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Abstract

The work at present incorporates mechano-chemical effects to extend Alan Turing’s

hypothesis on pattern formation. The patterns here are formed because the active

stress gradients driving the hydrodynamic flows advect the stress regulator which

balances out the diffusive fluxes. The first part of the work considers a mechanism

where one diffusing species, in one dimension, is seen to up-regulate the active stress,

which results in pattern formation. In the second part of the work two chemical

species are considered in one dimension where the fast-diffusing species is taken as

an up-regulator of the active stress and the slow-diffusing species is taken as a down-

regulator of the active stress. Here, spontaneous pulsatory patterns are seen to emerge.

This work can also be extended to higher dimensions. The entire work is based on

two PRL papers cited in the reference.





Chapter 1

Introduction

Patterns are seen everywhere around us. In biological systems, colourful patterns can

be found as stripes on tigers and zebras, and spots on leopards. One can also find

interesting patterns on the bodies of various fishes. The ubiquitous nature of these

pattern types, and what might be the underlying physical and mathematical basis of

such patterns, caught the attention of many theorists. Alan Turing, the pioneer in

this field of research, published a paper in 1952 titled ’The Chemical Basis of Morpho-

genesis’ [1] where he tried to explain how patterns are formed during morphogenesis,

which is the process of formation of various structures in an organism after an embryo

gets formed.

1.1 Turing Patterns

It has been argued and agreed upon that spatial inhomogeneity is a pre-requisite for a

growing embryo to take shape. So it is reasonable to assume that the biological signals

that regulate such inhomogeneties, must themselves have an inhomogeneous spatial

distribution. Hence, these biological signals operate in a concentration-dependent

manner - Higher the concentration of a chemical species, greater the signal. These

1



Chapter 1 Introduction: Turing System 2

chemical species which determine the fate of growing cells in the context of morpho-

genesis are termed as Morphogens. The word ’patterns’ in our present context refers

to this spatial distribution of chemical species.

The mathematical model of a growing embryo needs the description of the ’state of

a system’ which is determined from the information of the state a short while before.

The description of such a state according to Turing [1] consists of two parts:

• Mechanical Part: Information regarding stress, velocity, density, elasticity and

so on.

• Chemical Part: Information on chemical reactions and on concentrations and

diffusibilities of each substance at each point in time.

The mechanical and the chemical parts are most of the times coupled and this adds

complexity to the problem. Turing investigated the system where the mechanical

aspects can be ignored compared to the chemical aspects.

1.2 Reaction-Diffusion system

The plausible mechanism given by Turing are in terms of Reaction-Diffusion equations,

where a minimum of two chemical species is considered and they are considered to be

diffusing as well as reacting with each other [2].

Consider a Chemical species i with diffusion coefficient Di. Let the concentration,

a function of position x and time t, be ci(x, t). Then the flux of species i in the

x-direction due to diffusion, ji is given by:

∂tci = −∂xji j = −Di∂xci (1.1)

Let ri(ci) be the rate of change of the species i by chemical reactions. Then the rate

of change of concentration due to chemical reactions is given by:

∂tci = ri(ci) (1.2)
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If we also include diffusion of these chemical species, then we get the following

Reaction-Diffusion master equation:

∂ci
∂t

= Di
∂2ci
∂x2

+ ri(ci) (1.3)

This can also be generalized to two or three dimensions and multiple chemical species

∂ci
∂t

= Di52 ci + ri(ci) (1.4)

1.3 Turing System: Linear Stability Analysis

To see when the Turing system will produce spontaneous patterns, we need to do a

linear stability analysis and get the conditions necessary for getting instabilities which

generates patterns. Consider a one dimensional system with two chemical species. Let

their concentrations be represented by a and s [3]:

∂a

∂t
= Da

∂2a

∂x2
+ ra(a, s) (1.5)

∂s

∂t
= Ds

∂2s

∂x2
+ ra(a, s) (1.6)

The homogeneous steady state is (a0, s0) considering a perturbation about this steady

state and expanding both the equations about this point, using Taylor series, where

ras = ∂ra
∂s

and d = Da

Ds
, we get:

∂(a0 + δa)

∂t
=
d∂2(a0 + δa)

∂x2
+ ra(a0, s0) + raaδa+ rasδs (1.7)

∂(s0 + δs)

∂t
=
∂2(s0 + δs)

∂x2
+ rs(a0, s0) + rsaδa+ rssδs (1.8)

Taking the spatial variation in the perturbation, as a Fourier series we get δak(t)e
ikx

with k being the mode. Now solving the differential equation, we get:

∂(δak)

∂t
= −dk2δak + raaδak + rasδsk (1.9)
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∂(δsk)

∂t
= −k2δsk + rsaδak + rssδsk (1.10)

Now we can write this in the matrix form as:

∂

∂t

 δak

δsk

 = A

 δak

δsk

 , A =

 −dk2 + raa ras

rsa −k2 + rss

 (1.11)

This is an eigenvalue equation and we will get two eigenvalues σ1 and σ2 and two

linearly independent eigenvectors V1 and V2 δak

δsk

 = c1V1e
σ1t + c2V2e

σ2t (1.12)

The system of equations is stable if and only if both the eigenvalues are negative.

Otherwise the corresponding mode will grow and cause instabilities which will lead to

spontaneous pattern formation. The eigenvalues are given by:

σ =
1

2
(trA±

√
tr2A− 4detA) (1.13)

Therefore the stability conditions are trA < 0 and detA > 0

trA = −(1 + d)k2 + raa + rss (1.14)

detA = dk4 − (raa + drss)k
2 + raarss − rasrsa (1.15)

Implications of this stability conditions are:

• If there is no diffusion, then trA < 0 if and only if raa and rss are negative. This

means that the chemical reaction system by itself is stable. Trace is maximum

for the zeroth mode, which means that if the instability has to occur in the

trace, then the zeroth mode will be the fastest growing mode.

• If the determinant is positive at the onset of instability (when trace crosses zero)

then the eigenvalues we get will be imaginary, which means that the zeroth mode

is oscillatory and this leads to a Hopf bifurcation.
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In the developmental context, we would want stable chemical reactions and patterns

to emerge as the embryo grows, so a Hopf bifurcation is not desired. Which means

at least one of raa or rss is negative. Now, without diffusion the chemical reaction is

stable if raarss − rasrsa > 0. To find the fastest growing mode in the instability, we

take the differential of detA with respect to k2 to get:

k2
0 =

raa + drss
2d

(1.16)

Physical implications of the stability conditions (Turing’s Condition for pattern for-

mation):

1. The minimum occurs for a real k0 only when there is a positive feedback present.

This means that one of the chemical species must be auto-catalytic in nature.

Making an arbitrary choice, let raa > 0 (activator). But both cannot be auto-

catalytic, (to avoid Hopf bifurcation) and hence rss < 0 (inhibitor).

2. A further condition comes out that d < 1. Which means that the inhibitory

species must be fast diffusing compared to the activator species.

Intuitively, we can see that the concentration of the activator builds up locally, and

tries to spread. But the inhibitor spreads faster, which pins the peaks of the activator

and does not let it spread. This also sets a wavelength for the pattern of the formed

peaks.

1.4 What next?

In a developmental context, the spatial distribution of chemical species forms the

famous Turing patterns following the reaction diffusion equations. Alan Turing in his

paper in 1952, also predicted that the mechanical effects have a huge hand in pattern

formation, but did not investigate it. After nearly 60 years, a major break-through

happened in this field where these said mechanical effects were investigated. The

work in this thesis largely is based on these two major PRL papers [4] and [5]. In the
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next few chapters, these mechanical effects will be investigated and some numerical

results will also be presented to show pattern formation without invoking any chemical

reactions.

First, we will investigate how these mechanical effects can be brought into the problem.

Here we will use only one chemical species and solve the problem in one dimension.

Stationary stable patterns will be seen to emerge in this situation. Next two chemical

species will be considered, and oscillatory patterns will be seen after this, the model

will be extended to two dimensions.
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Chapter 2

Active Fluid With One Chemical

Species

It was possible to incorporate the mechanical aspects in pattern formation with the

rise of the field of Active Matter. Typically in every cell, there is a mesh-work of fila-

mentous protein structures called cytoskeletal filaments or actin materials (F-Actin).

The actin helps certain other proteins called myosin motors to carry cargo across the

cell [1]. The movement of myosin motors along the actin filaments causes mechanical

stress on long length scales reaching up to cellular and tissue scales. This self pro-

pelled motion of the myosin motors is termed as active transport because it requires

energy which comes from the hydrolysis of Adenosine Triphosphate (ATP) in cells.

The system we consider here is hence, a non-equilibrium system as it is driven out of

equilibrium because the system gets energy from ATP and so it is classified under a

new class of materials called Active Matter [2] [3].

2.1 Advection-Diffusion Equation

The mathematical model that incorporates the mechano-chemical aspects into pat-

tern formation was first given by Justin Bois, Frank Jlicher and Stephan Grill in 2011

[4]. This approach takes the help of an advection-diffusion equation to model the

9
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concentrations and the velocities are modelled using a force balance equation which

contains a stress term. This stress term is composed of a viscosity-dependent passive

stress and a concentration dependent active stress. This active stress is the contribu-

tion from the active (ATP consuming) acto-myosin components and this term is also

seen to couple the velocity equation to the concentration equation.

Consider a thin film of constant thickness of the active fluid (Cytoskeleton).The move-

ment is assumed to be solely along x-axis. The concentration c(x, t) of the regulator

is given by the continuity equation with j being the flux. This equation is essentially

a statement of conservation.

∂tc = −∂xj, j = −D∂xc+ vc (2.1)

As the concentration flows with the fluid (moving with velocity v), the flux of the

regulator has an advective component, in addition to a diffusive component (diffusion

coefficient D). Since the fluid is considered explicitly here, we need to consider the

corresponding constitutive equation which gives the stress as:

σ = η∂xv + (ζ∆µ)0f(c) (2.2)

η∂xv : Passive viscous stress (η: viscosity)

(ζ∆µ)0f(c): Active concentration-dependent stress

The active component of stress contains ∆µ which is the change in chemical potential

associated with the ATP hydrolysis and a constant ζ. f(c) is a dimensionless function

dependent on the concentration.

The Langevin equation, which is essentially a force balance equation, in the absence

of any inertial forces, is given by:

∂xσ = γv (2.3)

with γ being the frictional coefficient representing the friction due to a movement over

a cell membrane or a substrate.
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The dimensionless function that is dependent on concentration is taken as f(c) = c
1+c

.

This particular form is considered because: For small values of c the function depends

on this concentration, where as for large values, where (c+ 1) ≈ c, f(c) will approach

one. Substituting this form for f(c), into the equation (2.2) we get the stress to be

dependent on the concentration as follows:

σ = η∂xv + (ζ∆µ)0

(
c

1 + c

)
(2.4)

Substituting (2.4) into the force balance equation (2.3) we see that the velocity is

dependent on the concentration of the regulator.

η
∂2v

∂x2
+ (ζ∆µ)0

∂

∂x

(
c

1 + c

)
= γv (2.5)

Equation (2.1) when simplified leads to an advection-diffusion equation as follows:

∂c

∂t
+
∂(vc)

∂x
= D

∂2c

∂x2
(2.6)

The two equations above (2.5) and (2.6) are the governing equations responsible for

pattern formation. These equations were non-dimensionalized and numerically solved

to obtain the patterns in one dimension.

2.2 Linear Stability Analysis

To understand the spontaneous emergence of patterns from a unique homogeneous

steady state [c(x) = c0, v = 0] linear stability analysis is done considering the pertur-

bations about these steady states [4]. Let the perturbations be of the form:

v = δv0e
βteikx c = c0 + δc0e

βteikx (2.7)
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where the wave number corresponding to periodic boundary conditions is kn = 2πn
L

with n ∈ N [5]. Linearizing the system we get:

− k2δv0 + ikf ′(c0) = δv0 (2.8)

βδc0 + ik(pe)c0δc0 = −k2c0 (2.9)

From the equation (2.8), solving for δv0

δv0 =
ikf ′(c0)δc0

1 + k2
(2.10)

Substituting (2.10) and f ′(c0) = 1
(1+c0)2

in (2.9) and solving for β we get:

β = −k2

[
1− pe c0

(1 + k2)(1 + c0)2

]
(2.11)

where β is the growth rate of the perturbation with wave number k. Patterns spon-

taneously form when the uniform steady state becomes unstable, which is when the

growth rate β becomes positive for some k. So the condition for pattern-forming in-

stability on a periodic domain with k = 2π
L

(L being the domain length) and c0 being

the uniform steady state concentration is as follows:

pe >

(
1 +

4π2

L2

)
(1 + c0)2

c0

(2.12)

If the limit of a large domain size, which is when the domain size is much larger than

the size of the characteristic wavelength of the instability, the condition necessary

then becomes:

pe >
(1 + c0)2

c0

(2.13)

The above is the condition for the peclet number, so that spontaneous patterns emerge.

It is also important to note that the total amount of regulator is conserved, which

means when there is an accumulation of concentration at a particular place, there has

to be a depletion of concentration at another place.
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2.3 Numerical Solution and Analysis

Let us consider that x ∈ [0, L]. After making the main equations (2.5) and (2.6)

dimensionless we get:
∂c

∂T
+ pe

∂(V c)

∂X
=

∂2c

∂X2
(2.14)

∂2V

∂X2
+

∂

∂X

(
c

1 + c

)
= V (2.15)

where T = t
τ

with τ = l2

D
, X = x

l
and V = v

U
. Peclet number pe = Ul

D
is the ratio of

the diffusive to advective time scales. U = (ζ∆µ)0√
ηγ

denotes the characteristic velocity,

as evident from the main equations.

Numerically solving the above equations (2.14) and (2.15) in MATLAB by following

the discretization as shown in Appendix-A, the following plots were generated when

periodic boundary conditions were imposed.

0 1 2 3 4 5 6

0

5

10
Concentration

x/l

0 1 2 3 4 5 6

-0.4

-0.2

0

0.2

0.4
Velocity

Figure 2.1: Concentration and Velocity (v/U) plots for x/l = 2π.

Figure 2.1 shows the non-homogeneous steady states with peclet number pe = 25. It

can be seen that the velocity profile crosses zero, at the peak of the concentration

profile. This means that the material is flowing towards the peaks and away from the

valleys. Hence, the pattern is maintained by a balance of the advective flux which



Chapter 2 Active Fluid With One Chemical Species 14

brings things into the peaks and the diffusive flux which take things out of them,

thereby creating a concentration pattern with a steady state flow profile.

The velocity profile can be seen to cross zero at the extrema of the concentration

profile such that material flows into the peaks and out of valleys. The pattern is

maintained by a balance of advective flux into the peaks and diffusive flux out of

them,

6

4

x/l

2

02

4
time

6

8

10

5

10

0

12

c
(x

,t
)

Figure 2.2: Spontaneous emergence of a concentration peak.

Figure 2.2 shows a spontaneous emergence of a concentration peak (pattern). Time

here refers to the non-dimensionalized T = t
τ

In the figure 2.3 an intermediate multi-peaked state can be seen. This after further

evolution of time merges into a single peak which is the steady state solution. This

merging can be seen clearly in the figure 2.4.
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Figure 2.3: Intermediate multi-peaked state. Here x/l = 3π
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Figure 2.4: Merging of two intermediate peaks to form a single stable peak.
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2.4 Conclusions

It was seen through linear stability analysis that the system of advection-diffusion

equations considered here, should give rise to an instability and hence spontaneous

patterns must emerge. This was confirmed by solving the set of these equations

numerically. Hence it was shown that, even in the absence of any chemical reactions,

spontaneous patterns can emerge in a system with only one diffusing chemical species

(Turing system needs a minimum of two chemical species). The next question of

interest would be whether such similar patterns would emerge, when multiple chemical

species are involved, and if that result can also be obtained without invoking any

chemical reactions.
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Chapter 3

Active Fluid With Two Chemical

Species

In the presence of multiple chemical species, classical Turing instabilities could give

rise to spatially periodic oscillatory patterns. Here, we ask if in an active fluid with

two diffusing chemical species, the same phenomenon is observed without invoking

the chemical reactions [1].

3.1 Advection-Diffusion Equation

Consider two chemical species of concentration A(x, t) and I(x, t) at position x and

at time t, moving in a fluid of finite size L. The movement is considered to be only

along the x−axis. The continuity equation, which considers diffusion, with diffusion

coefficient D and bulk velocity v is given below:

∂A

∂t
+
∂(vA)

∂x
= D

∂2A

∂x2
(3.1)

∂I

∂t
+
∂(vI)

∂x
= αD

∂2I

∂x2
(3.2)

Both the chemical species are diffusing with different rates of diffusion. Here α > 0

is the ratio of the coefficients of diffusion of species I to species A. The stress has a

19
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passive term and an active term as it did in the case of a single diffusing species. This

active term has contributions from both the chemical species and is given as follows:

σ = η∂xv + (ζ∆µ)0f(c) (3.3)

η∂xv : Passive viscous stress [2] (η: viscosity)

(ζ∆µ)0f(c): Active concentration-dependent stress

where both the chemical species A and I regulate f(c)

f(c) = (1 + β)
A

1 + A
+ (1− β)

I

1 + I
(3.4)

Considering the equation for force balance (2.3) as in the previous case we get:

η
∂2v

∂x2
+ (ζ∆µ)0

∂

∂x

(
(1 + β)

A

1 + A
+ (1− β)

I

1 + I

)
= γv (3.5)

Equations (3.1), (3.2) and (3.5) are the main governing equations for this particular

system. Note that the concentrations of both these two chemical species A and I will

be conserved.

3.2 Linear Stability Analysis

To understand the dynamics of the system better, a small perturbation δc = c− c0 =

eikx is taken about the homogeneous state c0 = (A0, I0), v = 0. Taking equation (3.5)

into Fourier space, we get:

vk =
1

γ
(η(ik)2vk) +

(ζ∆µ)0

γ
F [∂xf(c)] (3.6)

where F [∂xf(c)] = ik(Ak∂Af + Ik∂If). Therefore vk is given by:

vk =
ik(ζ∆µ)0(Ak∂Af + Ik∂If)

γ(1 + l2K2)
(3.7)
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where l2 = η
γ
. Writing the equations (3.1) and (3.2) also in the Fourier space, we get:

∂tAk = −ikvkA0 −Dk2Ak (3.8)

∂tIk = −ikvkI0 − αDk2Ik (3.9)

Substituting for vk from (3.7) into equations (3.8) and (3.9), and writing it in matrix

form where L is the linear stability matrix we get the eigen value equation:

∂

∂t

 Ak

Ik

 = L

 Ak

Ik

 (3.10)

Let pe = (ζ∆µ)0
γD

be the peclet number, τ = l2

D
be the diffusive time scale, fA ≡ ∂Af(c0)

and fI ≡ ∂If(c0). The linear stability matrix (L) is given by:

τL = −k2l2

 1 0

0 α

+
(Pe)k2l2

1 + k2l2

 A0fA A0fI

I0fA I0fI

 (3.11)

The homogeneous state (c0)is unstable if the leading eigen value (λ+(k)) for the wave

number k of the linear stability matrix L is positive. The eigen values are given by:

λ(k) =
1

2

[
tr(L)±

√
(trL)2 − 4det(L)

]
(3.12)

where the trace is trL and ∆L = [(trL)2 − 4det(L)] is the discriminant, with det(L)

being the determinant.

trL = −Dk2

[
(1 + α)− pe(A0fA + I0fI)

1 + k2l2

]
(3.13)

∆L = D2k4

[
(1 + α)2 +

(pe)2

(1 + k2l2)2
(A0fA + I0fI)

2 − 2(pe)(1− α)

1 + k2l2
(A0fA − I0fI)

]
(3.14)

For a system of size L the wave number for the periodic boundary condition is given

by kn = 2nπ
L

where n ∈ Z. The mode k1 becomes unstable when the peclet number

is increased beyond the critical peclet number (pec). It was seen that the instabilities

can be of two types - Oscillatory and Stationary. On increasing the peclet number,
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the homogeneous state (A0, I0) will undergo an oscillatory instability when trL > 0

and ∆L < 0 and this happens when pe > pec

• if fA > 0 and fI < 0 for α < 1 OR

• if fA < 0 and fI > 0 for α > 1

pec followes from (3.13) and is given by:

pec =
(1 + α)(1 + 4π2l2/L2)

A0fA + I0fI
(3.15)

fA > 0 implies that A up-regulates the active stress and fI < 0 implies that I down-

regulates the active stress. So an oscillatory instability occurs when the up-regulator

(A) of active stress is fast diffusing compared to the down-regulator (I) of active stress

(α < 1) and vice-versa.

These conditions for advection-diffusion systems look very similar to the Turing in-

stability conditions for reaction-diffusion equations, although here, the instability is

’mechano-chemical’ in nature.

For large enough peclet values, it is interesting to note that the oscillatory states are

unstable and they transition into stationary states, which can be seen in the phase

portrait (figure 3.5).

3.3 Numerical Solution and Analysis

After non-dimensionalizing of the main governing equations, two control parameters

remain, they are β and the peclet number (pe = Ul
D

). These are varied as shown

in the phase portrait figure 3.5 to get oscillating states as well as stationary states.

MATLAB was used to generate the plots [3].
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Figure 3.1: Oscillatory patterns can be seen. A is represented by the blue line
and I by the red line.

0 1 2 3 4 5 6

0

1

2

3

4

5
Concentration of A and I

0 1 2 3 4 5 6

-0.5

0

0.5
velocity

Figure 3.2: The concentration peaks can be seen. I is forming a bigger peak than
that of A

Consider that A is an up-regulator and I is a down-regulator of active stress, and that

I is slower diffusing than A. Now, oscillatory states can be reasoned out as follows:

When the local concentration of I is less as seen in the figure 3.1, then the active

stress is higher, and this drives convergent flows. This convergent flow, also brings in

both the chemical species A and I and hence both of them peak at a place. As these

chemical species have different rates of diffusion, and I being slow, it forms a sharper
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Figure 3.3: The peaks are forming at a different place now.(Periodic boundary
condition employed). Oscillatory patterns obtained at β = 3.0, pe = 6.5
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Figure 3.4: Stationary patterns obtained at β = 2.5, pe = 7.0

peak compared to A as seen in figure 3.2. This reduces the convergent flow, and both

the peaks of A and I start to relax by diffusion but the peak I remains longer than

peak A which intern again enforces divergent flows from the remaining peak I. This

process hence makes A and I peak in a different region as seen in the figure 3.3 and

the cycle repeats again. If the ratio of advection to diffusion is increased by increasing

the peclet number, then oscillatory states transition to stationary states as seen in

the figure 3.5.
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Figure 3.5: Phase portrait. It can be seen that if the peclet number is increased
for a particular value of β, there is a transition of the numerical solution from

oscillatory to stationary states

3.4 Conclusions

It was seen through linear stability analysis that the system of advection-diffusion

equations considered here, should give rise to an oscillatory instability and hence os-

cillations should be observed. This was confirmed by solving the set of these equations

numerically and generating video clips of the time series to visualize the oscillations.

The conditions obtained for oscillations look very much like the Turing instabilities

but these were obtained without involving any chemical reactions. Spontaneous pat-

terns can emerge and oscillate in a system where two diffusing chemical species are

considered, much like the Turing system. But the nature of instabilities are mechano-

chemical in this context, which is very much different than the chemical instabilities

obtained by Turing. The next question of interest would be to see what happens if

this system is extended to two dimensions.
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Chapter 4

Active Fluid In Higher Dimensions

The previous model of the active fluid, can be extended to higher dimensions. Here

we will be looking at a two dimensional model. We will also be looking at multiple

chemical species and if patterns can form in such a context. No results have yet been

obtained for this framework and this work is still in progress. Nevertheless, a general

framework will be presented here.

4.1 Advection Reaction Diffusion Equation

In the previous chapter, it was seen that for oscillations, it was necessary that the

two chemical species diffuse at different rates. Here the same thing can be achieved

by allowing the two chemical species to have different relaxation times through linear

chemical kinetics [1].

Consider two chemical species of concentration A and I [2].

∂tA = −∇ · (vA) +D∇2A− κ(A− A0) (4.1)

∂tI = −∇ · (vI) +D∇2I − ρκ(I − I0) (4.2)

29
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Here κ is the turnover rate of A. ρ > 0 is the ratio of the turn over rate of A to that

of I. A0 and I0 are the steady state concentrations of the two chemical species, with

diffusion coefficient D. The bulk velocity v can be given by the force balance equation

as follows:

∇ · σ = γv σ = σp + ζ∆µI (4.3)

The stress here consists of passive stress σp, which comes from the Navier-Stokes equa-

tion [3], and the active stress (ζ∆µ)0f(c)I, where c = (A, I) and f is a dimensionless

function given by:

f(c) = (1 + β)
A

1 + A
+ (1− β)

I

1 + I
(4.4)

The passive stress is given by:

σp = η

[
∇v + (∇v)T − 2

d
(∇ · v)I

]
+ ηv(∇ · v)I (4.5)

The passive stress consists terms with shear viscosity (η) as well as bulk viscosity (ηv).

d denotes the space dimension

4.1.1 In Two Dimensions

If these equations are explicitly written for a case of 2 space dimensions, they reduce

to the following:

Equations (4.1) and (4.2) can be written as

∂A

∂t
= −∂vxA

∂x
− ∂vyA

∂y
+D

∂2A

∂x2
+
∂2A

∂y2
− κ(A− A0) (4.6)

∂A

∂t
= −∂vxA

∂x
− ∂vyA

∂y
+D

∂2A

∂x2
+
∂2A

∂y2
− κ(A− A0) (4.7)

The equations for velocities will be:

γvx = η

(
∂2vx
∂x2

+
∂2vx
∂y2

)
+ ηv

(
∂2vx
∂x2

+
∂2vy
∂x∂y

)
+ (ζ∆µ)0

∂f(c)

∂x
(4.8)
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γvy = η

(
∂2vy
∂x2

+
∂2vy
∂y2

)
+ ηv

(
∂2vy
∂y2

+
∂2vx
∂x∂y

)
+ (ζ∆µ)0

∂f(c)

∂y
(4.9)

These four equations (4.6), (4.7), (4.8), (4.9) are the main governing equations for the

dynamics in two dimensions. These equations need to be non-dimensionalized and

then numerical results need to be obtained.

4.2 Conclusion

It was seen in chapter 2 that one can get spontaneous patterns to form much like

the Turing patterns, even in the absence of reactions, and with just one chemical

species moving in one dimensions. This was demonstrated numerically as well as

theoretically with the help of the linear stability analysis. In chapter 3, two chemical

species were taken moving in one dimension, with one chemical species up-regulating

the active stress and one chemical species down-regulating the active stress and spatial

oscillations in peaks of these concentrations were shown. This was also demonstrated

theoretically with the help of linear stability analysis as well as numerical results

obtained which matched the theory. In this chapter, we have seen how to extend this

model to higher dimensions, and equations for two dimensions were explicitly stated.

We are expecting to get numerical results for this model in two dimensions as well.
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Appendix A

Discretization Procedure

A.1 1-Dimensional system, 1 Diffusing species

The two governing coupled partial differential equations, in the non-dimensionalized

form is given below:
∂c

∂T
+ pe

∂(V c)

∂X
=

∂2c

∂X2
(A.1)

∂2V

∂X2
+
∂f(c)

∂X
= V (A.2)

where f(c) = c
1+c

, T = t
τ

, X = x
l
. c is the concentration and pe denotes the peclet

number

A.1.1 Numerical solution

∂2V

∂X2
=
Vi+1 − 2Vi + Vi−1

(dX)2
(A.3)

∂f(c)

∂X
=

ci+1 − ci−1

(1 + ci)2)(2dX)
(A.4)

Substituting (A.3) and (A.4) in (A.2) and rearranging, we get the equation for velocity.

Vi =
1

(2 + (dX)2)

[
(dX)(ci+1 − ci−1)

2(1 + c2
i

+ Vi+1 + Vi−1

]
(A.5)
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Similarly,
∂c

∂T
=
ct+1
i − cti
dT

(A.6)

∂2c

∂X2
=
cti+1 − 2cti + cti−1

(dX)2
(A.7)

∂(V c)

∂X
= Vi

(c)ti+1 − (c)ti−1

2dX
+ ci

(V )ti+1 − (V )ti−1

2dX
(A.8)

Substituting (A.6) , (A.7) and (A.8) in (A.1) and rearranging, we get the equation

for concentration.

ct+1
i = cti +

(dT )(cti+1 − 2cti + cti−1)

(dX)2
− (dT )(pe)

[
Vi

(c)ti+1 − (c)ti−1

2dX
+ ci

(V )ti+1 − (V )ti−1

2dX

]
(A.9)

(here t denotes the index in the time domain and i denotes the index in the space

domain)

Equations (A.5) and (A.9) are the ones to be put into the program.

A.1.2 Initial Conditions Used

ci = c0+ small perturbation = 1.0 + 0.00001sin(xi)

vi = 0.0

x = [0, 2π] and i = 1 to 100

dX = 2π
100

and dT = dX
2000

number of time steps run = 1000000

A.2 1-Dimensional system, 2 Diffusing Species

The 3 governing coupled partial differential equations in the non-dimensionalized form

are given below:
∂A

∂T
+ pe

∂(V A)

∂X
=
∂2A

∂X2
(A.10)

1

α

∂I

∂T
+
pe

α

∂(V I)

∂X
=

∂2I

∂X2
(A.11)
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∂2V

∂X2
+
∂f(c)

∂X
= V (A.12)

where f(c) = (1+β)A
1+A

+ (1−β)I
1+I

, T = t
τ

, X = x
l
. A and I are the concentration and pe

denotes the peclet number, α = 0.1

A.2.1 Numerical solution

∂A

∂T
=
At+1
i − Ati
dT

(A.13)

∂2A

∂X2
=
Ati+1 − 2Ati + Ati−1

(dX)2
(A.14)

∂(V A)

∂X
= Vi

(A)ti+1 − (A)ti−1

2dX
+ Ai

(V )ti+1 − (V )ti−1

2dX
(A.15)

Substituting (A.13), (A.14) and (A.15) in (A.10) and rearranging, we get the equation

for concentration of A.

At+1
i = Ati+

(dT )(Ati+1 − 2Ati + Ati−1)

(dX)2
−(dT )(pe)

2dX

[
V t
i [(A)ti+1−(A)ti−1]+Ati[(V )ti+1−(V )ti−1]

]
(A.16)

Similarly we get equations for concentration of I.

I t+1
i = I ti+

(αdT )(I ti+1 − 2I ti + I ti−1)

(dX)2
−(dT )(pe)

2dX

[
V t
i [(I)ti+1−(I)ti−1]+I ti [(V )ti+1−(V )ti−1]

]
(A.17)

(here ’t’ denotes the index in the time domain and ’i’ denotes the index in the space

domain)

Similarly
∂2V

∂X2
=
Vi+1 − 2Vi + Vi−1

(dX)2
(A.18)

∂f(c)

∂X
=

(1 + β)(Ai+1 − Ai−1)

2dX(1 + Ai)2
+

(1− β)(Ii+1 − Ii−1)

2dX(1 + Ii)2
(A.19)

Substituting (A.18) and (A.19) in (A.12) and rearranging, we get the equation for

velocity.
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Vi =
1

(2 + (dX)2)

[
(dX)(1 + β)(Ai+1 − Ai−1)

2(1 + Ai)2
+

(dX)(1− β)(Ii+1 − Ii−1)

2(1 + Ii)2
+Vi+1+Vi−1

]
(A.20)

Equations (A.16) , (A.17) and (A.20) are the ones to be put into the program.
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