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Abstract

In this reading project, I have focus on two main theorems of Riemannian geometry, namely

Cartan and Rauch theorems. These two theorems provide us two compare the geometrical

properties of a given Riemannian manifold with the other one. I started with studying

all the tools that are necessary for understanding these theorems. I thoroughly studied

Riemannian manifolds, geodesics, connections, curvature and the most interesting Jacobi

fields.
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Chapter 1

Introduction

In this chapter, we will study some basic results from the theory of differentiable manifold,

which will help us to study Riemannian Geometry more comfortably. Further, we have in-

troduce the definition of Riemannian metric and a tool for differentiating vector fields called

connection. At the end of this chapter, we will be able to conclude that for a Riemannian

manifold, we have automatically a connection called Levi - Civita connection exists.

1.1 Basic theory of Differentiable Manifold

Definition1.1.1 A Topological Manifold of dimension n is a set M which is Hausdorff, second

countable and is locally isomorphic to Rn.

Definition1.1.2 A Coordinate chart on a topological manifold M is a pair (U, φ), where

U is an open set in Rn and φ : U −→ Ū is a homeomorphism (that is, continuous, bijective

map with continuous inverse) from an open subset of M to openset Ū in Rn. Two charts

(U, φ) and (V, ψ) are smoothly compatible if the transition map ψ ◦φ−1 is a diffeomorphism.

A collection of charts is said to be atlas A if the union of open sets in each chart covers M .

Definition1.1.3 A smooth manifold M of dimension n is a topological manifold with a

maximal atlas containing of smoothly compatible charts.

Defintion1.1.4 Given a smooth manifold M and a smooth curve γ in M that starts at

point p , that is, γ(0) = p, denote D(M) to be the set of all functions on M that are differ-

entiable at p, we define tangent vector to the curve γ at t = 0 is a map γ′(0) : D(M) → R
given by

γ′(0)f =
d(f ◦ γ)

dt

∣∣∣∣
t=o

1



A tangent vector at a point p in M is the tangent vector of some curve γ : (-ε,ε) → M

with γ(0) = p. We denote set of all tangent vectors to M at p by TpM . Now this TpM is n

dimensional vector space.

Defintion1.1.5 A vector field X on a manifold M is a function that associates each point

p in M to a vector in TpM ,that is , X(p) ∈ TpM . In other words, a vector field is a map

X : M → TM , where TM is the vector bundle or set of all tangent vectors at all point in

M and if this map is smooth then the vector field X is said to be smooth. Denote C∞(U)

to be the set of all real-valued functions on U that are smooth, where U ⊆ M and let f ∈
C∞(U) then Xf will be the real valued function on M defined by

Xf(p) = X(p)f

Definition1.1.6 Let τ(M) denote the set of all vector fields on M and let X , Y ∈ τ(M),

then the Lie Bracket [X,Y ] of X and Y is again a vector field and defined by

[X,Y ]f = (XY − Y X)f

We have the following properties of Lie bracket in the next proposition.

Proposition1.1.7 Let X,Y, Z ∈ τ(M), f, g ∈ C∞(U) and a, b be two real numbers then

1. [X,Y ] = −[Y,X]

2. [aX + bY, Z] = a[X,Z] + b[Y,Z]

3. [[X,Y ], Z] + [[Y,Z], X] + [[Z,X], Y ] = 0

4. [fX, gY ] = fg[X,Y ] + fX(g)Y − gY (f)X

1.2 Riemannian Metrics

With the help of inner product we can do calculus on a Euclidean space, that is, we can find

the angle between curves and the length of curves. Therefore, in order to perform geometry

on an arbitrary smooth manifold we will need the concept of inner product.

Definition1.2.1: For a given differentiable manifold M , a Riemannian Metric 〈, 〉 is an as-

signment of an inner product gp : TpM × TpM −→ R to each p ∈ M . This inner product

is required to be differentiable in the sense that if V and W are two differentiable vector

fields on an open set U , then 〈V,W 〉 : U −→ R is a differentiable real valued function on

M defined by

〈V,W 〉(p) = 〈V (p),W (p)〉

2



A differentiable Manifold with a Riemannian metric is called a Riemannian Manifold.

Example: (R3, 〈, 〉) with usual dot product on tangent spaces is a Geometric Surface. If

M is a surface in R3 then the dot product from R3 applied to tangent vectors on M furnishes

an inner product and makes M into a Geometric surface.

Definition1.2.2: Given two Riemannian Manifolds M and N , an isometry is defined as

a diffeomorphism f : M −→ N (that is f is differentiable bijection with differentiable

inverse) such that :

〈u, v〉p = 〈dfp(u), dfp(v)〉f(p)

∀p ∈ M , u , v ∈ TpM and df is the differential of map f defined on tangent space of M

to tangent space of N .

1.3 Connections

We do not have any natural method to differentiate vector fields. Connection acts an a rule

for differentiating vector fields on a smooth manifold M . Let Γ(M) denote the set of all vec-

tor fields of class C∞ onM andD(M) is the ring of all real-valued functions of class C∞ onM .

Definition 1.3.1 Suppose γ : [a, b] → M be any smooth curve on a Riemannian Mani-

fold M , then the vector field along this curve is defined as the map V : [a, b] → TM such

that V (t) ∈ Tγ(t)M .

Definition 1.3.2 For any X, Y , Z ∈ Γ(M) and f , g ∈ C∞(M), an Affine Connection

∇ on M is a map ∇ : Γ(M) × Γ(M) −→ Γ(M) defined by ∇(X,Y ) = ∇XY such that :

1. ∇fX+gY Z = f∇XZ + g∇Y Z

2. ∇X(Y + Z) = ∇XY +∇XZ

3. ∇X(fY ) = f∇XY +X(f)Y

With the help of connection , we can find the directional derivative of one vector field

in the direction of other vector field. In other words, it connects the tangent spaces of

Riemannian Manifold.

Proposition 1.3.3 For a given smooth manifold M , with a connection ∇, with γ as a

smooth curve on M and V as the vector field along the curve γ, we can associate a unique

vector field
DV

dt
along γ, called the Covariant Derivative of a vector field along γ such that :

1.
D(V +W )

dt
=

DV

dt

3



2.
D(fV )

dt
=

df

dt
V + f

DV

dt

3. Let V is induced by a vector field Y ∈ Γ(M), that is, Y (γ(t)) = V (t), then
DV

dt
= ∇dγ

dt

Y .

Definition 1.3.4 Given a smooth manifold M with an affine connection ∇, we say a vector

field V along a curve γ : [a, b] → M is Parallel if its covariant derivative is zero, that is
DV

dt
= 0 ∀ t ∈ [a, b].

In the next proposition, it is shown that how one can move to one tangent vector in one

vector space to another tangent vector in other tangent space without loosing any informa-

tion.

Proposition1.3.5 Suppose a smooth manifold M with an affine connection ∇. Let γ :

[a, b] → M be a smooth curve in this manifold M and V◦ ∈ Tγ(t◦)M , then there exists a

unique parallel vector field along this curve γ, which will extend the given tangent vector

V◦, that is, V (t◦) = V◦

1.4 Riemannian Connection

Definition 1.4.1 Suppose we have a Riemannian Manifold M with an affine connection ∇
and a smooth curve γ and let X and X ′ are vector field along γ, then this connection is said

to be compatible with the metric, if

〈X,X ′〉 = Constant

Proposition 1.4.2 Given a Riemannian manifold M and a connection∇ on this manifold.

Let γ : I −→ M be a differentiable curve in M and suppose V and W are two vector fields

along the curve γ, then ∇ is compatible with the Riemannian metric if and only if

d

dt
〈V,W 〉 = 〈DV

dt
,W 〉 + 〈V, DW

dt
〉, t ∈ I

Corollary1.4.3 For Riemannian manifold M , having connection ∇ the following result

gives the condition of compatibility of a Riemannian metric and connection ∇, that is, ∇ is

compatible with the metric if and only if X〈Y,Z〉 = 〈∇XY,Z〉 + 〈Y,∇XZ〉 ∀ X , Y , Z ∈
Γ(M)

4



Definition1.4.4 For a given Riemannian Manifold M , an affine connection ∇ is said to

be symmetric if

∇XY −∇YX = [X,Y ]

Theorem1.4.5 This theorem gives the guarantee of existence of connection on a Rie-

mannian Manifold, that is, if M is a Riemannian Manifold, then there exists a unique affine

connection ∇ which is symmetric as well as compatible with the Riemannian metric.
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Chapter 2

Geodesics

2.1 Geodesics

In this chapter we will talk about geodesics and its properties and the exponential map.

Geodesics are the generalization of straight lines from Euclidean space to arbitrary Rieman-

nian manifold. These are the curve whose acceleration is zero.

Definition 2.1.1 A curve γ : I ⊆ R −→ M on a surface is said to be geodesic at t0 ∈ I

if
D

dt

(
dγ

dt

)
= 0 at t = t0

A curve γ is said to be geodesic, if γ is a geodesic at all points in I. Suppose the

connection on M is Levi-Civita connection. This implies ∇ is compatible with the metric.

Let γ : I −→ M be a geodesic, then

d(||γ′(t)||
dt

=
d〈γ′(t), γ′(t)〉

dt

= 〈Dγ
′(t)

dt
, γ′(t)〉+ 〈γ′(t), Dγ

′(t)

dt
〉

= 〈0, γ′(t)〉+ 〈γ′(t), 0〉 = 0

Hence, the length of tangent vector
dγ

dt
is constant. The arc length

s(t) =

∫ t

t0

|γ′(t)|dt = c(t− t0)

γ is normalized when the value of c = 1. Let (U, x) be a coordinate chart around a point

γ(t0). Then in U , we can write γ(t) as follows

7



γ(t) = (x1(t), x2(t), ..........xn(t))

Now we know that γ is geodesic if and only if
D(γ′(t))

dt
= 0

i.e iff
∑
k

(
x′′k +

∑
i,j

Γki,jx
′
ix
′
j

)
∂

∂xk
= 0

if and only if

x′′k +
∑
i,j

Γki,jx
′
ix
′
j = 0

Theorem2.1.2 Let X ∈ Γ(M), V ⊆M be an open set in M , p ∈ V , then there exists an

open set V◦ ⊆ V , p ∈ V◦, a number δ > 0, such that ∀ q ∈ V◦ , then there exists a C∞ map

φ : (-δ, δ) × V◦ −→ V defined as φt(q) = φ(t, q) is called the flow of vector field X on V .

For each curve γ in M , we can define a unique curve in TM by t 7−→ (γ(t),
dγ(t)

dt
)

this implies t 7−→ (x1(t), x2(t), ........xn(t), x′1(t), x′2(t), .......x′n(t)), we have

x′k(t) = −
∑

Γkijdx
′
idx
′
j

Let x′k = yk , then we get

y′′k = −
∑

Γkijyiyj

where k = 1,2,3,........n.

It can be easily verified that the above equation is equivalent to the first order differential

equation. It follows that t 7−→ (γ(t), γ′(t)) satisfy the above equation and by existence and

uniqueness theorem for first order differential equation, we get that geodesics exists on an

arbitrary manifold.

Lemma 2.1.3 For a Riemannian Manifold M and a tangent bundle TM , there exists a

unique vector field G on M , whose trajectory can be given by:

t 7−→ (γ(t), γ′(t))

where γ is a geodesic on the manifold M of dimension n.

We call this vector field G as a geodesic field on tangent bundle TM and its flow as a

geodesic flow on TM . Now by applying the theorem 2.1.2 on G, take a point (p, 0) ∈ U
⊂ TU , with (p, 0) ∈ U and a C∞ map φ : (-δ, δ) × U −→ TU , such that t 7−→ φ(t, q, v)

is the unique trajectory of geodesic field G satisfying φ(0, q, v) = (q, v) ∀ (q, v) ∈ U . We

can choose U = {(q, v) ∈ TU ; q ∈ V and v ∈ TqM with |v| < ε1}, where V ⊂ U is a

8



neighborhood of a point p ∈M . Leting γ = π ◦ φ, where π is a projection, that is, π : TM

−→ M , then we have the following result:

Proposition2.1.4 Let p ∈ M be an arbitrary point, then there exists an open set V ⊂
M , a number δ > 0, ε1 > 0 and a C∞ map γ : (-δ, δ) ×U −→ M where U = {(q, v) ; q ∈ V ,

v ∈ TqM , |v| < ε1, such that the curve tγ(t, q, v), t ∈ (−ε, ε) is the unique geodesic having

velocity v and when t = 0 it passes through q, ∀ q ∈ V , v ∈ TqM with |v| < ε1

From the above proposition, we can talk about any geodesic from any point in a Riemannian

manifold with a particular direction. We can increase the size of geodesic by decreasing its

interval size.

Lemma 2.1.5 (Homogenity of geodesics : γ(t, q, av) = γ(at, q, v)

where γ(t, q, v) is defined on (-ε, ε) and γ(at, q, v) is defined on (- εa , ε
a) with a ∈ R, a > 0

2.1.1 The Exponential Map

We know for any point p ∈ M and an initial velocity v ∈ TpM , we have a unique maximal

geodesic γv. We have a map from tangent bundle to the set of geodesics in M . This implies

it defines a map from the subset of tangent bundle to M itself, by sending the vector v to

the point obtained by following γ1 for time 1. In other words, the exponential map provides

a map from tangent space of any point to the manifold itself.

Definition2.1.6: Let p ∈ M , and U as defined before, the map exp : U −→ M defined

by exp(q, v) = γ(1, q, v) = γ(|v|, q, v|v|) is called the exponential map on U ⊂ TU .

It can be easily verified that exp map is differentiable. Let Bε(0) ⊂ TqM be an open

ball of radius ε and centred at origin and now define expq : Bε(0) −→ M as

expp(v) = exp(q, v)

.

Proposition 2.1.7: Given a point q ∈ M , there exists an open neighbourhood Bε(0) ⊂
TqM such that the exponential map at expq(v) : Bε(0) −→ M is a diffeomorphism onto its

range. We call the image of Bε(0) in M , a normal neighbourhood of q ∈ M .

9



2.1.2 Minimizing property of geodesics

A curve joining two points is said to be minimizing if its length is less than or equal to the

length of all piecewise smooth curve joining the same points. Suppose the exponential map

is defined on an open set V containing 0 in TpM and assume that this map is a diffeomor-

phism , then the image U of this open set in M is said to be normal neighborhood of p. Now

if the closure of Bε(0) sits inside this open set V , then the image of Bε(0) under exponential

map is called the normal ball and denoted by Bε(p).

Proposition 2.1.9 Suppose p be any point in M , and U be a normal neighbourhood of

p in M and B be a normal ball centred at p. Let γ be a geodesic that starts at p and joins

the points γ(0) and γ(1), that is, γ : [0, 1] −→ M . Now if we have another curve α : [0, a]

−→ M which is piecewise smooth and joins the same points γ(0) and γ(p), then L(γ) ≤
L(α) and if both the curves have same length then γ([0, 1]) = α([0, a])

Theorem2.1.10:This theorem says that for any point p in the manifold M , there exists

a neighborhood W of p such that when we define exponential map on each points in W ,

expq, where q ∈ W , then this map will be a diffeomorphism on Bε(0) which is a subset of

tangent space at q in M and its image will contain that neighborhood W .

Corollary: Let γ : I −→ M be a piecewise smooth curve such that its parametre is propor-

tional to arc length and length of γ is less than or equal to length of any other piecewise

smooth curve with same end points, then γ is a geodesic.

10



Chapter 3

Curvature

3.1 Introduction

Now our main idea is to define a curvature for a manifold which matches with our intuition

about curvature. The basic idea is that if we transport a tangent vector on a manifold

M parallel to itself along a curve, then we get the same vector (that is vector with same

direction and magnitude) on a flat or Euclidean surface R, but if the surface is curved then

the direction of vector will change and we get a new vector. Riemannian curvature tensor is

a measure of failure of second covariant derivative to commute. Thus we defined curvature

tensor as :

Definition 3.1: The curvature tensor R of a Riemannian manifold M is a correspondence

which associates to every pair (X,Y ) ∈ Γ(M), a map R(X,Y ) where R(X,Y ) : Γ(M) −→
Γ(M) given by R(X,Y )(Z) = ∇Y∇XZ −∇X∇Y Z −∇[X,Y ]

The next proposition tells the properties the properties of Riemannian curvature tensor.

Proposition 3.1.2: If X1, Y1, X, Y, Z and W are any vector fields on M , then :

1. R is bilinear in Γ(M) × Γ(M), i.e., R(fX1 + gX2, Y1) = fR(X1, Y1) + gR(X2, Y1),

R(X1, fY1 + gY2) = fR(X1, Y1) + gR(X1, Y2),where f, g ∈ Γ(M)

2. For any two vector fields X, Y on M , the curvature operator R(X,Y ) : Γ(M) −→
Γ(M) is linear, i.e, R(X,Y )(Z + W ) = R(X,Y )Z + R(X,Y )W and R(X,Y )fZ =

fR(X,Y )Z.

Notation: 〈R(X,Y ), Z,W 〉 = (X,Y, Z,W ).

11



Proposition 3.1.3

1. (X, Y , Z, T ) + (Y , Z, X, T ) + (Z, X, Y , T ) = 0

2. (X, Y , Z, T ) = - (Y , X, Z, T )

3. (X, Y , Z, T ) = (X, Y , T , Z)

4. (X, Y , Z, T ) = (Z, T , X, Y )

3.1.1 Sectional Curvature

In this section, the definition of sectional curvature and answer to the question - why it

has given so much importance is introduced. Sectional Curvature depends on the two di-

mensional subspace σp of tangent space at TpM at p, spanned by two linearly independent

vectors. Sectional Curvature K(σp) is of great importance because if we know K(σp) for all

σ, then we can find the Riemannian curvature tensor R completely. The basic idea behind

the sectional curvature is to assign curvatures to the planes. Basically a sectional curvature

of a plane in a tangent space is the gaussian curvature (product of principal curvatures) of

the surface swept by by the geodesics with starting directions in the given plane.

Definition3.1.2: Let us consider a manifold M . let p be any point in the manifold and

TpM is the tangent space at p. Take two linearly independent vectors x and y in TpM . Let

σp be the subspace spanned by vectors x and y. Then the sectional curvature K(σp) of the

section σp is defined as :

K(σp) =
(x, y, x, y)

|x|2|y|2 − 〈x, y〉2

with K(σp) is independent of choice of the vectors x, y ∈ σp .

Lemma3.1.2: Let V be a vector space of dimension n ≥ 2, provided with an inner

product 〈, 〉. Let R : V × V × V −→ V and R′ : V × V × V −→ V be two trilinear maps

such that R and R′ satisfy the four symmetric properties defined above. Define K(σ) and

K ′(σ) as follows:

K ′(σ) =
(x, y, x, y)′

|x|2|y|2 − 〈x, y〉2

K(σ) =
(x, y, x, y)

|x|2|y|2 − 〈x, y〉2

12



where x and y are two linearly independent vectors in the subspace σ of V . Now if K ′(σ)

= K(σ), ∀ σ then we have R = R′.

13
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Chapter 4

Jacobi fields

4.1 Jacobi fields

In this chapter, we will introduced a relation between geodesics and curvature. Jacobi fields

are the vector fields along geodesics that satisfy a certain differential equation. With the

help of Jacobi fields, we can describe how fast the geodesics starting from a given point p

and tangent to σ ⊂ TpM spread apart. In this chapter we will see that the spreading of

geodesics depend on K(σ). In order to understand the Jacobi fields, let us look first at

exponential map.

Observation: Let M be a Riemannian manifold, p be any point in M . Let v be any

vector in TpM . Take a parametrized surface in M , that is , f : [0, 1]× (−ε, ε) −→ M given

by

f(t, s) = expp tv(s)

where v(s) is a curve in TpM with v(0) = v. Now

df

ds
(1, 0) = d expp)tv(0)tv

′(0))

Put
df

ds
(1, 0) = J(t) and γ(t) = dexpp)(tv).

Our aim is to examine J(t) on γ(t). Since γ is a geodesic , we have
D

∂t

∂f

∂t
= 0 for all

(t, s). Therefore we get

0 =
D

∂s
(
D

∂t

∂f

∂t
) =

D

∂t

D

∂s

∂f

∂t
−R(

∂f

∂s
,
∂f

∂t
)
∂f

∂t

=
D

∂t

D

∂t

∂f

∂s
+ R(

∂f

∂t
,
∂f

∂s
)
∂f

∂t
.

when we put
∂f

∂s
(t, 0), then it shows that J(t) satisfy the differential equation

D2J

dt2
+

R(γ′(t), J(t)) γ′(t) = 0

15



With the help of above differential equation, we will define Jacobi fields along a geodesic

:

Definition Let M be a Riemannian manifold and γ : [0, a] −→M be a geodesic in M . A

vector field J along the geodesics γ is said to be Jacobi field if it satisfies the Jacobi equation

:

D2J

dt2
+ R(γ′(t), J(t))γ′(t) = 0

for all t ∈ [0, a]

Property of Jacobi fields which tells us that a Jacobi fields can be determined by its

initial conditions.

Proposition 4.1.1 A Jacobi field J along a geodesic γ : [0, a] −→ M can be determined

by the initial conditions J(0) and J ′(0).

Proof Choose an orthonormal basis e1, e2, .....en in TpM . Extend this basis to parallel

orthonormal fields e1(t), e2(t), .....en(t) along γ. Then we can write J as

J(t) =
∑

fi(t)ei(t)

where f1, f2, .....fn are smooth functions. This implies

D2

dt2
(J(t)) =

∑
f ′′i (t)e′′i (t)

and

R(γ′, J)γ′ =
∑
〈R(γ′, J)γ′, ei〉ei =

∑
i

∑
j
fj〈R(γ′, ej)γ

′, ei〉)ei

hence the Jacobi equation becomes

f ′′i +
∑

fj〈R(γ′, ej)γ
′, ei〉) = 0 for all i = 1, 2, ...., n

Since the above equation is linear second order differential equation, therefore with the

given initial conditions J(0) and J ′(0), there exists a smooth solution that is well defined

on [0, a].

From above equation we see that Jacobi equation is equal to linear second order differ-

ential equation .Therefore for a given geodesic γ, there exists exactly 2n Jacobi fields along

γ.

Also we observe that if γ is a geodesic then γ′ also satisfies the Jacobi equation, that is,

D2J

dt2
+ R(γ′(t), γ′(t)) γ′(t) = 0

16



Similarly we can see that tγ(t) is a Jacobi field and can vanish only when t = 0.

Earlier we construct a Jacobi field along a geodesic with help of exponential map. The

next proposition will show that this is the only method to construct the Jacobi fields with

J(0) = 0.

Proposition 4.1.2 Let γ : [0, a] −→ M be a geodesic and let J be a Jacobi field along

γ such that J(0) = 0. Define
DJ

dt
(0) = w and γ′(0) = v with w ∈ Tav(Tγ(0)M). Now take

a curve v(s) in Tγ(0)M such that v(0) = av and v′(0) =w. Put f(t, s) = expp(
t
av(s)) and

p = γ(0). Define a Jacobi field J̄ as J̄(t) =
df

ds
(t, 0). Then we have J̄ = J on [0, a].

Corollary 4.1.3 With a given geodesic γ : [0, a] −→ M , we can write a Jacobi field J

along γ as

J(t) = (d expp)tγ′(0)(tJ
′(0)), t ∈ [0, a]

4.2 Relation between spreading of geodesics and curvature

Proposition 4.2.1 Let γ : [0, a] −→ M be geodesic with γ(0) = p in M and γ′(0) = v. Let

w ∈ Tv(TpM) such that |w| = 1. Let J be a Jacobi field along γ. From previous corollary

we write J as

J(t) = (dexpp)tv(tw)

Then the Taylor expansion of |J(t)|2 about t = 0 is given as

|J(t)|2 = t2 - 1
3 〈 R(v, w)v, w〉t4 + R(t),

where limt→0
R(t)
t4

= 0

Corollary 4.2.2 Let γ : [0, l] −→ M be a geodesic parametrized by arc length and let

〈v, w〉 = 0, then the sectional curvature K(v, w) at point p with respect to the plane spanned

by orthonormal vectors v and w is equal to the 〈 R(v, w)v, w〉 because the basis vectors are

orthonormal. Therefore the Taylor expansion of |J |2 about t = 0 becomes

|J(t)|2 = t2 - 1
3 K(p, σ)t4 + R(t)

and |J(t)| = t - 1
6 K(p, σ)t3 + R̄(t) limt→0

R̄(t)
t3

= 0

Observation From above relation we get that locally the geodesics spread apart less than

the rays in TpM if Kp(σ) > 0 and more apart if Kp(σ) < 0. .

17



4.3 Conjugate points

In this section, the main aim is to introduced to relation between singularity of Jacobi fields

and the exponential map.

Definition 4.3.1. Let γ : [0, a] −→ M be a geodesic in M . Let p = γ(0) and q = γ(t0)

be any two points in M for t0 ∈ (o, a].Then q is said to be conjugate to p, if there exists

a Jacobi field (not identically zero) along the geodesic γ which vanishes at p and q. The

multiplicity of the conjugate point is the dimension of the space of such Jacobi fields.

Applying the above definition to γ(0), we can say that γ(t◦) is conjugate to γ(0) if and

only if γ(0) is conjugate to γ(t◦).

Lemma 4.3.2.Let γ : [0, a] −→ M be a geodesic in M . Let J1(t), J2(t), ....., Jk(t) be

the Jacobi fields along the geodesic γ such that Ji(0) = 0 ∀ i = 1,2,3,....,k. Then the set

{J1(t), J2(t), ....., JK(t)} will be linearly independent set if and only if the set {J ′1(0), J ′2(0), ....., J ′k(0)}
is linearly independent.

Proof Let us assume that J1(t), J2(t), ....., Jk(t) are linearly independent. We have to

prove that the set {J ′1(0), J ′2(0), ....., J ′k(0)} is linearly independent. Suppose to the contrary

that {J ′1(0), J ′2(0), ....., J ′k(0)} is not linearly independent. Then

λ1J
′
1(0) + λ2J

′
2(0) + λ3J

′
3(0)+...........+λkJ

′
K(0) = O such that λi 6= 0 for some i.

Without loss of generality, assume that λ1 6= 0. Then we have

J ′1(0) =
(−λ2
λ1

J ′2(0) + −λ3
λ1

J ′3(0) +...........+ −λk
λ1

J ′k(0))

=
(−λ2
λ1

J2 + −λ3
λ1

J3 + ........−λkλ1
Jk)
′(0)

Since J1(0) = λ2
λ1
J2 + λ3

λ1
J3 + ......... λk

λ1
Jk(0)

From above two initial conditions we determined the Jacobi field J as

J = λ2
λ1
J2 + λ3

λ1
J3 +........+ λk

λ1
Jk.

But this will imply that J1, J2, ........, Jk are linearly dependent which is a contradiction.

Hence J ′1(0), J ′2(0), ......, J ′k(0) are linearly independent.

For converse part, assume that J1, J2, ...Jk are linearly dependent. Then we have

λ1J1 + λ2J2 +......+ λkJk = 0 such that λi 6= 0 for some i.
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Again assume that λ1 6= 0, therefore we have

J1 = λ2
λ1
J2 + λ3

λ1
J3 +.........+ λk

λ1
Jk

But this will imply

J ′1(0) =
(−λ2
λ1

J ′2(0) + −λ3
λ1

J ′3(0) +...........+ −λ2
λ1

J ′2(0))

which cannot be possible. Hence proved.

Observation If M is manifold of dimension n, then we know that dim TpM = dim M =

n. From above theorem we conclude that for a given geodesic λ : [0, a] −→ M , there exists

exactly n linearly independent Jacobi fields which vanishes at γ(0). And further this also

implies that the multiplicity of a conjugate point can never be greater than n− 1.

Definition 4.3.3 Let p ∈ M . Then the set {q ; q is a conjugate point to p ∀ geodesics γ

such that γ(0) = p } is called the conjugate locus of p and denoted by C(p).

4.4 Conjugate points and the singularities of exponential map

Proposition 4.4.1 Let p and q be any two points in Riemannian manifold M . let γ : [0, a]

−→M be a geodesic such that γ(0) = p and γ(t◦) = q, where t◦ ∈ [0, a]. Then q is conjugate

to p if and only if v◦ = t◦γ
′(0) is a critical point of expp. Furthermore, the multiplicity of q

as a conjugate point to p is equal to the dimension of the kernel of map (d exp)v◦

Proof Given p = γ(0) is conjugate to q = γ(t0), this implies that the there exists a

Jacobi field J such that J(0) = J(t0) = 0. Let v and w are defined as v = γ′(0) and w =

J ′(0). Now we know that a Jacobi field can be written as

J(t) = (d expp)tv(tw), t ∈ [0, a]

Now J is non zero if and only if w 6= 0. This implies q is conjugate to p along γ if and

only if

0 = J(t0) = (dexpp)t0v (t0w) w 6= 0

which happens only when t◦v is a critical point of expp.
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4.5 Properties of Jacobi fields

Proposition 4.5.1. γ : [0, a] −→ M be a geodesic and J be a Jacobi field along γ. Then we

have

〈J(t), γ′(t) 〉 = 〈J ′(0), γ′(0)〉t+ 〈J(0), γ′(0) 〉

Proof The Jacobi equation can be written as :

J ′′ = - R( γ′, J) γ′ = 0

Taking inner product with γ′ on both sides, we get

〈 J ′′, γ′〉 = -〈 R(γ′, J)γ′, γ′ 〉

The left side of above equation is equal to 〈 J ′, γ′〉′. Therefore we have

〈 J ′, γ′〉 = 〈 J ′(0), γ′(0)〉

Also

〈 J, γ′〉′ = 〈 J ′, γ′〉 = 〈 J ′(0), γ′(0)〉

Now integrate above equation

〈 J, γ′〉 = 〈 J ′(0), γ′(0)〉t + 〈 J(0), γ′(0)〉

Hence proved.

Corollary 4.5.2 If for any t1 and t2 ∈ [0, a] such that t1 6= t2, we have 〈J, γ′〉(t1) =

〈J, γ′〉(t2) , then 〈 J, γ′〉 will be independent of t. In particular, if J(0) = J(a) = 0 then 〈
J, γ′〉(t) ≡ 0.

Corollary 4.5.3If J(0) = 0 .Then 〈J ′(0), γ′(0)〉 = 0 if and only if 〈J, γ′〉(t) ≡ 0. In par-

ticular, we have the dimension of the space of Jacobi fields J with conditions J(0) = 0 and

〈J, γ′〉(t) ≡ 0 will be n− 1.

Proposition 4.5.4 Let γ : [0, a] −→M be a geodesic in M , such that γ(0) is not conjugate

to γ(a). Let V1 ∈ Tγ(0)M and V2 ∈ Tγ(a)M . Then there exists a unique Jacobi field J along

γ which satisfy J(0) = V1 and J(a) = V2.

Proof Take a space J = { J ; J is Jacobi field which satisfy J(0) = 0 }. Now define a

map Θ : J −→ Tγ(a)M by:
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Θ (J) = J(a), J ∈ J

Since it is given that γ(a) is not conjugate to γ(0), therefore there does not exist any

Jacobi field along γ which vanishes only at 0 and a. Let Θ (J1) = Θ (J2).

⇒ J1(a) = J2(a) ⇒ J1 - J2(a) = 0

This cannot be possible because γ(a) is not conjugate to γ(0), therefore J1 = J2, ⇒ Θ is

injective. Since Θ is linear and dim J = dim Tγ(a)M , this implies Θ is an isomorphism.

Therefore, there exists a Jacobi field J̄ in J such that J̄1(0) = 0 and J̄1 (a) = V2

Similarly there exists a Jacobi field J̄2 in J such that J̄2(a) = 0 and J̄2(0) = V1. Hence the

require Jacobi field is J = J1 + J2, where uniqueness comes from isomorphism of Θ.

Corollary Let M be a Riemannian manifold of dimension n and γ : [0, a] −→ M be a

geodesic in M . Let J ⊥ be the space of all Jacobi fields which satisfy J(0) = 0 and J ′(0)

⊥ γ′(0). Suppose {J1, J2, ....., Jn−1} be the basis for J ⊥. Let {γ′(t)}⊥ ⊂ Tγ(t)M be the

orthogonal complement of γ′(t). Now if γ(t), t ∈ (0, a] is not conjugate to γ(0), then we

have {J1(t), J2(t), ....., Jn−1(t)} as a basis for the orthogonal complement of γ′(t).
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Chapter 5

Spaces of Constant Curvature

Riemannian manifolds having constant sectional curvature are the most simple one. The

advantage of spaces having constant curvature is that there exists large number of isometries

for these spaces .Two examples of spaces having constant sectional curvature are spaces with

k ≡ 0 called Euclidean space Rn and spaces with K ≡ 1 called the unit sphere Sn ⊂ Rn+1.

In this chapter we will discover a new space called Hyperbolic space with k ≡ -1. In fact

we will prove that these are the only simply connected manifolds with constant sectional

curvature.

5.1 Theorem of Cartan

Set up for the theorem Let M and M̄ be two Riemannian manifolds with same dimensions

n and having curvature R and R̄ respectively. Let p ∈M and p̄ ∈ M̄ are two fix points in two

manifolds and define a i : TpM −→ Tp̄M̄ be an isometry. Choose a normal neighborhood

V ⊂ M of p such that expp̄ is defined at i ◦ exp−1
p (V ). Define f : V −→ M̄ by

f = expp̄ ◦ i◦ exp−1
p , q ∈ V

Take a unique unit speed geodesic γ which joins p and any point say q. That is , γ : [0, a]

−→ M with γ(0) = p and γ(a) = q. Let Pt be the parallel transport transport along γ

from γ(0) to γ(a).Consider a geodesic γ̄ : [0, a] −→ M̄ such that γ̄(0) = p̄ and γ̄′(0) =

i(γ′(0)). Let P̄t be the parallel transport transport along γ̄. Now define a map φt : Tq(M)

−→ Tf(q)(M) by

φt(v) = P̄t ◦ i ◦ P−1
t (v), v ∈ Tq(M)

Theorem 5.1.1 With the above set up and notations, suppose for all geodesics that

starts at p and all x, y, z, ∈ Tq(M) we have
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φt(R(x, y)z) = R̄(φt(x), φt(y))φt(z)

then f : V −→ f(V ) is local isometry.

Proof From the definition of local isometry, f : V −→ M̄ is a local isometry if and only if :

〈 v, w 〉p = 〈 dfq(v), dfq(w) 〉q, ∀ q ∈ M and v, w ∈ TqM

holds. But we know

〈 v, w 〉 = 1
2

(
||v||2 + ||w||2 − ||v − w||2

)
Therefore it is enough to prove that

||v||q = ||dfq(v)||, q ∈M and v ∈ TqM

For this take a vector q in V and a unit speed geodesic γ : [0, l] −→ M with γ(0) = p and

γ(a) = q. Let v ∈ TqM . By proposition in previous chapter, there exists a unique Jacobi

field J which satisfy J(0) = 0 and J(l) = v. Since TqM is a vector space so we can find an

orthonormal basis for TqM . Suppose {e1, e2, ...., en} be the required basis such that en =

γ′(0). Take the parallel transport of these basis vectors, i.e, ei(t) be the parallel transport

of ei along the curve γ ∀ i = 1,2,3.....,n. Then we can write the Jacobi field as

J(t) =
∑
i

fi(t)ei(t)

But Jacobi equation says that :

J ′′ + R(γ′, J) γ′ = 0

Therefore we get,

f ′′j +
∑
i

〈R(en, ei)en, ej〉 fi = 0

As discussed earlier, take another unit speed geodesic γ̄′ : [0, l] −→ M̄ which satisfy γ̄(0) =

p̄ and γ̄′(0) = i(γ′(0)). Suppose J̄ be the vector field along γ̄ which is defined as

J̄(t) = φt(J(t)), t ∈ [0, l]

If we take ēj(t) = φt(ej(t)). Then we get

J̄(t) =
∑
i

fi(t) ¯ei(t)

By Hypothesis,

〈 R(en, ei)en, ej 〉 = 〈 R̄(ēn, ēi)ēn, ej〉

Therefore, we get
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f ′′j +
∑
i

〈 R̄(ēn, ēi)ēn, ēj〉 fi = 0

This implies J̄ is also a Jacobi field along γ′ with J̄(0) = 0. We can write J and J̄ as follows

:

J(t) = (d expp)tγ′(0)(tJ
′(0)),

J̄(t) = (d expp̄)tγ̄′(0)(tJ̄
′(0)),

As we know parallel transport is an isometry , this implies | ¯J(l) = |J(l). Now it is

enough to prove that

¯J(l) = dfq(v) = dfq(J(l))

therefore, J̄(l) = (d expp̄)lγ̄′(0)(liJ̄
′(0)) = (d expp̄)lγ̄′(0) ◦ i ◦ ((d expp)lγ′(0))

−1(J(l)) =

dfq(J(l))

5.2 Hyperbolic space

Definition Consider Hn = {(x1, x2, ...xn) Rn ; xn > 0}. Hn is Riemannian manifold with

metric defined as

gij(x1, x2, ...xn) =
δij
x2n

The pair (Hn, gij) is called the Hyperbolic space having dimension n.

Proposition The pair (Hn, gij) is complete simply connected Riemannian manifold with

constant sectional curvature, K ≡ -1.

Definition Space forms are the complete Riemannian manifold with constant sectional

curvature.

Theorem Let Mn be a space form having curvature K Then the universal covering of

M consists of covering metric is isomorphic to -

1. Hn, whenever K ≡ -1,

2. Rn , whenever K ≡ 0,

3. Sn, whenever K ≡ 1.
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Chapter 6

Comparison Theorem

Now we will study about techniques which will help us to compare the geometry of a given

Riemannian manifold M with another Manifold M̄ , which is simply connected and of con-

stant curvature. Under some assumptions on the sectional curvature of a given Riemannian

manifold M , we can conclude that M has certain geometrical properties as that of M̄ .

Further we can talk about the topological properties of M and can compare with that of

M̄ .

6.1 The Rauch Comparison Theorem

One of the technique for discovering geometrical properties of a given Riemannian Manifold

M is Rauch’s theorem. In this theorem, we usually compare the lengths in two Riemannian

manifolds such that there is a relation between their curvatures. Basically Rauch Compar-

ison theorem tells the dependence of spreading/converging of geodesics on Curvature. We

will need Index lemma in order to prove the Rauch Comparison theorem.

Index Lemma Let M be a Riemannian manifold in which we have a geodesic γ : [0, a]

−→ M . Suppose γ(0) is not conjugate to γ(t), for all t ∈ (0, a]. Suppose we have a Normal

Jacobi field J , that is 〈J, γ′ 〉 = 0. Let V be a piecewise smooth normal vector field. Define

index It0( J, J) =
∫ t0

0 {〈 J
′, J ′ 〉 - 〈 R(γ′, J)γ′, J 〉}dt. Similarly define It0( V, V ). Now if

J(0) = V (0) = 0 and J(t0 = V (t0) for t0 ∈ (0, a] then

It0( J, J) ≤ It0( V, V )

and equality occurs if and only if V = J on [0, t0].

Proof Jacobi fields which are normal to γ′ and satisfies J(0) = 0 forms a (n− 1) dimen-

sional vector space. Choose a basis elements as {J1, J2,......,Jn−1} for this vector space of

normal Jacobi fields. This implies J =
∑n−1

i=1 αiJi, where the αi are constants. Since we have
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assumed that γ(0) has no conjugate points along γ, therefore there does not exist any Jacobi

field which vanishes at any point on (0, a].. This implies {J1(t), J2(t),......,Jn−1(t)} forms

the basis elements of the orthogonal complement of γ′(t) in Tγ′(t)M .As V is also normal to

γ′, therefore for t 6= 0, V can be written as

V (t) =
n−1∑
i=1

Ji(t)fi(t)

where fi are smooth real valued functions on (0, a]. Now fi : (0, a] −→ R. We will extend

the domain of each fi from (0, a] to [0, a].Since Ji(0) = 0, therefore by lemma , there exist

differentiable functions φi : [0, a] −→ R with φi(0) = J ′i(0) (this implies φi(0) are linearly

independent) and Ji(t) = tφi(t), t ∈ [0, a]. Therefore we can write

V (t) =
n−1∑
i=1

giφi(t)

where gi are piecewise differentiable functions on [0, a] and gi(0) = 0. Again apply the

same lemma to gi, there exist hi : [0, a] −→ R such that hi(0) = g′i(0) and gi(t) = thi(t).

This implies

V (t) =
n−1∑
i=1

thi(t)φi(t)

and hence fi = hi and domain of fi extended. We will show that

〈V ′, V ′〉 − 〈R(γ′, V )γ′, V 〉 = 〈
n−1∑
i=1

f ′iJi,
n−1∑
j=1

f ′jJj〉+
d

dt
〈
n−1∑
i=1

fiJi,

n−1∑
j=1

fjJ
′
j〉

Now R(γ′, V )γ′ = R(γ′,
n−1∑
i=1

fiJi)γ
′ =

n−1∑
i=1

R(γ′, Ji)γ
′ = −

n−1∑
i=1

fiJ
′′
i

where the last equality comes from the fact that each Ji is a Jacobi field. We have

〈V ′, V ′〉 − 〈R(γ′, V )γ′, V 〉 = 〈
n−1∑
i=1

f ′iJi +

n−1∑
i=1

fiJ
′
i , 〉 +

n−1∑
j=1

f ′jJj +

n−1∑
j=1

fjJ
′
j〉− (−

n−1∑
i=1

fiJ
′′
i )

= 〈
n−1∑
i=1

f ′iJi +
n−1∑
j=1

f ′jJj〉 + 〈
n−1∑
i=1

f ′iJi,
n−1∑
j=1

fjJ
′
j〉 + 〈

n−1∑
i=1

fiJ
′
i ,
n−1∑
j=1

f ′jJj〉 + 〈
n−1∑
i=1

fiJ
′
i ,
n−1∑
j=1

fjJ
′
j〉

+ 〈
n−1∑
i=1

fiJ
′′
i ,

n−1∑
j=1

fjJj〉.

the second term of R.H.S of equation 6.1 can be written as
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d
dt〈

n−1∑
i=1

fiJi,

n−1∑
j=1

fjJ
′
j〉 = 〈

n−1∑
i=1

f ′iJi, +

n−1∑
i=1

fiJ
′
i ,

n−1∑
j=1

fjJ
′
j〉 + 〈

n−1∑
i=1

fiJi,

n−1∑
j=1

f ′jJ
′
j +

n−1∑
j=1

fjJ
′′
j 〉

= 〈
n−1∑
i=1

f ′iJi,
n−1∑
j=1

fjJ
′
j〉 +

n−1∑
i=1

fiJ
′
i ,
n−1∑
j=1

fjJ
′
j〉 + 〈

n−1∑
i=1

fiJi,
n−1∑
j=1

fjJ
′′
j 〉 + 〈

n−1∑
i=1

fiJi,
n−1∑
j=1

f ′jJ
′
j〉.

Hence to prove 6.a we have to show that

〈
n−1∑
i=1

fiJ
′
i ,

n−1∑
j=1

f ′jJj〉 = 〈
n−1∑
i=1

fiJi,

n−1∑
j=1

f ′jJ
′
j〉.

Now in order to prove above equation let h(t) = 〈Ji, Jj〉 - 〈Ji, J ′j〉. After calculations, we

get h′(t) = 0 and hence the required equation is proved. Applying 6.a to V and J , we get

It0( V, V ) = It0( J, J) +
∫ t0

0

∣∣∣∣∣
n−1∑
i=1

f ′iJi

∣∣∣∣∣
2

dt and hence It0( J, J) ≤ It0( V, V ). Equality holds

when fi is constant and as fi(t0) = αi hence fi(t) = αi that is V = J .

Theorem of Rauch Consider we have two Riemannian manifolds M1 and M2 of dimen-

sions n1 and n2 respectively. Let γ1 : [0, a] −→ M1 and γ2 : [0, a] −→ M2 be two geodesics

with same velocity. Let J1 and J2 be two Jacobi fields along γ1 and γ2 respectively such

that the following conditions are satisfied by J1 and J2

1. J1(0) = J2(0) = 0

2. 〈J ′1(0), γ′1(0)〉 = 〈J ′2(0), γ′2(0)〉

3. |J ′1(0)| = |J ′2(0)|

Further assume that γ2 does not have any conjugate point on (0, a]. Now if for all v ∈
Tγ1(t)M1 and u ∈ Tγ2(t)M2, K2(u, γ′2(t)) ≥ K2(v, γ′1(t)), then |J2| ≤ |J1|.

Proof Suppose J1 and J2 are normal Jacobi fields. Define f1(t) = |J1(t)|2 and f2(t) =

|J2(t)|2. This implies f(t) = f1
f2

is well defined in (0, a]. Now lim
t→0

f(x) = 1. Therefore in order

to prove that |J2| ≤ |J1|, it is enough to prove that
df

dt
≥ 0 or equivalently f ′1f2 ≥ f1f

′
2. Let

t0 be any point in (0, a] such that f1(t0) = 0. Then f ′1(t0) = 2〈J ′1(t0), J1(t0)〉 = 0. Trivially

inequality is proved. Let us assume that f1(t0) 6= 0. Take U1(t) = 1√
f1(t0)

J1(t0) and U2(t)

= 1√
f2(t0)

J2(t0). Then

f ′1(t0)
f1(t0) =

d

dt
〈U1(t), U1(t)〉 = 2

∫ t0
0 {〈U

′
1, U

′
1〉 − 〈U,R(γ′1, U1)γ′〉}dt = 2It0( U1, U1)

Similarly
f ′2(t0)
f2(t0) = 2It0( U2, U2). Take E =

γ′1(t)
|γ′1(t)| and and Ē = U1(t) and extend this to

an orthonormal basis {Ei} .Similarly extend this F =
γ′2(t)
|γ′2(t)| and and F̄ = U2(t). Let V (t)
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=

n1∑
i=1

fi(t){Ei} and and V̄ (t) =

n2∑
i=1

fi(t){Fi}. Clearly 〈V (t), V (t)〉 = 〈 V̄ (t), V̄ (t)〉 and

V ′ = V̄ ′. Since there is a restriction on curvature, this implies It0( V̄ , V̄ ) ≤ It0( V, V ). From

Index Lemma we get It0( U2, U2) ≤ It0( V̄ , V̄ ) ≤ It0( U1, U2) and hence proved.
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