinguish between ”dead” matters and ”living ones”? What variables

do we choose to describe systems thst are living, i.e. those use energy from the

environment to propel themselves. These are imprtant questions to answer in order

to study living matter.

In this thesis, we look at active systems in confinement and otherwise. We study

individual and collective dynamics of the active particles.

1.1 Active Matter

Active motion might be defined as a motion of particles or agents under the influence

of an internal driving force. This driving force can have different origin such as non-

equilibrium dynamics in an artificial driven system or activities that are biological in

nature. It is basically different from the behaviour of dynamic of purely passive parti-

cles in solids, liquids and gaseous states at thermal equilibrium. Active particles have

an internal propulsion mechanism, which use the energy from external environment

and then convert into directed motion.

The most common example of an active matter system is the flock of birds. Each

birds use its own energy to fly. Even though each of the bird is moving in its inde-

pendent trajectory, but the collection of birds as whole form coherent pattern.

We cannot neglect fluctuations in these systems. Fluctuations can be internal or

from external environment. Therefore, our model system should include the effect of

noise.

Vicsek model was first introduced in 1995 and proved to be an important theoret-

ical study. In the experimental side, studies were done on bacteria, school of fish and

starlings. As discussed earlier, since energy is constantly pumped into the system,

1



(a)
[1]

(b)
[2]

(c)
[3]

Figure 1.1: Examples of active matter systems. (a)School of fish , (b)Flock of starlings,
(c)Bacterial suspension .

particles maintain a certain velocity. Vicsek model showed that self organized state

can emerge from a disordered state by taking activity. Active systems fall into the

class of non-equilibrium system where one cannot apply the thermodynamical con-

cepts like the Helmholtz free energy. The propulsive motion of particles can even lead

to phase separation in monodisperse systems of pure repulsive particles.
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1.2 Brownian Motion

The motion of particles suspended in a fluid like gas or water is often described by

Brownian motion.

Time evolution of a free brownian particle is given by the Langevin equation,

mv̇ = −mγv + η(t) (1.1)

where m and v represent mass and instantaneous velocity of the Brownian particle.

In this equation you can see two force parts because of effect of liquid medium on the

motion of brownian particle:

1. First part is mγ = ζ, which shows that there is a dynamical friction which

experienced by the particle.

2. Second part is fluctuating force, coming due to the kicks from solvant particles.

In Brownian motion, particles continuously collide with molecules present in the

fluid. The frequency of such collision is of the order of 1021 per second. Hence it is not

possible to use deterministic equation for these particles doing Brownian motion. If

the positions and velocities of all the molecules in the fluid are known at a given point

of time then one can in principle calculate the force uniquely. However, practically it

is impossible to keep track of all the particles. Hence a stochastic approach is needed

to address this problem. Assume that there exist arbitrary time interval dt = t − t′

such that η(t) and η(t′) are uncorrelated and v is free to change.

〈
η(t)

〉
= 0 (1.2)〈

η(t)η(t′)
〉

= Γδ(t− t′) (1.3)

where Γ determines strength of these fluctuations. Equation (1.2) implies that there

is no preferred direction for the random force.

Mean square displacement of a particle satisfying the Langevin equation is given by,

〈
X(t)2

〉
=

2kBT

mγ2
[γt− 1 + exp(−γt)] (1.4)

At very long times, as t→∞, particle is in the diffusion regime and

〈
X(t)2

〉
=

2kBT

mγ
t = 2Dt (1.5)

3



At short time limit (t −→ 0), From eq.1.4

〈
X(t)2

〉
=

2kBT

m
t2 (1.6)

In the short time, the mean square displacement is proportional to t2 and you can see

that it is independent of the nature of the liquid.

From the Langevin equation, velocity auto-correlation function can be obtained,

〈
v(t)2

〉
= v(0)2e−2γt +

Γ

2m2γ
[1− e−2γt] (1.7)

At long times system reaches equilibrium and mean square velocity is given by the

Boltzmann distribution, 〈
v(t)2

〉
=
kBT

m
(1.8)

From eqn. (1.7) and eqn. (1.8),

Γ = 2mγkBT (1.9)

It is the fluctuation-dissipation relation. It relates magnitude of fluctuations (Γ) to

the strength of frictional force (γ) which causes dissipation.

Plan of Thesis

In this project we present simulation and theory based studies of an active system us-

ing a minimal model of self-propelled Brownian disks interacting only via the excluded-

volume repulsive potential. The phase separation of self-propelled disks in two dimen-

sions was investigated. Then we considered a single active particle in a harmonic trap

and characterized its dynamics. Finally we looked at the collective dynamics of active

particles in harmonic trap.
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Chapter 2

Phase Separation in Active System

In this chapter, we study the collective dynamics of self propelled particles in a minimal

model. The particle interact via a repulsive potential. Here, one would not expect

clustering in a passive system of such particles. However, activity in the term of self

propulsion leads to clustering and a phase seperation.

2.1 Model and Simulation Methods

In the model, particles are characterized by their position ri and orientation θi. The

particles move with a constant velocity along their orientations. The orientation

undergo free rotational diffusion. Therefore the overdamped dynamics of position

and orientation are given by,

ṙi = Dβ[Fex(ri) + Fpv̂i] +
√

2DηTi (2.1)

θ̇i =
√

2Drη
R
i (2.2)

where, Fex(r) = −dUex(r)
dr

.

Uex(r) is called the WCA potential, given by,

Uex(r) =

4ε

[ (
σ
r

)12 − (σ
r

)6 ]
+ ε if r < 2

1
6

0 otherwise

(2.3)

σ is particle diameter, ε = kBT . This is a short range repulsive potential. Dr and D

are rotational and translational diffusion coefficients. In the low Reynolds number(a

dimensionless parameter that compares the effect of inertial and viscous forces) regime,

5



i.e. in the overdamped regime, they are related as

Dr =
3D

σ2
(2.4)

Fp is the magnitude of active force which gives rise to a velocity(in the absence of

interaction).

vp = DβFpv̂i (2.5)

where,

v̂i =

(
cos θi

sin θi

)
, β =

1

kBT
(2.6)

η are the uncorrelated Gaussian noise,

〈
ηi(t)

〉
= 0 and

〈
ηi(t)ηj(t

′)
〉

= 2Dδijδ(t− t′) (2.7)

Equations of motion are non-dimensionalized using σ, kBT and τ = σ2

D
as basic units

of length, energy and time respectively. The system is parametrised by two functions,

system density ρ ( ρ = N2

L2 ), where N is total number of particles in the system

and L is system length) and the Péclet number Pe 1. Péclet number is same as the

non-dimensionalized self-propulsion velocity,

Pe =
vpτ

σ
(2.8)

We employed molecular dynamics simulation technique to integrate the equations

of motion. Integration of stochastic equations (4.1 and 4.2) were established using

the stochastic Euler scheme. Time constraint was one of the major difficulty we have

encountered during execution. For a system of N particles, calculation of resultant

potential on a single particle requires time-steps of the order of N2. Parallel program-

ming techniques using OpenMP were used to reduce simulation time for calculating

pair-wise interactions. We have successfully been able to reduce this exponential time

requirement by threading the loops.

1Péclet number is defined as ratio of bulk flow of a quantity to rate of diffusion of the same
quantity,

Pe =
rate of advection

rate of diffusion
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2.2 Simulation Results

2.2.1 Phase Separation

Here, we have performed simulation with N = 5000 particles at a fixed density of

ρ = 0.7. The results for Pe = 10, 50 and 90 are shown in fig. 2.1. As we can

see, for Pe = 10, the system is homogeneous in the steady state. The local density

distribution is peaked about the system density. When we start increasing the Pe, then

at Pe = 50, we start observing clusters. The local density distribution is now broad

indicating the presence of these clusters. At very high Pe = 100, we observe a phase

separation, with the emergence of large clusters. Now, the local density distribution

shows two peaks - a dense phase of density higher than the system density and a

dilute phase with density less than the system density.

The phase separation is similar to what is observed in passive systems with par-

ticles undergoing attractive interactions. However in this system, there is neither

attractive interaction nor an alignment mechanism. The self propulsion coupled with

the excluded volume interaction gives rise to a self trapping mechanism - particles get

stuck and block each other. This leads to the phase separation into dense and dilute

phases.
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Figure 2.1: (left) snapshot of the system configuration for different Pe (right) corre-
sponding local density distributions. Distribution corresponding to the single density
flattens and broadens as Pe is increased and make binodal as the system phase sepa-
rates. N = 5000, Average density = 0.7, Time-steps = 20 x 105dt.

2.2.2 Pair Correlation

The radial distribution function or the pair correlation function g(r), is the probability

of finding a particle at a distance r from a reference particle, relative to the probability

for an ideal gas. This gives the density variation as a function of the distance from

reference particle.

In this active system, we observe that at a given value of the interaction strength ε,

the position of first peak of g(r) shifts towards smaller r with increasing Pe. In the

fig. 2.2, we compare g(r) for Pe=0 and Pe=30. At Pe=30, the peaks shifts to the

left. Higher Pe means higher speeds of the self propelled particles. The particles can

enter further into the repulsive regime of the interaction potential between particles.

Therefore it becomes more probable to observe particles at close distances, giving rise
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to higher peaks.

If the interaction strength is varied, keeping the Pe constant, then the effect is not

as much. The pair correlation function for ε = 4 and ε = 1 are shown in the fig. 2.3.

The peak shift slightly towards larger separation with increasing ε. However, there is

very small changes in the peak heights.

So, here we see how activity of active fluid system affect the pair correlation of

system. So we can see in the fig2.2, with increasing peclet(Pe=0 to 30) the size of the

first peak of pair distribution function increase in height and shifts towards smaller

distances.

In the case of higher peclet number, probability of observing smaller particle sep-

arations increases, since particles are able to more easily enter the repulsive domain

of the interaction force. In the case of larger separations, pair correlation function

g(r) falls below the active one. As a consequence, particle separations are moved to

smaller values.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0  0.5  1  1.5  2  2.5  3  3.5  4

g(
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Figure 2.2: Comparision of pair distribution function with increasing Pe , red(Pe=30)
and blue(Pe=0).

So increasing interaction parameter ε which controls strength of repulsion between

particles, for the WCA potential at fixed peclet number(Pe= 30), so we can see in

the fig 2.3, the first peak of the pair distribution function increases in height while its

position moves to larger particle separations.
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Figure 2.3: Comparision of pair distribution function with increasing ε, red(ε = 4)
and grey(ε = 1).

2.2.3 Virial Pressure

Virial pressure for a two dimensional active system is given as,

P =
ρ

2N

[
vpΣi〈v̂i.ri〉+ 48Σi<j〈rij.Fij〉

]
(2.9)

where 〈·〉 is the steady state average. The second term in the expression is the

usual expression for virial pressure for system of passive interacting particles. The

first term gives the active contribution.

We see in fig. 2.4, that the virial pressure for active system increases with increas-

ing activity at a fixed value of interaction strength. At a fixed Pe, the virial pressure

increase with increasing strength of interaction. Increasing ε, implies stronger repul-

sion leading to increasing virial pressure.
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Chapter 3

Brownian Motion of a Circle Swimmer in a

Harmonic Trap

Studying the dynamics of particles trapped by potentials, is important in many sce-

narios, such as colloids in optical tweezers and motion of tracers in a matrix. In

this study, we try to look at the dynamics of a single active particle in a trap under

different trap conditions. This based on the study of Soudeh Jahanshahi et al.[8]

Model and Simulation

Here we are using the overdamped langevin equations to study the brownian motion

of single particle in a 2D harmonic trap. Here we are taking harmonic potential

symmetric which is centered at the origin. [8]

V (r) =
γ

2
r2 (3.1)

where r2 = x2 + y2 and γ is trap strength of harmonic potential .

3.1 Constant Fp and Constant Fharmonic

In the overdamped limit condition, the translation motion of single particle in 2D

plane is given as

ṙ(t) = Dβ
[
Fpv̂(t)− γr(t)

]
+
√

2DηT (t) (3.2)

Unlike the previous study, we here are looking at a circle swimmer, which un-

dergoes active rotational motion with self propulsion. Therefore, for the angle θ(t)
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rotational motion is given by langevin equation

θ̇(t) =
√

2Drη
R(t) + w (3.3)

where, w models an effective torque and results in chiral motion. Dr and D are

rotational and translational diffusion coefficients.

(a) Results in the case of zero noise

Here i am considering the situation in the case of zero thermal noise, i.e., ηT (t) =

ηR(t) = 0 and in this condition, equation of motion are given as ,

x(t)

R
= e−γDrt[cx + f(Drt, w, θ0, γ)] (3.4)

and
y(t)

R
= e−γDrt[cy + f(Drt, w, θ0 −

π

2
, γ)] (3.5)

where cx = x0/R and cy = y0/R and (x0, y0) is initial position of center of mass of

particle and here f is function which is given by

f(t, w, θ, γ) =
Fp

γ2 + w2
[γeγtcos(wt+ θ) +weγtsin(wt+ θ)− γcos(θ)−wsin(θ)] (3.6)
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Figure 3.1: Nose free trajectories with constant Fp in constant harmonic trap, Fp =
100 and θ0 = 0:(a)γ = 10, cx = cy = 0 and w = 5, (b)γ = 3, cx = −20, cy = 20 and
w = 30.
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Corresponding to these equations, we get the trajectories results in different con-

ditions fig3.1. For small ratio w/γ particle approaches final trajectories in form of

circular but for higher ratio it take some revolutions until regular periodic motion is

achieved.

(b) In the presence of Brownian noise

In the presence of thermal noise, the motion of equations are obtained by averaging

over noise terms

〈x(t)〉
R

= e−γDrt[cx + f(Drt, w, θ0, γ − 1)] (3.7)

and
〈y(t)〉
R

= e−γDrt[cy + f(Drt, w, θ0 −
π

2
, γ − 1)] (3.8)

So you can see in fig 3.2, the noise averaged trajectories make spiral curves which

collapse into trap center and reason for this behavior is because of the factor e−Drt

which comes from rotational brownian motion. Although a deterministic torque causes

uniform rotation around the center of trap, the random noise leads to the reduction

of the radius, finally collapsing at he center of the trap.
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Figure 3.2: Nose averaged trajectories with constant self propulsion in constant har-
monic trap Fp = 100 and θ0 = 0:(a)γ = 10, cx = cy = 0 and w = 7, (b)γ = 0.7,
cx = cy = 0 and w = 10.
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3.2 Time-Dependent Self-Propulsion

Here we take self-propulsion time dependent and study the dynamics of a circle swim-

mer in harmonic trap. The equation for self-propulsion form is,

Fp(t) = Fp0 [1 + cos(νt+ φ)]û. (3.9)

where ν is propulsion frequency and φ is the initial phase.

Results in the case of zero noise

The equation of motion in the presence of brownian noise using langevin equations

are given as

x(t)

R
=e−γDrt[cx + f(Drt, w, θ0, γ)

+
1

2
f(Drt, w + ν, θ0 + φ, γ)

+
1

2
f(Drt, w − ν, θ0 − φ, γ)]

(3.10)

and

y(t)

R
=e−γDrt[cy + f(Drt, w, θ0 −

π

2
, γ)

+
1

2
f(Drt, w + ν, θ0 + φ− π

2
, γ)

+
1

2
f(Drt, w − ν, θ0 − φ−

π

2
, γ)]

(3.11)

If ratio of ν and w is rational, trajectories will be like closed rosette curves and if

the ratio is irrational, path will never make closed curve. Here we have taken ratio

rational in all condition for different w and ν which you an see in fig 3.3.
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Figure 3.3: Noise free trajectories with constant γ = 2, Fp0 = 1 and θ0 = φ = 0:(a)ν =
0.5 and w = 0.1, (b)ν = 0.7 and w = 0.7, (c)ν = 0.7 and w = 0.75, (d)ν = 1.2 and
w = 1.2.

In the presence of brownian noise

By including brownian noise, the mean positions of circle swimmer in x-y direction

are given as

〈x(t)〉
R

=e−γDrt[cx + f(Drt, w, θ0, γ − 1)

+
1

2
f(Drt, w + ν, θ0 + φ, γ − 1)

+
1

2
f(Drt, w − ν, θ0 − φ, γ − 1)]

(3.12)
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and

〈y(t)〉
R

=e−γDrt[cy + f(Drt, w, θ0 −
π

2
, γ − 1)

+
1

2
f(Drt, w + ν, θ0 + φ− π

2
, γ − 1)

+
1

2
f(Drt, w − ν, θ0 − φ−

π

2
, γ − 1)]

(3.13)

So we can see in the fig 3.4 that number of petals is same as earlier in the case

of free noise trajectories but due to rotaional noise, subsequent petals goes smaller

inside the earlier petals in next period.
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Figure 3.4: Nose averaged trajectories with constant γ = 50, Fp0 = 50, θ0 = 0, φ = 3π
2
,

ν = 7 and w = 14.

3.3 Time-Dependent Harmonic Potential

Now we study the dynamics of a circle swimmer in time varying harmonic trap po-

tential and keep the self-propulsion force value fixed and the equation of harmonic

potential is given as

γ(t) = γ0[1 + cos(Ωt)] (3.14)

where Ω is breathing frequency. This means that the swimmer is under the influence

of a trap which is opening and closing.
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In the absence of brownian noise

Now we have studied the motion of a circle swimmer in time dependent harmonic trap

similiar to earlier case with time dependent self propulsion. Here the trajectories are

determined by circle swimming and time dependent of the trap potential. So most of

the trajectories have many petals fig 3.5. In fig. 3.5(a), you can see that there are

three petals because breathing frequency Ω = 1.5 is three times larger than circling

frequency w = 0.5 and we have also shown here many trajectories with different Ω

and w fig. 3.5.
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Figure 3.5: Nose free trajectories with constant Fp = 1, θ0 = 0 and γ0 = 2 . (a)Ω = 1.5
and w = 0.5, (b)Ω = 0.5 and w = 0.5, (c)Ω = 0.5 and w = 0.51, (d)Ω = 0.4 and
w = 1.2.

19



Conclusion:

In the absence of noise, the circle swimmer in the presence of the harmonic trap shows

periodic trajectories. The period of the trajectories is determined by the frequencies

of the swimmer and those due to the time dependent trap or time dependent self

propulsion. In the presence of noise, the trajectories are spiral curves collapsing

towards trap center.
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Chapter 4

Active Particles in Two-Dimensional Trap

Having studied the dynamics of a single circle swimmer in a harmonic trap, under

different trap condition, we now looks at the collective dynamics of a large number of

interacting active particles in a harmonic trap. Many body systems under different

type of confinement is relevant in several situation. Here, we study active particles

which unlike the circle swimmer only has rotational diffusion.

4.1 Model and Simulation

We consider active particles interacting via standard repulsive potential. We nu-

merically integrate the langevin equations of N active particles in a harmonic trap

V (r) = γr2 interacting via WCA potential where r2 = x2 + y2.

As before, position(ri) and self-propulsion direction(θi) of particles completely

specify state of the system. Time evolution of particles is obtained by the overdamped

Langevin equations,

ṙi = Dβ[Fex(ri) + Fh(ri) + Fpv̂i] +
√

2DηTi (4.1)

θ̇i =
√

2Drη
R
i (4.2)

where,Fh(r) = −dV (r)
dr

and Fex(r) = −dUex(r)
dr

.

Uex(r) is called the WCA potential, given by,

Uex(r) =

4ε

[ (
σ
r

)12 − (σ
r

)6 ]
+ ε if r < 2

1
6

0 otherwise

(4.3)
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σ is particle diameter, ε is the strength of interaction potential.

Local Structures of system

Here we have simulated the dynamics of active system in harmonic trap at different

peclet number and you can see that at low peclet number active particles are packed

tightly towards trap center beacause of lack of activation in system which you can see

in fig. 4.1.
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Figure 4.1: snapshot of the system configuration at Pe=10.

For higher peclet number, particle have higher activity and move out of trap and

don’t make compact structure which you can see in fig. 4.2. After that we have

characterized these different local structures of active particles by radial distribution

function in next part.
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Figure 4.2: snapshot of the system configuration at Pe=100.

4.1.1 Radial Distribution

Here i have shown the radial distribution by gradually increasing the Peclet number

(Pe) which you can see in fig 4.3. Within the cluster, the activity of the particles

increases with Pe which lead to a broader cluster.

Fig 4.3 shows the stationary radial N-body density distribution for N = 625

particles for different values of the Pe number.

We can see that within the cluster, the particles have organized in concentric circles

giving rise to undulations of the density with the typical period which is given by the

minimal distance between particles. Other parameters are Dr = 0.04 and γ = 2. So

with increasing Pe number, undulations in the radial distribution decreases.

On the other hand, the cluster expands and the local packing fraction decreases

for large value of Pe basically at weak confinement .
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Figure 4.3: Comparision of pair distribution function with increasing Pe
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