
Algorithmic Number Theory and

Cryptography

Abhay Kasera

A dissertation submitted for the partial fulfillment of

BS-MS dual degree in Mathematics

DEPARTMENT OF MATHEMATICS

INDIAN INSTITUTE OF SCIENCE EDUCATION AND

RESEARCH MOHALI, PUNJAB−140306

Algorithmic Number Theory and Cryptography

2

Certificate of Examination

This is to certify that the dissertation titled “Algorithmic Number Theory and

Cryptography” submitted by Mr. Abhay Kasera (Reg. No. MS13087) for

the partial fulfillment of BS-MS dual degree programme of the Institute, has been

examined by the thesis committee duly appointed by the Institute. The committee

finds the work done by the candidate satisfactory and recommends that the report

be accepted.

Dr. Amit Kulshrestha Dr. Chandrakant S. Aribam Prof. Kapil H. Paranjape

(Thesis Supervisor)

Dated: 20/04/2018

3

Algorithmic Number Theory and Cryptography

4

Declaration

The work presented in this dissertation has been carried out by me under the guid-

ance of Prof. Kapil Hari Paranjape at the Indian Institute of Science Education and

Research Mohali.

This work has not been submitted in part or in full for a degree, a diploma, or a

fellowship to any other university or institute. Whenever contributions of others

are involved, every effort is made to indicate this clearly, with due acknowledge-

ment of collaborative research and discussions. This thesis is a bonafide record of

work done by me and all sources listed within have been detailed in the bibliography.

Abhay Kasera

(Candidate)

Dated: 20/04/2018

In my capacity as the supervisor of the candidate’s project work, I certify that the

above statements by the candidate are true to the best of my knowledge.

Prof. Kapil H. Paranjape

(Thesis Supervisor)

5

Algorithmic Number Theory and Cryptography

6

Acknowledgement

I want to thank Prof. Kapil Hari Paranjape for his guidance, support and helping me

to explore a wide range of topics in Algorithmic number theory and Cryptography.

I deeply believe that it is his guidance that made my MS project very fascinating,

under him I had the freedom to work on whatever I feel interesting, and his vast

knowledge helped me to get a deeper understanding of the concepts. I want to thank

my committee members Dr. Amit Kulshrestha and Dr. Chandrakant S. Aribam. I

want to thank my family for believing in me and supporting every decision which I

have taken in my life. I also want to thank Department of Science and Technology

(DST), Government of India for DST-INSPIRE fellowship.

Abhay Kasera

7

Algorithmic Number Theory and Cryptography

8

Abstract

Primality testing and Integer factorization problem are two widely studied problems

in Algorithmic Number Theory. Can we factorize integers in polynomial time is still

an unsolved question. However, the Primality testing problem can be solved in

polynomial time. RSA is the most widely used Public-key cryptosystem whose

security is based on Integer factorization problem. Over past years researchers have

studied various attacks on RSA cryptosystem, and it has been concluded that these

attacks can be avoided if RSA is implemented securely. In this Thesis we have

covered Primality testing algorithms, Factoring algorithms and Cryptanalysis of

RSA.

9

Algorithmic Number Theory and Cryptography

10

List of symbols

∅: null set

N: set of natural numbers

Z: set of integers

Z+: set of positive integers

Zn: set of integers modulo n

Z∗n: set of integers modulo n which are relatively prime to n

a | b: a divides b

a - b: a does not divide b

| X |: cardinality of the set X

x ≡ y mod n: x is congruent to y modulo n

x 6≡ y mod n: x is not congruent to y modulo n

=⇒ : implication

bac: floor function; the greatest integer less than or equal to x(
a
p

)
: Legendre symbol(

a
n

)
: Jacobi symbol

φ(n): Euler-totient function defined as number of positive integers less than or equal

to n which are relatively prime to n

11

Algorithmic Number Theory and Cryptography

12

Contents

1 Introduction 15

2 Primality Testing 17

2.1 Introduction . 17

2.2 Probabilistic primality tests . 17

2.2.1 Fermat’s Test . 18

2.2.2 Solovay-Strassen Test . 19

2.2.3 Miller-Rabin test . 23

2.3 True primality tests . 29

2.3.1 Lucas Test . 30

2.3.2 Pocklington’s Test . 31

3 Integer Factorization Problem 33

3.1 Introduction . 33

3.2 Factoring algorithms . 34

3.2.1 Trial division . 34

3.2.2 Pollard’s rho method . 34

3.2.3 Pollard’s p− 1 method . 36

3.2.4 Lenstra’s Elliptic-curve factorization 38

3.2.5 Factorization using group G(n,N) 39

4 Cryptanalysis of RSA 41

4.1 Introduction . 41

4.2 RSA cryptosystem . 41

4.3 Security of RSA cryptosystem . 42

4.3.1 Elementary attacks . 43

4.3.2 Low public exponent attacks 44

4.3.3 Low Private exponent attack 48

4.4 Conclusion . 50

Bibliography 51

13

Algorithmic Number Theory and Cryptography

14

Chapter 1

Introduction

Algorithmic number theory is a branch of number theory which involves the study

of algorithms to solve problems in various branches of number theory. Primality

testing problem and integer factorization problem are two widely studied problems

in Algorithmic number theory.

Primality testing problem: Given a positive integer n > 1, determine whether it is

prime or not. In Chapter 2, we have discussed Primality tests. There are two types

of primality tests,

• Probabilistic primality tests: These tests are absolutely correct when they

output n to be composite, but they are only probably correct when they output

n to be prime. for example: Fermat’s test, Solovay-Strassen test, and Miller-

Rabin test.

• True primality tests: These tests provide the mathematical proof if a number

is prime but are generally more computationally intensive. for example: Lucas

test and Pocklington’s test.

The Fermat’s test is based on Fermat’s little theorem, but it has a problem that

it cannot distinguish between prime numbers and Carmichael numbers. Solovay-

Strassen test is based on Euler’s criterion and involves computation of Jacobi sym-

bol hence it is more computationally intensive. Miller-Rabin is the most widely

used probabilistic primality test; it is never worse than Solovay-Strassen test and

Fermat’s test.

True primality tests for an integer n requires partial or complete factorization of

n − 1. Lucas test is based on the fact that n is prime if and only if Z∗n has an

element of order n − 1. This test requires the knowledge of factorization of n − 1.

Pocklington’s test only requires partial factorization of n− 1, and it is based on the

Pocklington’s theorem.

15

Algorithmic Number Theory and Cryptography

Integer factorization problem: Given a positive, composite integer n, find its prime

factorization i.e., n = pe11 p
e2
2 · · · pett where the pi are distinct primes and each ei ≥ 1.

To solve integer factorization problem it is enough to study algorithms that find

a non-trivial factorization of n i.e., n = ab where 1 < a < n and 1 < b < n. In

Chapter 3, we have discussed factoring algorithms such as Trial division, Pollard’s

rho method, Pollard’s p− 1 method, Lenstra’s Elliptic-curve factorization and Fac-

torization using group G(n,N). Pollard’s rho algorithm uses Floyd’s cycle-finding

algorithm to find small factors of composite integer n. R. P. Brent has proposed a

faster version of Pollard’s rho method. Pollard’s p − 1 method finds a non-trivial

factor of n, when n has a prime factor p such that p− 1 has no large prime factors.

Lenstra’s Elliptic curve factorization method is a generalization of Pollard’s p − 1

method. In this method, the group Z∗p(p is a prime divisor of n) used in Pollard’s

p−1 method is replaced by Elliptic curve group over Zp. In Pollard’s p−1 method,

we are focusing our hopes on groups Z∗p where p runs over prime divisors of n. for

a given n these groups are fixed so we are inconclusive when all of these groups

has order divisible by a large prime. The above problem encountered with Pollard’s

p− 1 method is solved if we work with elliptic curves over Zp because elliptic curves

over finite fields provide a large number of finite abelian groups and provide more

flexibility in choosing an elliptic curve. So we can expect one group to have order

not divisible by a large prime(or prime power). At the end of the chapter, we have

proposed a factoring algorithm based on the group G(n,N).

RSA is a public-key cryptosystem invented by Ron Rivest, Adi Shamir and Leonard

Adleman. The security of RSA is based on integer factorization problem. Up to

now, there does not exist any classical polynomial-time factoring algorithm. Over

the past years, RSA has been subjected to various attacks, but none of these attacks

are a threat to RSA if RSA is implemented adequately. In Chapter 4, we have exam-

ined the security of RSA by studying various attacks. We have discussed elementary

attacks such as common modulus attack, forward search attack, adaptive-chosen ci-

phertext attack. Also, we have studied low public exponent attacks due to Don

Coppersmith and low private exponent attack due to M. Wiener.

16

Chapter 2

Primality Testing

2.1 Introduction

Public-key Cryptosystems require an efficient generation of public-key parameters.

For example, In RSA public-key cryptosystem with RSA-modulus n = pq, the primes

p and q must be of sufficient size, must be chosen randomly and have certain addi-

tional properties to avoid attacks on the cryptosystem. One of the most fundamental

requirements in Public-key cryptography is to generate large prime numbers. The

most natural method is to generate sufficiently large random integer n, and test it

for primality. There are two types of primality tests; True primality test, and Prob-

abilistic primality test. Former proves that the candidate is prime whereas, latter

is correct when it declares n to be composite but does not provide a mathematical

proof for primality of n and establishes a weaker result such as that the candidate is

“probable prime”. Hence, Probabilistic primality tests are also called Compositeness

tests.

2.2 Probabilistic primality tests

These tests have following structure. let n be an odd integer and a set W (n) ⊂ Zn
defined such that:

1. given a ∈ Zn, it can be checked in deterministic polynomial time whether

a ∈ W (n)

2. W (n) = ∅, if n is prime.

3. | W (n) |≥ n/2, if n is composite.

let P,C denote the set of all the primes and composites respectively. Now the

probability,

P (a ∈ W (n) | n ∈ C) ≥ 1/2 and,

17

Algorithmic Number Theory and Cryptography

P (a /∈ W (n) | n ∈ C)<1/2

by using Bayes’s theorem,

P (n ∈ C | a ∈ W (n)) =
P (a ∈ W (n) | n ∈ C)P (n ∈ C)

P (a ∈ W (n) | n ∈ C)P (n ∈ C) + P (a ∈ W (n) | n ∈ P)P (n ∈ P)

from 2. we have P (a ∈ W (n) | n ∈ P) = 0 thus,

P (n ∈ C | a ∈ W (n)) = 1

and,

P (n ∈ P | a /∈ W (n)) =
P (a /∈ W (n) | n ∈ P)P (n ∈ P)

P (a /∈ W (n) | n ∈ P)P (n ∈ P) + P (a /∈ W (n) | n ∈ C)P (n ∈ C)

from 2. and 3. P (a /∈ W (n) | n ∈ P) = 1, P (a /∈ W (n) | n ∈ C)<1/2. thus,

P (n ∈ P | a /∈ W (n))<1

Suppose n is an integer whose primality is to be tested. An integer a ∈ Zn is chosen

at random and checked if a ∈ W (n). If a ∈ W (n) then test outputs ’composite’, and

it is sure that n is composite. If a /∈ W (n) then test outputs ’prime’ and n is said

to pass primality test for base a, but we can’t claim n to be prime with absolute

certainty. However, successive independent runs of the test all of which returning

answer ’prime’ allow the confidence that n is prime and confidence can be increased

to any desired level.

Definition 2.2.1. [10] If n is composite, the elements of W (n) are called witnesses

to the compositeness of n, and elements of the set Zn −W (n) are called liars.

An integer concluded to be prime on the basis of a probabilistic primality test is

called probable prime.

2.2.1 Fermat’s Test

Theorem 2.2.1. (Fermat’s little Theorem) If p is a prime and a be any integer not

divisible by p then, ap−1 ≡ 1 mod p.

Let n be any integer whose primality is to be determined. By contrapositive of

above theorem, if the above condition fails for any integer a, 1 ≤ a ≤ n − 1 then

n is composite. otherwise, finding an integer a, 1 ≤ a ≤ n − 1 such that an−1 ≡ 1

mod n then n appears prime for the base a.

18

Algorithmic Number Theory and Cryptography

Definition 2.2.2. Let n be an odd composite integer. An integer a, 1 ≤ a ≤ n− 1

such that an−1 6≡ 1 mod n is called a Fermat witness for n, and an integer a,

1 ≤ a ≤ n − 1 such that an−1 ≡ 1 mod n then n is said to be pseudoprime to the

base a, integer a is called Fermat liar for n. The set of witnesses is W (n) = {1 ≤
a ≤ n− 1 | an−1 6≡ 1 mod n}.

Algorithm: Fermat’s Test

Input: an odd integer n ≥ 3 and parameter t

Output: answer n is prime or composite.

1. for i from 1 to t do:

1.1. choose a random integer a, 2 ≤ a ≤ n− 2.

1.2. using repeated-square modular exponentiation algorithm, compute

x = an−1 mod n.

1.3. If x 6= 1 then return ‘composite’

2. return ‘prime’.

Definition 2.2.3. A composite integer n for which an−1 ≡ 1 mod n holds for every

positive integer a satisfying gcd(a, n)=1 is called a Carmichael number.

example: 561, 1105, 1729, 2465, 2821 are first five Carmichael numbers.

Remark:[13] In 1912, Robert Carmichael conjectured that there are infinitely many

Carmichael numbers. W. Alford, G. Granville, and C. Pomerance proved this con-

jecture in 1992.

If n is a Carmichael number then the integers a, 1 ≤ a ≤ n−1 such that gcd(a, n)>1

are the only Fermat witnesses for n. In the case when all prime factors of n are

large, Fermat’s test declares n to be prime, even at a large number of iterations.

Hence, Fermat’s test is not a true probabilistic primality test as it cannot distinguish

between prime numbers and Carmichael numbers.

2.2.2 Solovay-Strassen Test

At first we will introduce the notion of Legendre and Jacobi symbols.

Definition 2.2.4. let a ∈ Z∗n, if there exist an x ∈ Z∗n satisfying x2 ≡ a mod n

then a is called a Quadratic residue modulo n. we denote the set of all quadratic

residues modulo n by Qn and the set of all quadratic non-residues by Q
′
n

19

Algorithmic Number Theory and Cryptography

Definition 2.2.5. Let x be an integer and p be an odd prime then Legendre symbol(
a
p

)
is defined as,

(
a

p

)
=


1 , if a ∈ Qp

−1 , if a ∈ Q′p
0 , if p | a

Definition 2.2.6. let n = pe11 p
e2
2 · · · pett then the Jacobi symbol

(
a
n

)
is defined as,(

a

n

)
=

(
a

p1

)e1(a
p2

)e2
· · ·
(
a

pt

)et

where each of the
(
a
pi

)
are Legendre symbols.

If n is prime then the Jacobi symbol is Legendre symbol.

Some properties of Jacobi symbol

let n,m ∈ Z+ and a, b ∈ Z

1. a ≡ b mod n =⇒
(
a
n

)
=
(
b
n

)
2.
(
ab
n

)
=
(
a
n

)(
b
n

)
3.
(−1
n

)
= (−1)(n−1)/2

4.
(
2
n

)
= (−1)(n

2−1)/8

5.
(
n
m

)
= (−1)(m−1)(n−1)/4

(
m
n

)
Now we will describe a primality test based on following theorems.

Theorem 2.2.2. (Euler’s Criterion) Let n be an odd prime, then for any integer a

satisfying gcd(a, n)=1,

a(n−1)/2 ≡
(
a

n

)
mod n

The proof of Theorem 2.2.3 and Theorem 2.2.4 follows the approach given in [7].

Theorem 2.2.3. (Solovay-Strassen) Let n be an odd composite integer then there

exist an integer a, such that gcd(a, n)=1 and

a(n−1)/2 6≡
(
a

n

)
mod n

20

Algorithmic Number Theory and Cryptography

Proof. suppose n is an odd and composite integer,

case 1: suppose n is squarefree, n = p1p2 · · · pt where t ≥ 2 and pi are distinct odd

primes. we know that the proportion of non-square numbers modulo p1 is exactly

half, so there exist an integer x such that
(
x
p1

)
= −1. By chinese remainder theorem

there exist an integer a such that,

a ≡ x mod p1, a ≡ 1 mod p2 · · · pt
then gcd(a, p1) = 1 , gcd(a, p1p2 · · · pt) = 1 =⇒ gcd(a, n) = 1

and,
(
a
p1

)
=
(
x
p1

)
= −1 , for i > 1

(
a
pi

)
=
(
1
pi

)
= 1 which implies,(

a

n

)
=

(
a

p1

)
· · ·
(

1

pt

)
= −1

To contrary assume an−1/2 ≡
(
a
n

)
mod n then an−1/2 ≡ −1 mod n. reducing this

congruence modulo p2 we get 1 ≡ −1 mod p2, which is a contradiction.

case 2: let n has repeated prime factor p, n = pkm where gcd(p,m) = 1 and k ≥ 2.

By Chinese remainder theorem there exist an integer a such that,

a ≡ 1 mod m and , a ≡ 1 + p mod p2

therefore p - a , gcd(a,m) = 1 =⇒ gcd(a, n) = 1.

To contrary assume an−1/2 ≡
(
a
n

)
mod n then a(n−1) ≡ 1 mod n. Now, reducing

the congruence relation modulo p2 we get a(n−1) ≡ 1 mod p2. Since a ≡ 1 + p

mod p2 we obtain (1 + p)n−1 ≡ 1 mod p2.

By binomial theorem, (1 + p)n−1 ≡ 1 + (n − 1)p mod p2 =⇒ 1+(n-1)p ≡ 1

mod p2 =⇒ (n − 1)p ≡ 0 mod p2 =⇒ n − 1 ≡ 0 mod p. which leads to a

contradiction since n is a multiple of p.

Definition 2.2.7. let n be an odd composite integer and a be an integer, 1 ≤ a ≤
n − 1. If either an−1/2 6≡

(
a
n

)
mod n or gcd(a, n) > 1, then a is called an Euler

witness for n. otherwise, if an−1/2 ≡
(
a
n

)
mod n and gcd(a, n) = 1, then n is said to

be Euler pseudoprime to the base a and integer a is called an Euler liar for n. The

set of witnesses W (n) = {1 ≤ a ≤ n− 1 | an−1/2 6≡
(
a
n

)
mod n or gcd(a, n)>1}.

Theorem 2.2.4. Let n > 1 be an odd integer and,

X = { 1 ≤ a ≤ n− 1 : gcd(a, n) = 1, an−1/2 ≡
(
a
n

)
mod n},

Y = { 1 ≤ a ≤ n− 1 : gcd(a, n) = 1, an−1/2 6≡
(
a
n

)
mod n},

Z = { 1 ≤ a ≤ n− 1 : gcd(a, n) > 1}

21

Algorithmic Number Theory and Cryptography

(i) If n is prime then | X |= n− 1,

(ii) If n is composite then | X |< (n− 1)/2.

Proof. proof of (i) follows from Theorem 2.2.2 Euler’s criterion.

Now, we will prove (ii), we know that if gcd(a, n) = 1 then
(
a
n

)
= ±1 and if

gcd(a, n) > 1 then
(
a
n

)
= 0. since 1 ∈ X, X 6= ∅, from Theorem 2.2.3 Y 6= ∅

and since n is composite Z 6= ∅. Also, cardinality of each of them is between 1 to

n− 1.

choose any integer y ∈ Y ,

claim: Xy = {xy mod n : x ∈ X} ⊂ Y .

for any x ∈ X, gcd(xy, n) = 1 and,

(xy)(n−1)/2 ≡ x(n−1)/2y(n−1)/2 ≡
(
x

n

)
y(n−1)/2 mod n

Now, xy mod n is either in X or Y . let xy mod n ∈ X then (xy)(n−1)/2 ≡
(
xy
n

)
=(

x
n

)(
y
n

)
mod n , so

(
x
n

)(
y
n

)
=
(
x
n

)
y(n−1)/2 mod n. since gcd(x, n) = 1,

(
x
n

)
= ±1

hence,
(
y
n

)
= y(n−1)/2 mod n. This contradicts that y ∈ Y , hence for any x ∈ X,

xy mod n ∈ Y , i.e, Xy ⊂ Y .

let x1 and x2 ∈ X, if x1y ≡ x2y mod n then x1 ≡ x2 mod n =⇒ x1 = x2. hence,

| Xy |=| X |. we have, Xy ⊂ Y , | X |=| Xy |≤| Y | so,

2 | X |<| X | + | X | +1 ≤| X | + | Y | + | Z |= n− 1

i.e., | X |< (n− 1)/2

Theorem 2.2.5. Let n > 1 be an odd integer. If n is prime then the fraction of

integers between 1 and n − 1 which are Euler witnesses is 0 and If n is composite

then more than 1/2.

Proof. If n is prime then the result follows from Theorem 2.2.2. If n is composite

then result follows from Theorem 2.2.4(ii).

Algorithm: Solovay-Strassen test

Input: an odd integer n ≥ 3 and parameter t

Output: answer n is prime or composite.

1. for i from 1 to t do:

1.1. At random, choose an integer a, 1 ≤ a ≤ n− 2

22

Algorithmic Number Theory and Cryptography

1.2. Using repeated-square algorithm for modular exponentiation compute

x = a(n−1)/2 mod n.

1.3. return ‘composite′, if x 6= 1 and x 6= n− 1.

1.4. compute s =
(
a
n

)
.

1.5. return ‘composite′, If x 6≡ s.

2. return ‘prime′.

The problem with Solovay-Strassen test is that it requires computation of Jacobi

symbol. Now, we will discuss Miller-Rabin probabilistic primality test. It is easy to

implement, it has less error probability and never worse than Solovay-Strassen test.

2.2.3 Miller-Rabin test

Miller-Rabin test is the most used probabilistic primality test in practice. It is also

known as the strong pseudoprime test.

Theorem 2.2.6. [13] Let p be a prime. Then x2 ≡ 1 mod p if and only if x ≡ ±1

mod p.

Proof. we have,

x2 ≡ 1 mod p ⇐⇒ (x+ 1)(x− 1) ≡ 0 mod p

⇐⇒ p|(x+1)(x-1)

⇐⇒ p | (x+ 1) or p | (x− 1)

⇐⇒ x+ 1 ≡ 0 mod p or x− 1 ≡ 0 mod p

⇐⇒ x ≡ −1 mod p or x ≡ 1 mod p.

Conversely, if either x ≡ −1 mod p or x ≡ 1 mod p then, x2 ≡ 1 mod p.

Definition 2.2.8. The integer x such that x2 ≡ 1 mod n but x 6≡ ±1 mod n, is

called a non-trivial square root of 1 modulo n.

example: x = 6 is a nontrivial square root of 1 modulo 35. since, x2 = 62 ≡ 1(mod

35), 6 6≡ ±1(mod 35)

23

Algorithmic Number Theory and Cryptography

Corollary 2.2.6.1. If there exist a non-trivial square root of 1 modulo n, then n is

composite.

Theorem 2.2.7. Let n be an odd prime, and let n − 1 = 2ek where k is odd. let

a be any integer such that gcd(a, n)=1. then, either ak ≡ 1 mod n or a2
j k ≡ −1

mod n for some j, 0 ≤ j ≤ e− 1.

Proof. let n be an odd prime and an integer a relatively prime to n, 1 < a < n.

Consider the sequence

{ak, a2k, a4k, · · · , a2e−1k, a2
ek} mod n

due to Fermat’s Little theorem the last entry should be 1 and due to Theorem 2.2.6,

above sequence has one of the two following forms,

{1, 1, · · · , 1, 1, 1, · · · , 1} mod n

or {∗, ∗, · · · , ∗,−1, 1, · · · , 1} mod n

where ∗ denotes a number different from ±1. This concludes the proof.

Algorithm: Miller-Rabin Test

Input: an odd integer n ≥ 3 and parameter t

Output: answer n is prime or composite.

1. write n− 1 = 2ek where k is odd.

2. for i from 1 to t do:

2.1. choose a random integer a, 2 ≤ a ≤ n− 2.

2.2. using repeated-square modular exponentiation algorithm, compute

x = ak mod n .

2.3. If x 6= 1 and x 6= n− 1 do:

2.3.1. j=1

24

Algorithmic Number Theory and Cryptography

2.3.2. while j ≤ e− 1 and x 6= n− 1 do:

compute x = x2 mod n

If x = 1 then, return ‘composite’.

j = j + 1

If y 6= n− 1 then return ‘composite’.

3. return ‘prime’.

Definition 2.2.9. Let n be an odd composite integer and let n − 1 = 2ek where

k is odd. let a be an integer, 1 ≤ a ≤ n − 1. If ak 6≡ 1 mod n and if a2
j k 6≡ −1

mod n for all j, 0 ≤ j ≤ e− 1, then a is called a strong witness for n. Otherwise, if

either ak ≡ 1 mod n or a2
j k ≡ −1 mod n for some 0 ≤ j ≤ e− 1 then, the integer a

is called a strong liar for n and n is said to be a strong pseudoprime to the base a.

The set of witnesses,

W (n) = {1 ≤ a ≤ n−1 | ak 6≡ 1 mod n and a2
j k 6≡ −1 mod n for all j, 0 ≤ j ≤ e−1}.

The proof of Theorem 2.2.11 uses Theorem 2.2.8, Theorem 2.2.9 and Theorem 2.2.10.

To prove these theorems we follow approach given in [6].

Theorem 2.2.8. Let n = pα be a prime power for prime p and α ≥ 1 then the

Miller-Rabin liars for n are the solutions to ap−1 ≡ 1 mod pα which forms a group

under the group operation multiplication modulo n.

Proof. let a, 1 ≤ a ≤ n − 1 be a Miller-Rabin liar then by Euler’s theorem aφ(n) ≡
1 mod n. since ak ≡ 1 mod n or a2

j k ≡ −1 mod n for some 0 ≤ j ≤ e − 1

we have a2
ek = an−1 ≡ 1 mod n. hence the ord(a) divides gcd(φ(n), n − 1) =

gcd(pα−1(p − 1), pα − 1). since p − 1 | pα − 1 and gcd(p, pα − 1) = 1 we have

gcd(pα−1(p− 1), pα − 1) = p− 1. hence ap−1 ≡ 1 mod pα.

conversely, let ap−1 ≡ 1 mod pα, p − 1 = 2rs where s is odd and r ≥ 1. since

p− 1 | pα − 1 = 2ek, we have s | k, r ≤ e. since,

ap−1 = a2
rs = (as)2

r ≡ 1 mod pα,

order of as is 2j where 0 ≤ j ≤ r.

the case when j = 0, as ≡ 1 mod pα =⇒ ak ≡ 1 mod pα. lets consider the

case when j ≥ 1 then b := (as)2
j−1

satisfies b2 ≡ 1 mod ps, b 6≡ 1 mod ps. hence

ps | (b+ 1)(b− 1) =⇒ ps | (b+ 1) or(b− 1) so b ≡ ±1 mod ps. since b 6≡ 1 mod ps

we have b ≡ −1 mod ps. now b = a2
j−1s ≡ −1 mod pα, s | k and k is odd, raise

power both side by k/s we get a2
ik ≡ −1 mod pα where i = j − 1 ∈ {0, · · · , r− 1}.

25

Algorithmic Number Theory and Cryptography

the proof that Miler-Rabin liars for n = pα forms a group is trivial.

Theorem 2.2.9. The equation ap−1 ≡ 1 mod pα has p− 1 solutions modulo pα for

each α.

Proof. we will prove by induction on α. when α = 1, this holds due to fermat’s

little theorem. If ap−1 ≡ 1 mod pα, then there is a unique a′ mod pα+1 such that

a′p−1 ≡ 1 mod pα+1 and a′ ≡ 1 mod pα. Now, a′ ≡ 1 mod pα =⇒ a′ ≡ a + cpα

mod pα+1 where c is well-defined mod p.

By binomial theorem,

(a+ cpα)p−1 ≡ ap−1 + (p− 1)ap−2cpα mod pα+1.

since, ap−1 ≡ 1 mod pα, ap−1 = 1 + pαN for some integer N , we need to find c for

which,

(1 + pαN) + (p− 1)ap−2cpα ≡ 1 mod pα+1 ⇐⇒ N - ap−2c ≡ 0 mod p

since, a and p are invertible this has a unique solution for c mod p.

Theorem 2.2.10. Gn is a group under multiplication modulo n and it contains

every Miller-Rabin liar for n and is a proper subgroup of the group of invertible

numbers modulo n.

Proof. If ak ≡ 1 mod n, then a2
i0k ≡ 1 mod n. and, If for some i, 0 ≤ i ≤ e − 1,

then by the maximality of i0, i ≤ i0 and a2
i0k ≡ −1 mod n if i = i0 and if i < i0

a2
i0k ≡ 1 mod n. thus, every Miller-Rabin liar for n is in Gn.

Now, let p be a prime factor of n and n = pαm, where α ≥ 1 and p - m. both pα

and m are odd integers (> 1).

By Chinese remainder theorem, there exist an integer a, 1 ≤ a ≤ n− 1 satisfying,

a ≡ a0 mod p
α, a ≡ 1 mod m

gcd(a, n) = 1, since gcd(a0, n) = 1. Now,

a2
i0k ≡ a2

i0k
0 ≡ (−1)k ≡ −1 mod pα =⇒ a2

i0k 6≡ 1 mod n

and,

a2
i0k ≡ 1 mod m =⇒ a2

i0k 6≡ 1 mod n

. Hence, a2
i0k ≡ ±1 mod n so, gcd(a, n) = 1 and a /∈ Gn.

26

Algorithmic Number Theory and Cryptography

Theorem 2.2.11. let n>1 be an odd and composite integer. The fraction of integers

from 1 to n that are Miller-Rabin witnesses for n is greater than 3/4 except at n = 9,

where the proportion is 3/4. Equivalently, the fraction of integers from 1 to n that

are Miller-Rabin strong liar for n is less than 1/4 except at n = 9, where the

proportion is 1/4.

Proof. we will show that the fraction of strong liar has an upper bound of 1/4 which

is achieved only at n = 9. lets consider the case when n = pα, where p is an odd

prime and α ≥ 2. By Theorem 2.2.8, Miller-Rabin strong liar for n = pα are the

solutions to ap−1 ≡ 1 mod pα, such a are closed under multiplication modulo pα.

From Theorem 2.2.9 there are p− 1 Miller-Rabin strong liar mod pα, their density

is given by,

p− 1/(pα − 1) = 1 /(1 + p+ · · ·+ pα−1)

since α ≥ 2, this ratio is at most 1/(1 + p), which is atmost 1/4(equal to 1/4 when

α = 2 and p = 3 i.e., n = 9). for any other pα the value is less than 1/4.

Now, let n has atleast two different prime factors. write n − 1 = 2ek, k is odd

and e ≥ 1.

let i0 be the largest index in {0, 1, · · · , e − 1} such that some integer a0 satisfies

gcd(a0, n) = 1 and a2
i0

0 ≡ −1 mod n.

consider the set Gn = { 1 ≤ a ≤ n− 1 : a2
i0k ≡ ±1 mod n } for i ≥ 0,

By Theorem 2.2.10 Gn is a group under multiplication modulo n and it contains

every Miller-Rabin liar for n and is a proper subgroup of the group of invertible

numbers modulo n.

since n is not a prime, φ(n) < n− 1. we will show that the proportion:

{MRliar(n)}/(n− 1) < |Gn|/(φ(n)) ≤ 1/4

Claim: for every a ∈ Gn, an−1 ≡ 1 mod n .

2i0+1k divides 2ek = n − 1, since i0 ≤ e − 1. for any a ∈ Gn, a2
i0k ≡ ±1 mod

n =⇒ a2i0+1
k ≡ 1 mod n. hence, an−1 ≡ 1 mod n .

Since, a carmichael number has atleast three different prime factors, we will consider

two cases, first when n is not a carmichael number and second when it has atleast

three different prime factors.

27

Algorithmic Number Theory and Cryptography

case 1: n is not a carmichael number.

consider,

Fn = {1 ≤ a ≤ n− 1 : an−1 ≡ 1 mod n}

then,

Gn ⊂ Fn ⊂ {1 ≤ a ≤ n− 1 : gcd(a, n) = 1}

all three are group under multiplication modulo n.

Claim: both the above containments are strict.

Since, n is not a Carmichael number, there exist an integer x, gcd(x, n) = 1, and

x /∈ Fn. This implies second containment is strict.

we have already shown that Gn is a proper subgroup of the group of invetible num-

bers modulo n. In that proof, we constructed an integer a, 1 ≤ a ≤ n− 1 such that

a /∈ Gn and a ∈ Fn.

Since a proper subgroup of a group is atmost half the size of group φ(n)/ | Fn |≥ 2,

| Fn | / | Gn |≥ 2 so,

φ(n)/ | Gn |= φ(n)/ | Fn | × | F (n) | / | Gn |≥ 2.2 ≥ 4

case 2: n has atleast three different prime factors.

write n = pα1
1 p

α2
2 · · · pαtt for distict prime pi, αi ≥ 1 and t ≥ 3.

Consider,

Hn = {1 ≤ a ≤ n− 1 : a2
i0k ≡ ±1 mod pαii for i = 1, · · · , t}

Then,

Gn ⊂ Hn ⊂ 1 ≤ a ≤ n− 1 : gcd(a, n) = 1}

for integers j and k,

j ≡ k mod n ⇐⇒ j ≡ k mod pαii for i = 1, · · · , t

Now, consider the group homomorphism f between groupsHn and P = {±1mod pα1
1 }×

{±1 mod pα2
2 } × · · · × {±1 mod pαtt } given by,

f(a mod n) = (a2
i0k mod pα1

1 · · · , a2
i0k mod pαii , · · · , a2

i0k mod pαtt)

Let Kn = ker f then, Kn ⊂ Gn ⊂ Hn. we have | P |= 2t. Now, we will show that f

is surjective. It is sufficient to show (−1, 1, 1, · · · , 1) is in image the image of f .

28

Algorithmic Number Theory and Cryptography

By definition of i0, there exist an integer a0 such that a2
i
0 ≡ −1 mod n. By Chinese

remainder theorem there exist an a, 1 ≤ a ≤ n− 1 such that,

a ≡ a0 mod p
α1
1 ,

a ≡ 1 mod pαtt , for α ≥ 2

implies,

a2
i0k ≡ a2

i0k
0 ≡ (−1)k ≡ −1 mod pα1

1

and,

a2
i0k ≡ 1 mod pαtt , for t ≥ 2

then, f(a mod n) = (−1, 1, 1, · · · , 1).

Now, | f(Hn) |= 2t and | f(Gn) |= 2 which implies | Hn | / | Kn |= 2t and

| Gn | / | Kn |= 2 hence | Hn | / | Gn |= 2t−1 which is atleast 4(since, t ≥ 3).

so,

φ(n)/ | Gn |= φ(n)/ | Hn | × | H(n) | / | Gn |≥| H(n) | / | Gn | ≥ 4

this completes the proof.

Remark: Let n be an odd composite integer then the probability that Miller-Rabin

test for n with ′t′ number of iterations declares it to be prime is less than (1/4)t

whereas the probability that Solovay-Strassen test for n with ′t′ number of iterations

declares it to be prime is less than (1/2)t. It can be shown that if a is a Miller-Rabin

liar, then it is also Euler liar and also Solovay-Strassen test involves computation of

Jacobi symbol hence we can conclude Miller-Rabin test is never worse than Solovay-

Strassen test.

2.3 True primality tests

These tests are also known as primality proving algorithms and used to prove if the

given integer is a prime. True primality tests are more computationally intensive

than the probabilistic primality tests. Hence, before applying True primality test to

integer n we should apply less computational intensive probabilistic primality test

such as Miller Rabin test for primality.

Definition 2.3.1. If a True primality test outputs an integer n to be prime, then

n is called provable prime.

29

Algorithmic Number Theory and Cryptography

We know that, If n > 1 has no prime factor ≤ b
√
nc, then n is prime. We can

use the sieve of Eratosthenes to get a table containing primes up to
√
n or use trial

division method. These methods are easy to implement as a test for primality but

not useful for large integers.

Now, we will discuss True primality tests for an integer n which requires partial

or complete factorization of n − 1. These tests are only useful in the case when

the factorization of n − 1 is easy to compute, i.e., when it is of a special form or

constructed via specific methods.

2.3.1 Lucas Test

Theorem 2.3.1. Let n > 1 be an integer, then n is prime ⇐⇒ φ(n) = n− 1.

Proof. if n is prime then all the integers from 1 to n − 1 are relatively prime to

n, hence φ(n) = n − 1. suppose n is composite integer and let d be divisor of n,

1 < d < n then d ∈ {2, · · · , n− 1} with gcd(d, n) > 1. hence φ(n) ≤ n− 2.

The following theorem which is a type of converse of Fermat’s little theorem was

discovered by Lucas in 1876.

Theorem 2.3.2. (Lucas) Let n > 1, if there exist an integer a such that,

(i) an−1 ≡ 1 mod n,

(ii)an−1/pi 6≡ 1 mod n for every prime divisor pi of n− 1.

then n is prime.

Proof. from last theorem it is enough to prove φ(n) = n − 1. let a be an integer

which satisfies both the conditions. from (i) ord(a) | n − 1. To contrary suppose

ord(a) 6= n− 1 then n− 1 = k. ord(a), for some k > 1. Now, let pi be a divisor of k

then,

an−1/pi = akord(a)/pi = (aord(a))k/pi ≡ 1 mod n

which contradicts (ii), hence ord(a) = n − 1. we know that ord(a) ≤ φ(n) and

φ(n) ≤ n− 1. since ord(a) = n− 1, φ(n) = n− 1 implies n is prime.

Let n be an integer candidate for primality test. At first we will apply probabilistic

primality test such as Miller-Rabin. If after some predefined ′t′ number of iterations,

30

Algorithmic Number Theory and Cryptography

each output ‘probable prime’ then we will use Lucas theorem to test n for primality.

If we randomly select an integer a ∈ Zn and check if it has order n − 1 then

expected number of such iterations before we get an integer a of order n − 1 is

O(log log n)(since, n/φ(n) < 6 log log n for n ≥ 5).

example: Let n = 2011, 2011 - 1 = 2.3.5.67,

now test for a = 7,

72011−1 ≡ 1 mod 2011,

7(2011−1)/2 ≡ −1 6≡ 1 mod 2011,

7(2011−1)/3 ≡ 205 6≡ 1 mod 2011,

7(2011−1)/5 ≡ 1948 6≡ 1 mod 2011,

7(2011−1)/67 ≡ 948 6≡ 1 mod 2011,

hence by Lucas test 2011 must be prime.

2.3.2 Pocklington’s Test

The issue with Lucas test is the requirement of the factorization of n− 1, which is a

problem even harder than testing n for primality. Henry C. Pocklington discovered

a test which requires only partial factorization of n− 1.

Theorem 2.3.3. (Pocklington) Let n ≥ 3 be a positive integer and n − 1 = rf ,

where f = qe11 q
e2
2 · · · qett and gcd(r, f) = 1. If there exist an integer a such that:

(i) an−1 ≡ 1 mod n,

(ii) gcd(an−1/qj − 1, n) = 1 for every j, 1 ≤ j ≤ t,

If f >
√
n− 1, then n is prime.

Proof. suppose p is a prime factor of n, from (i) we have ord(ar) in Z∗p a divisor of

(n − 1)/r = f . from (ii) it is not a proper divisor of f . hence it must be equal to

f and f divides order of Z∗p, i.e, f | p − 1 which implies every prime factor of n is

congruent to 1 modulo f . so, each prime factor of n is larger than f . but f ≥
√
n,

so each prime factor of n is larger than
√
n, which implies n is prime.

Let n be an integer such than factorization of one of its divisor f ≥
√
n is known.

we will randomly choose an integer a, 1 < a < n − 1 and test condition (i) and

(ii) of Pocklington’s theorem, If a satisfy both of the conditions then n is prime.

Otherwise, another a is chosen randomly and tested similarly. The probability that

a randomly selected integer a, 1 ≤ a ≤ n − 1 satisfy the conditions (i) and (ii) of

Theorem 2.3.3 is given by,

1

log qt
≈

t∏
i=1

(1− 1

qi
) ≥ 1−

t∑
i=1

1

qj

31

Algorithmic Number Theory and Cryptography

If we are unable to find such an a after a large number of iterations, then n is proba-

bly composite. Hence, before applying Pocklington’s test, we will apply Miller-Rabin

probabilistic primality test.

example: Let n = 997, n− 1 = 12× 83,
√

997 < 83. take a = 2 and f = 83, then

2997−1 ≡ 1 mod 997

gcd(2(997−1)/83 − 1, 997) = 1,

from Pocklington’s theorem n is prime.

32

Chapter 3

Integer Factorization Problem

3.1 Introduction

Definition 3.1.1. (Integer factorization problem) Let n be the given positive in-

teger then find its prime factorization, i.e, n = pe11 p
e2
2 · · · pett where pi are distinct

primes and ei ≥ 1.

In the last chapter, we have discussed Primality testing algorithms. Given as in-

put an integer n, Primality testing algorithms output that n is composite, probable

prime or provable prime but does not provide a factor of n. If we provide a non-

trivial factor of n, then n is composite, and If the only factors of n are 1 and n,

then n is prime. The Integer factorization problem may be harder than the problem

of testing integers for primality. So for a given integer n, we should first test it for

primality, and if it turns out to be composite then we should try to factor it.

Let n > 1 be a positive integer then, n = ab where, 1 < a < n and 1 < b < n

is called split or non-trivial factorization of n.

Given an integer n we will find the split of n and then test a and b for primality. If

they turn out to be composite, then we split them and apply this process recursively.

Hence, to find the prime factorization of any given integer n, it is enough to study

algorithms to split n.

the factoring algorithms are of two types,

(i) Special purpose factoring algorithms : The running time of these algorithms de-

pends on properties and size of the factor p of composite integer n. for example:-

Trial division, Pollard’s rho, Pollard’s p− 1, Lenstra’s elliptic curve factorization.

(ii) General purpose factoring algorithms : The running time of these algorithms

depends merely on the size of n. for example:- quadratic sieve and general number

field sieve.

33

Algorithmic Number Theory and Cryptography

3.2 Factoring algorithms

3.2.1 Trial division

Trial division refers to divide given composite integer n by ‘small’ primes. given

composite integer n if we attempt to factor n by trial division then in the worst case

when n is product of two primes of same size, it takes
√
n divisions.

3.2.2 Pollard’s rho method

Let n be an integer and S = {0, 1, · · · , n− 1}. consider the iteration,

xi+1 = f(xi)

where f : S → S be some easily-computable random function and x0 ∈ S is given.

since S is a finite set, the sequence x0, x1, x2, · · · must eventually cycle. hence there

exist m ≥ 0, q > 0 such that,

xm+q = xm and xi+q = xi

for all i ≥ m.

Definition 3.2.1. The minimal such m and q are called the non-periodic part and

period of the sequence {xi}. If there exist indices i and j such that xi = xj then it

is called a collision.

The most natural method to find a collision in sequence {xi} is to store xi and then

look for duplicates. but, this method requires roughly O(
√
n) memory and O(

√
n)

time(memory and time estimates are due to Birthday-problem).

Now we will discuss Floyd’s algorithm which reduces the storage requirement to find

a collision. his idea is to find j ≤ m+ q such that,

xj = x2j

Algorithm: Floyd’s Algorithm

Input: f , x0.

1. set x← x0, y ← x0

2. repeat j ← j + 1, x← f(x), y ← f(f(y)) until x = y.

34

Algorithmic Number Theory and Cryptography

Let n = ab where gcd(a, b) = 1 and S = Zn ' Za × Zb. Let f : S → S, f = (f1, f2),

xi+1 = f(xi)

Since, period q of {xi} in Zn is an upper-bound to the period qa of {xi} in Za and

the period qb of {xi} in Zb we should find qa or qb[11]. but a and b are unknown so

compute g = gcd(xm+q − xm, n). If 1 < g < n then we have found a factor of n.

Pollard gave a factorization method using Floyd’s cycle finding algorithm which is

as follows:

Let n be a composite integer and p be a prime factor of n. let x0 = 2 and f(x) = x2+1

mod p. Now generate the iterative sequence x0, x1, · · · where xi+1 = f(xi) for i ≥ 0.

using Floyd’s cycle finding algorithm we can find j such that xj ≡ x2j mod p. since

p is unknown hence to obtain a factor of n, we will compute g = gcd(xm − x2m, n).

If n > g > 1, then Pollard’s rho method provides a non-trivial factor of n. since n

is very large, the case of obtaining g = n has negligible probability.

Algorithm: Pollard’s rho algorithm

Input: a composite integer n.

Output: a non-trivial factor g of n.

1. set x← 2, y ← 2

2. for i = 1, 2, · · · do:

2.1. compute x← x2 + 1 mod n, y ← y2 + 1 mod n, y ← y2 + 1 mod n.

2.2. compute g = gcd(x− y, n).

2.3. If 1 < g < n then return g,

2.4. If g = n then the algorithm fails.

Remark: If the Pollard’s rho algorithm terminates with failure then we can start

with different x0 or use different polynomial f(x) = x2 + k, k 6= −2, 0.

Let p be the smallest prime divisor of n, then the expected time for Pollard’s rho

method to find p is O(
√
p) modular multiplications or the expected time for algo-

rithm to find a non-trivial factor of n is O(n
1
4) modular multiplications.

R. P. Brent[4] has proposed a modification to Pollard’s rho method. The following

cycle finding algorithm is due to Brent.

35

Algorithmic Number Theory and Cryptography

Algorithm: Brent’s cycle finding algorithm

Input: f, x0

Output: period q of the sequence {xi}.

1. set y ← x0, r ← 1, done← false.

2. repeat until done

2.1. x← y, j ← k, r ← 2× r

2.2. repeat until k ≥ r or done

2.2.1. k ← k + 1

y ← f(y)

done← (x = y)

3. return q = k − j

Now, we will explain above algorithm. The algorithm outputs period q of the se-

quence {xi}, and we use variable j to keep track of the period. We start with y ← x0

and x ← y . for each value of k we update y and check if x = y. If x = y we are

done but, if x 6= y we increase k by 1 and repeat procedure until k is smaller than

r. when k exceeds r and still done ← false we update x ← y and increase r by

a factor of 2 and repeat the procedure. since we are working with finite sets, the

algorithm will eventually terminate with period q = k − j .

By measuring work in units of f evaluations, Brent[4] has shown that on average

his cycle finding algorithm is 36% faster than Floyd’s cycle-finding algorithm and

when applying Brent’s cycle-finding algorithm to Pollard’s rho method in place of

Floyd’s cycle-finding algorithm the Pollard’s rho algorithm gets about 24% faster.

3.2.3 Pollard’s p− 1 method

Let n = pq, p < q be the integer which we want to factor. choose a ∈ Z∗n at random

and compute aQ mod n(we will provide suitable candidate for Q later). Now, by

chinese remainder theorem there exist ap ∈ Z∗p and aq ∈ Z∗q such that,

aQ mod n↔ (aQp mod p, aQq mod q)

Lets assume p− 1 | Q and q − 1 - Q then by Fermat’s little theorem we have,

aQ mod n↔ (1 mod p, aQq mod q)

If aQq mod q 6≡ 1 mod q then p | ((aQ − 1) mod n) and q - ((aQ − 1) mod n).

hence gcd(aQ − 1, n) = p, gives a non-trivial factor of n.

Now we will provide a suitable candidate for Q.

36

Algorithmic Number Theory and Cryptography

Definition 3.2.2. let n,B be a positive integers then n is said to be B-smooth if

all prime factors of n are less than or equal to B.

We will choose B according to the time which we are suppose to spend on algorithm.

let Q be the l.c.m. of all powers of primes which are less than or equal to B that

are less than or equal to n. If pα ≤ n then α ≤ blog n/ log pc.so,

Q =
∏
p≤B

pblogn/ log pc

where p runs over all the primes less than or equal to n.

Let p be a factor of n such that p − 1 is B-smooth then p − 1 | Q. On the other

hand if q − 1 has any factor greater than B then q − 1 is not B-smooth. Now, for

any integer a relatively prime to n we have aQ ≡ 1 mod p. since p is unknown, we

compute g = gcd(aQ − 1, n). If n > g > 1 then g is an non-trivial factor of n and if

g is 1 or n then algorithm fails.

Algorithm: Pollard’s p− 1 algorithm

Input: a composite integer n.

Output:a non-trivial factor g of n.

1. select a bound B.

2. select an integer a, 1 < a < n at random and compute g = gcd(a, n). If g > 1

then return g.

3. for every prime p ≤ B do:

3.1. compute α ≤ blog n/ log pc

3.2. using repeated square and multiply algorithm for modular exponentiation

to compute a← ap
α

mod n

4. compute g = gcd(a− 1, n)

5. If 1 < g < n then return g. If g = 1 or n, then the algorithm has failed to give

a non-trivial factor so terminate the algorithm.

If the algorithm terminates with the failure, then one option is to increase B while

keeping a fixed. The smoothness bound B is chosen according to the time we want

to spend on Pollard’s p − 1 algorithm before moving to other algorithms Pollard’s

p− 1 method is not useful when every prime divisor p of n, p− 1 is not B-smooth

i.e, it is divisible by a large prime than B.

37

Algorithmic Number Theory and Cryptography

3.2.4 Lenstra’s Elliptic-curve factorization

This method was given by H. W. Lenstra in 1987. At first we will introduce minimal

background to understand this method.

Definition 3.2.3. [9]Let K be a field of characteristic other than 2,3 and let x3 +

ax + b (a, b ∈ K) be a cubic polynomial with no multiple roots. An elliptic curve

over K is the set,

E = {(x, y) ∈ K ×K | y2 = x3 + ax+ b} ∪O

where O is called the point at infinity.

It is known that points on elliptic curve forms an abelian group with the operation

‘+’. let P1 = (x1, y1), P2 = (x2, y2) ∈ E then P1 + P2 = P3 where P3 = (x3, y3),

(x3, y3) = (α2 − x1 − x2, α(x1 − x3)− y1)

where,

α =
m1

m2

=

(y1 − y2)/(x1 − x2) , if P1 6= P2

(3x21 + a)/2y1 , if P1 = P2

Let E be an elliptic curve over Fq, where q = pr then we have Hasse’s theorem which

provides a bound on number of Fq points on E.

Theorem 3.2.1. (Hasse) Let E be an elliptic curve defined over Fq and let n be

the number of Fq-point on E then,

| N − (q + 1) |≤ 2
√
q

Algorithm: Lenstra’s algorithm [13]

Input: a composite integer n.

Output: a non-trivial factor of n.

[1] choose a random pair (E,P) where E is elliptic curve over Zn and P = (x, y)

is a point on the elliptic curve. for this we will randomly choose a, x, y ∈ Zn
and compute b ← y2 − x3 − ax, d = gcd(4a3 + 27b2, n). If 1 < d < n then

return d. If d = n then we will discard (E,P) and choose another pair (E,P).

[2] select a bound B. compute Q =
∏

p≤B p
blogn/ log pc, where p runs over primes

less than or equal to B.

38

Algorithmic Number Theory and Cryptography

[3] compute QP mod n by doubling and addition using the following formula,

let P1 = (x1, y1), P2 = (x2, y2) ∈ E then P3 = P1 + P2 mod n where P3 =

(x3, y3),

(x3, y3) = (α2 − x1 − x2 mod n, α(x1 − x3)− y1 mod n)

where,

α =
m1

m2

=

(y1 − y2)/(x1 − x2) mod n , if P1 6= P2

(3x21 + a)/2y1 mod n , if P1 = P2

[4] if QP ≡ O mod n then compute g = gcd(m2, n), otherwise go to step [1] and

choose another pair (E,P).

[5] If 1 < g < n then return g. otherwise go to otherwise go to step [1] and choose

another pair (E,P).

In Pollard’s p − 1 method, we are focusing our hopes on groups Z∗p where p runs

over prime divisors of n. for a given n these groups are fixed so we are inconclusive

when all of these groups has order divisible by a large prime. The above problem

encountered with Pollard’s p−1 method is solved if we work with elliptic curves over

Zp because elliptic curves over finite fields provide a large number of finite abelian

groups and provide more flexibility in choosing an elliptic curve. So we can expect

one group to have order not divisible by a large prime(or prime power).

Remark:[9] Let p be the smallest prime factor of n where n is not a prime power

and is not divisible by 2 or 3. Assuming some plausible conjecture, Lenstra proved

that estimated number of bit operations required to find a factor of n is,

exp(
√

(2 + ε) log p log log p)

where ε tends to zero for large p. Lenstra’s algorithm is useful to find small factors

of n.

3.2.5 Factorization using group G(n,N)

Consider the equation,

x2 +Ny2 ≡ 1 mod n (3.1)

where N ∈ Z∗n. The set of solutions of this equation G(n,N) over (Z∗n)2 forms group

under the group operation[12] defined as,

let (x1, y1) and (x2, y2) be two elements in G(n,N) then,

(x1, y1).(x2, y2) = (x1x2 +Ny1y2 mod n, x1y2 − x2y1 mod n)

39

Algorithmic Number Theory and Cryptography

let n = pq where p and q are primes then(from [1]),

|G(n,N)| =


(p− 1)(q − 1) , if − 1/N ∈ Qn

(p− 1)(q + 1) , if − 1/N ∈ Qp and− 1/N ∈ Q′q
(p+ 1)(q − 1) , if − 1/N ∈ Q′p and− 1/N ∈ Qq

(p+ 1)(q + 1) , if − 1/N ∈ Q′p and− 1/N ∈ Q′q

e = (1, 0) is identity of the group and for any g ∈ G(n,N) we have g2 = e, hence

G(n,N) is a finite-abelian group.

(1,0) is a solution to equation (3.1). The line l : y = b(x− 1) passes through (1,0).

Now look at the intersection of l and x2 +Ny2 = 1,

x2 +N(b(x− 1))2 = 1

by solving, we get point of intersection,

(x, y) = (
kb2 − 1

kb2 + 1
,
−2b

kb2 + 1
) (3.2)

let f be defined as,

f(z = (x, y)) =


β.z , if x ≡ 1 mod 3

z2 , if x ≡ 0 mod 3

α.z , if x ≡ 2 mod 3

where α and β be two fixed element in G(n,N). α and β are computed using (3.2)

and reducing (x, y) modulo n.

Define a sequence of group elements z0,z1,z2,· · · by zi+1 = f(zi) where z0 = (0, 1).

Using Floyd’s cycle-finding algorithm we can find index i for which zi = z2i. Now

compute g = gcd(xi − x2i, n)(also we can compute gcd(yi − y2i, n)). If 1 < g < n

then g is a non-trivial factor of n. If g = 1 or g = n we can try this method with

different α and β or with different N .

40

Chapter 4

Cryptanalysis of RSA

4.1 Introduction

In Public-key(or Asymmetric) cryptosystems each entity has a public key and a

private key, and given the public key, it is not feasible to compute the respective

private key. RSA is a public-key cryptosystem invented by Ron Rivest, Adi Shamir

and Leonard Adleman. The security of RSA is based on integer factorization prob-

lem. Over the past years, RSA has been subjected to various attacks, but none of

these attacks are a threat to RSA if RSA is implemented adequately. In this chap-

ter, we will discuss RSA cryptosystem, its security and various attacks on RSA. In

the end, we will conclude that these attacks can be avoided if we implement RSA

properly.

4.2 RSA cryptosystem

In this section, we will discuss how keys are generated in RSA and, how encryption

and decryption in RSA works. Throughout this chapter, we will assume that Al-

ice(A) and Bob(B) are two entities who are trying to communicate.

At first, we will state Euler’s theorem, which is used several places in this chapter.

Theorem 4.2.1. (Euler) Let n > 1 be an integer, If a ∈ Z∗n then aφ(n) ≡ 1 mod n.

example:- take n = 15 = 3×5 and a = 2. then, φ(15) = 8. since, 15 | 255 = 15×17,

2φ(15) = 28 ≡ 256 ≡ 1 mod 15

RSA key generation: Each communicating entity A(or B) generate keys in the

following manner,

1. randomly generate two large, distinct primes p and q of roughly same size,

each having n/2 bits.

41

Algorithmic Number Theory and Cryptography

2. compute n = pq and φ = (p− 1)(q − 1).

3. select an integer e at random such that 1 < e < φ and it is relatively prime to

φ.

4. compute inverse modulo φ of e using Extended Euclidean algorithm call it d,

1 < d < φ and ed ≡ 1 mod φ.

The integer n, e and d are called RSA modulus, public exponent, and decryption

exponent respectively. The pair (n, e) is the public-key, which is used for message-

encryption and it is publicly available. The integer d is the private key which is used

for message-decryption, it is kept secret and known to the message recipient only.

Typically the size of RSA modus n is 1024 bits and p, q is of size 512 bits each.

RSA cryptosystem

Let two entities A and B are communicating and A wants to send a message m ∈ Z∗n
to the entity B. Then, at first A obtains the public key pair (n, e) of entity B and

compute,

c = me mod n

and send the encrypted message c to B. Now, In order to decrypt c the entity B

computes cd mod n. By Euler’s theorem,

cd = med = m mod n

4.3 Security of RSA cryptosystem

Fact: Let n = pq be the RSA modulus and (N, e), d be public and private keys

respectively then, given the factorization of n the private key d can be recovered

efficiently. conversely given the private key d the RSA modulus n can be factored

efficiently.

Proof. Suppose factorization of n is given then we will compute φ and using extended

Euclidean algorithm we will recover d. Now, suppose d is given. since ed ≡ 1 mod φ,

there exist an integer x such that ed − 1 = xφ. Now by Euler’s theorem for any

a ∈ Z∗n, aed−1 ≡ 1 mod n. φ = (p − 1)(q − 1) is even number since, p and q are

odd. So, let ed− 1 = 2rs where s is an odd integer. we know that for atleast half of

elements a ∈ Z∗n, there exist an integer j ∈ [1, r] such that a2
j−1s 6≡ ±1 and a2

js ≡ 1

mod n. Now, g = gcd(a2j−1s − 1, n) gives a non-trivial factor of n. The probability

that a randomly chosen a ∈ Z∗n will lead to the factorization of n is atleast half. we

will choose a ∈ Z∗n at random and check if it satisfies above condition. if it fails then

we choose another a and check above condition.

42

Algorithmic Number Theory and Cryptography

If we can efficiently factor n, then we can recover private key d from public key pair

(N, e). One of the widely studied problems in Algorithmic number theory is Integer

factorization problem. Over the years the factoring algorithms have improved, but

yet we are unable to discover any classical polynomial-time factoring algorithm.

Currently, the fastest factoring algorithm is General Number Field Sieve(GNFS)

whose running time n-bit integers is exp((64/9)1/3 + o(1)n1/3log2/3n).

4.3.1 Elementary attacks

Common modulus attack:

In order to avoid prime generation again and again for each user, one can fix n. let

each user uses same modulus n. each user i has unique pair ei, di.

Now let c = mei mod n is intended for user i. any user j with the help of his ei, di

pair can factor n. once n is factored user j can recover private key di of user i from

his public key ei. hence, the same RSA-modulus should not be used by more than

one user.

Forward search attack:

Let the message space is small. In order to decrypt m from the ciphertext c attacker

can try to encrypt all the messages m until c is obtained. The process of append-

ing a pseudorandomly generated bitstring to plaintext message before encryption is

called salting the message. The forward search attack can be prevented by salting

the messages.

Adaptive-chosen ciphertext attack:

Let c1 and c2 be ciphertexts corresponding to plaintext messages m1 and m2. Now,

(m1m2)
e ≡ me

1m
e
2 ≡ c1c2 mod n

let the attacker wants to decrypt c = me mod n. suppose the attacker by some

means can get the plaintext message corresponding to any arbitrary ciphertext other

than c. Then attacker will choose ciphertext c0 = cre mod n for some random

r ∈ Z∗n and obtains m0 = cd0 mod n. Since,

m0 ≡ cd0 ≡ cd(re)d ≡ mr mod n

the attacker will recover the desired plaintext message by computing m = m0r
−1

mod n. In order to prevent this attack, we should impose some structural constraint

on the plaintext messages, and the ciphertext which decrypts to the plaintext mes-

sage not having this structure should be rejected.

43

Algorithmic Number Theory and Cryptography

4.3.2 Low public exponent attacks

In order to reduce encryption time, we may prefer to use small public exponent e.

But working with small e can make RSA susceptible to attacks. In this section,

we will discuss attacks based on Coppersmith’s Theorems which use the notion

of Lattice and Lenstra-Lenstra-Lovász(LLL) lattice basis reduction algorithm. So,

first, we will introduce a minimal background on the lattice(the background is from

[10]).

Definition 4.3.1. Let x = (x1, x2, · · · , xn), y = (y1, y2, · · · , yn) ∈ Rn then the inner

product of x and y is a real number denoted by < x, y > and given by,

< x, y >= x1y1 + x2y2 + · · ·+ xnyn

Definition 4.3.2. Let x = (x1, x2, · · · , xn) ∈ Rn then the length of x is a real

number given by,

‖x‖ =
√
< x, x > =

√
x21 + x22 + · · ·+ x2n

Definition 4.3.3. Let B = {v1, v2, · · · , vm} ⊂ Rn(m ≥ n) be a set of linearly

independent vectors. The set,

L = Zv1 + Zv2 + · · ·+ Zvm

is called a Lattice of dimension m and B is called a basis for the lattice L.

If n = m the determinant of L is defined as the determinant of the matrix of

order m×m whose rows are the vectors v1, v2, · · · , vm.

Now, we will introduce the notion of reduced-basis which is based on the Gram-

Schmidt orthogonalization process. It consists of vectors of relatively small lengths.

Definition 4.3.4. Let B = {v1, v2, · · · , vn} be a basis for the Lattice L in Rn. De-

fine the real numbers µi,j(1 ≤ j < i ≤ n) and the vectors v∗i (1 ≤ i ≤ n),

µi,j =
< vi, v

∗
j >

< v∗j , v
∗
j >

, 1 ≤ j < i ≤ n (4.1)

v∗i = vi −
i−1∑
j=1

µi,jv
∗
j , 1 ≤ i ≤ n (4.2)

the basis B is called a reduced− basis if for 1 ≤ j < i ≤ n,

| µi,j |≤ 1/2 (4.3)

and for 1 < i ≤ n, ∥∥v∗j∥∥2 ≥ (
3

4
− µ2

i,i−1)
∥∥b∗i−1∥∥2

(4.4)

44

Algorithmic Number Theory and Cryptography

Given a lattice L and its basis B the Lenstra-Lenstra-Lovász(LLL) lattice based

reduction algorithm finds a reduced basis for L in polynomial-time.

Theorem 4.3.1. Let L be a lattice spanned by B = {v1, v2, · · · , vm}. If B is given

as input in LLL algorithm then it outputs v ∈ L satisfying,

‖v‖ ≤ 2m/4det(L)
1
m

Let n = pq be k-bit RSA modulus where p, q are large primes satisfying,

√
n/2 < q < p < 2

√
n

The following theorem is due to Don Coppersmith.

Theorem 4.3.2. (Coppersmith[3]) Let f(x, y) be a bivariate polynomial over Z
having maximum degree d in each variables separately. assume the coefficients of

f are relatively prime as a set. Let X, Y be bounds on the desired solutions

x0, y0. Define f ∗(x, y) := f(Xx, Y y) and let D be the absolute value of the largest

coefficient of f ∗. If XY<D2/(3d), then in time polynomial in (logD, 2d), we can find

all integer pairs (x0, y0) with f(x0, y0) = 0, | x0 |< X, and | y0 |< Y .

Given appropriate bounds on x0, y0 Theorem 4.3.2 provides small solutions to a

bivariate polynomial f efficiently. The proof of Corollary 4.3.2.1 and Theorem 4.3.3

follows the approach given in [3]. We will use Theorem 4.3.2 to get following useful

result.

Corollary 4.3.2.1. let n = pq be an k-bit RSA modulus. Given t ≥ 2k/4 and

p0 := p mod t then we can factor n in time polynomial in k.

Proof. since p0 is given, q0 := n/p0 mod t. Now consider the polynomial,

f(x, y) = (tx+ p0)(ty + q0)− n

we will look for solution (x0, y0) of above polynomial with x0 < X = 2k/2+1/t and

y0 < Y = 2k/2+1/t. Since gcd of the coefficients of f(x, y) is t, hence In order to

apply Coppersmith theorem consider g(x, y) = f(x, y)/t. Now,

g∗(x, y) = g(xX, yY) = f(xX, yY)/t =
(txX + p0)(tyY + q0)− n

t

the largest coefficient of g∗(x, y) is atleast 2k+2/t. The condition,

XY =
2k+2

t2
< (2n+2/t)2/3

holds whenever t > 2(n+2)/4 and can be reduced to t ≥ 2n/4 by exhaustive search on

first two bits of x0 and y0.

45

Algorithmic Number Theory and Cryptography

The attack based on following Theorem 4.3.3 is called Partial-key exposure attack

i.e., given k/4 least significant bits of d one can recover d completely. we require

small public exponent so that it is possible to perform the exhaustive search on the

values less than it.

Theorem 4.3.3. [3]Let n = pq be a k-bits RSA modulus, φ = (p− 1)(q− 1) , (n, e)

be the public key and d be the private key. If k/4 least significant bits of d are given

then there is an algorithm which recovers d completely in polynomial time in k and

e.

Proof. We have k/4 least significant bits d0 of d i.e., d = d0 mod 2k/4. Since, ed ≡ 1

mod φ there exist an integer x such that,

ed− xφ = ed− x(n− r + 1) = 1

Where r = p+ q or,

ed = 1 + xφ = 1 + x(n− r + 1)

reducing above equation modulo 2k/4 we get,

ed0 ≡ 1 + x(N − r + 1) mod 2k/4

Since φ > d we have x < e. At first we will try each value of x ∈ [0, e] and for each

x value solve above equation to obtain r mod 2k/4.

Now, consider the equation,

p2–rp+ n = p2 − (p+ q)p+ n = 0

Reducing above equation modulo 2k/4 we get,

p2–rp+ n ≡ 0 mod 2k/4

Putting r mod 2k/4 in above equation we solve for p0 :≡ p mod 2k/4 Now let t =

2k/4 and apply last theorem which factors n in time polynomial in k. since the

correct value for p0 can be found in atmost e attempts, the total running time of

algorithm to factor n is linear in e. we know that given factorization of n, we can

expose the private d efficiently.

Now, we will discuss another low public exponent attack on RSA due to Copper-

smith. The proof of the following theorem uses Lenstra-Lenstra-Lovász(LLL) lattice

basis reduction algorithm.

46

Algorithmic Number Theory and Cryptography

Theorem 4.3.4. (Coppersmith[8]) Let f ∈ Z[x] be a monic polynomial of degree δ

and n be an integer. given (n, f) one can efficiently find all the integers | x0 |< X =

n(1/δ)−ε for some ε ≥ 0 satisfying f(x0) = 0 mod n. The running time is dominated

by the time it takes to run the LLL lattice basis reduction algorithm on a lattice of

dimension O(s) where s=min(log n, 1/ε).

So, using above theorem we can find all roots of f mod n which are less than the

bound X. The running time of algorithm decreases as the bound X gets smaller.

Now, we will provide a sketch of the proof of Coppersmith’s Theorem 4.3.4(we will

follow the approach given in [2]). To prove the theorem we require following lemma

which is due to Howgrave-Graham.

Lemma 4.3.5. Let g(x) ∈ Z[x] be a polynomial of degree δ and X be a positive

integer. suppose ‖g(xX)‖ < n/
√
δ. If x0 < X satisfies g(x0) = 0 mod n, then

g(x0) = 0 holds over the integer.

Proof. Using Schwarz inequality we get,

| g(x0) |=|
∑

aix
i
0 |=|

∑
aiX

i(x0/X)i |≤
∑
| aiX i(x0/X)i |

≤
∑
| aiX i |≤

√
δ‖g(xX)‖ < n

since g(x0) = 0 mod n, | g(x0) |< n we get g(x0) = 0.

We know that it is easy to find roots of polynomial over integers. from the above

lemma, if we have a polynomial having small norm then its modulo n roots are also

roots over Z. In order to find roots of f(x) mod n we should look for a polynomial

g ∈ Z[x] which has same roots as f mod n and small norm as to apply Lemma

4.3.5. for this we need to find h ∈ Z[x] such that g = hf has small norm.

Now, we know that f(x0) = 0 mod n then f(x0)
k = 0 mod nk for any k. for some

predefined m define,

hi,j(x) = nm−jxif(x)j

then for any i ≥ 0 and 0 ≤ j ≤ m, x0 is a root of hi,j(x) mod nm. we will find

integer linear combination g(x) of hi,j(x) to use Lemma 4.3.5. Now, Let L be lattice

spanned by hi,j(x) where i = 0, · · · , δ − 1 and j = 0, · · · ,m hence dimension of L

is s = (m+ 1)δ. Due to Theorem 4.3.1, LLL-algorithm outputs a polynomial g ∈ L
satisfying,

‖g‖ ≤ 2s/4det(L)
1
s

we need,

2s/4det(L)
1
s<nm/

√
s

47

Algorithmic Number Theory and Cryptography

It can be shown that for large enough m the bound is satisfied and when X = n(1/δ)−ε

it suffices to take m = O(k/δ) where k = min(log n, 1/ε). The running time is

dominated by the time it takes to run the LLL lattice basis reduction algorithm on

a lattice of dimension O(k) . Now we will apply Lemma 4.3.5 to conclude the proof.

�

Let n be the RSA-modulus and e, d be public and private exponent respectively

where e is small. suppose c be the ciphertext we want to decrypt then consider,

f(x) = xe − c

then by Theorem 4.3.4 we can find all the integer | x0 |< n1/e satisfying,

f(x0) = 0 mod n

xe0 = c mod n

as xe0 < n we will compute integer e-th root c1/e to decrypt c.

4.3.3 Low Private exponent attack

In order to reduce the decryption time, we may prefer to use a small private exponent

d. M. Wiener has shown that a small d can lead to the exposure of d. At first, we

will introduce a minimal background about continued fractions(the background is

from [5])

Definition 4.3.5. A finite continued fraction is an expression given by,

a0 +
1

a1 +
1

a2 +
1

. . . +
1

an

where ai ∈ Z, ai ≥ 1. we will denote above continued fraction and the rational

number which it represent as [a0; a1, a2, · · · , an].

let x/y(y 6= 0) be a rational number then it has exactly two continued fractions,

1. If x/y = [a0; a1, a2, · · · , an] with an = 1, then x/y = [a0; a1, a2, · · · , an−1 + 1]

2. If x/y = [a0; a1, a2, · · · , an] with an 6= 1, then x/y = [a0; a1, a2, · · · , an − 1, 1].

hence every rational number has a unique shortest continued fraction. This ex-

pansion can be computed using the Euclidean algorithm. Consider x/y = x0/x1,

gcd(x0, x1) = 1 and perform Euclidean algorithm,

48

Algorithmic Number Theory and Cryptography

x0 = x1a0 + x2 where 0 ≤ x2 < x1,

x1 = x2a1 + x3 where 0 ≤ x3 < x2,
...

xn = xn+1an where xn+1 = 1

So, the continued fraction exapnsion is x0/x1 = [a0; a1, a2, · · · , an].

Definition 4.3.6. Let x/y = [a0; a1, a2, · · · , an] then the rational numbers,

[a0], [a0; a1], · · · , [a0; a1, · · · , an]

are said to be convergents to x/y.

The low private exponent attack due to M. Wiener is based on the following theorem,

Theorem 4.3.6. (Poincaré) Let x, y, a, b ∈ Z where y ≥ 1, 1 ≤ b < y, gcd(x, y) = 1.

If ∣∣∣∣xy − a

b

∣∣∣∣ < 1

2b2

then a/b is a convergent of x/y.

Theorem 4.3.7. (M. Wiener) Let n = pq with q < p < 2q and d < 1/3n1/4. Given

the public-key (n, e) the private key d can be recovered efficiently.

Proof. In this proof, we will use approximations based on continued fraction. Since

ed ≡ 1 mod φ there exist an integer k such that ed− kφ = 1. Since,∣∣∣∣ eφ − k

d

∣∣∣∣ =
1

φd

thus k/d is an approximation of e/φ.

Since p+ q − 1 < 3
√
n and φ = n− (p+ q) + 1, we get

| n− φ |< 3
√
n

Now consider, ∣∣∣∣ en − k

d

∣∣∣∣ =

∣∣∣∣ed− kφ− kn+ kφ

dn

∣∣∣∣
=

∣∣∣∣1− k(n− φ)

dn

∣∣∣∣ ≤ ∣∣∣∣3k√ndn

∣∣∣∣ =
3k

d
√
n

We have kφ < ed, e < φ so, k < d < 1/3n1/4. hence we get,∣∣∣∣ en − k

d

∣∣∣∣ ≤ 1

dn1/4
<

1

2d2

By Theorem 4.3.6, k/d is a convergent of e/n. Now, we will compute the log n

convergents of the continued fraction for e/n, one of them is equal to k/d. Hence,

we will recover the private key d.

49

Algorithmic Number Theory and Cryptography

4.4 Conclusion

The security of RSA cryptosystem is based on the Integer factorization problem.

Up to now, there does not exist any classical polynomial-time factoring algorithm.

The attacks discussed in this chapter provide issues which should be avoided while

implementing RSA.

While choosing RSA modulus n = pq the care must be taken in selecting primes p

and q. If the difference between p and q is small then one can factor n by dividing

odd integers close to
√
n. Both p and q should be sufficiently large and have the

same bitlength to avoid factoring by Lenstra’s algorithm. If p is such that p− 1 and

p + 1 have a large factor then n will avoid factoring due Pollard’s p − 1 algorithm

and William’s p+ 1 algorithm.

50

Bibliography

[1] Rana Barua and Mahabir P. Jhanwar. “On the Number of Solutions of the

Equation Rx2 +Sy2 = 1 mod n”. In: Sankhya: The Indian Journal of Statis-

tics 72-A.1 (2010), pp. 226–236.

[2] Dan Boneh. “Twenty Years of Attacks on the RSA Cryptosystem”. In: Notices

of the American Mathematical Society(AMS) 46.2 (1999), pp. 203–213.

[3] Dan Boneh, Glenn Durfee, and Yair Frankel. “An Attack on RSA Given a

Small Fraction of the Private Key Bits”. In: ASIACRYPT’98 (1998), pp. 25–

34.

[4] R. P. Brent. “An improved Monte Carlo factoriation algorithm”. In: BIT 20

(1980), pp. 176–184.

[5] Levente Buttyan. Wiener’s Attack. 2015. url: http://www.hit.bme.hu/

~buttyan/Wiener/WienersAttack.pdf.

[6] Keith Conrad. The Miller-Rabin test. 2017. url: http://www.math.uconn.

edu/~kconrad/blurbs/ugradnumthy/millerrabin.pdf.

[7] Keith Conrad. The Solovay-Strassen test. 2016. url: http://www.math.

uconn.edu/~kconrad/blurbs/ugradnumthy/solovaystrassen.pdf.

[8] D. Coppersmith. “Finding a small root of a univariate modular equation”. In:

Advances in Cryptology-EUROCRYPT ’96 (1996), pp. 155–165.

[9] Neal Koblitz. A Course in Number Theory and Cryptography (2nd ed.) New

York: Springer-Verlag, 1994.

[10] A. J. Menezes, P. C. Van Oorschot, and S. A. Vanstone. Handbook of Applied

Cryptography. CRC Press, 1997.

[11] Kapil hari Paranjape. Factorization and Certificates. url: https://www.

imsc.res.in/~kapil/crypto/chap5.pdf.

[12] John M. Pollard and Claus P. Schnorr. “An Efficient Solution of the Congru-

ence x2 + ky2 = m mod n”. In: IEEE Transactions on Information Theory

IT-33.5 (1987), pp. 702–709.

[13] Song Y. Yan. Primality Testing and Integer Factorization in Public-Key Cryp-

tography. Springer, 2009.

51

