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"Listen to the mustn’ts, child.

Listen to the don’ts.

Listen to the shouldn’ts, the impossibles, the won’ts.

Listen to the never haves, then listen close to me..

Anything can happen, child.

Anything can be"

-SHEL SILVERSTEIN
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ABSTRACT

We have studied Lagrangian formulation through Variational principle in Lagrangian depending
on the first derivative of generalized coordinates and then for Lagrangian depending on higher
order derivatives of generalized coordinates.We looked at The Theorem of Ostrogradsky,which gives
explanation as to why higher order derivative theories are unstable. We have studied some aspects of
f (R) theories starting with the evaluation of field equations, first in Einstein Gravity and then in f (R)
Gravity via metric formalism.We have also discussed Gibbons-York-Hawking term ,which is required
for action to be well posed, for both Hilbert-Einstein Action and f (R) action.Further, we have studied
an equivalent scalar representation and explored spherically symmetric solutions in f (R) theories via
Noether symmetry approach.
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1
INTRODUCTION

T
he need for a modified theory of gravity has its motivation coming from both High-energy

Physics as well as Cosmology. GR(General Relativity) is not renormalizable and hence cannot

be conventionally quantized, and thus we need to modify it. The energy budget of the Universe

is 4% ordinary baryonic matter,20% dark matter and 76% dark energy.These last two material are not

only dark , most of their properties are also unknown. Also, the Einstein Gravity is not able to explain

the late time acceleration without including dark energy. One way to explain these observations is to

modify gravity. f (R) theories come about by generalizing the Lagrangian of Hilbert-Einstein Action:

(1.1) S =
∫

d 4x
p−g R

to a more general function of R, Ricci scalar,

(1.2) S =
∫

d 4x
p−g f (R)

In subsequent chapters, we have studied Lagrangian formulation through Variational principle in

Lagrangian depending on the first derivative of generalized coordinates and then for Lagrangian

depending on higher order derivatives of generalized coordinates.We looked at the Theorem of

Ostrogradsky , which explains as to why higher order derivative theories are unstable. We have

studied some aspects of f (R) theories starting with the evaluation of field equations, first in Einstein

Gravity and then in f (R) Gravity via metric formalism.We have also discussed Gibbons-York-Hawking

boundary term , which is required for action to be well posed, for both Hilbert-Einstein Action and

f (R) action.Further, we have studied an equivalent scalar representation and explored spherically

symmetric solutions in f (R) theories via Noether symmetry approach and looked at the importance

of boundary terms in these theories.For future research, we can study the dynamics of f(R) = R2, i.e,

a scalar field in the presence of the cosmological constant.
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2
LAGRANGIAN MECHANICS

L
agrangian is a quantity which describes the dynamics of a system, here dynamics refers to

the motion of the system, and it does so by using the concept of Configuration space.The

structure of a configuration space is that of a (differentiable) manifold.A manifold in simple

terms is something that ’locally’ looks like a n-dimensional Euclidean space, Rn .The Lagrangian is

defined on a configuration space, also called a manifold and a function on its tangent bundle, also

referred to as Lagrangian function. To make the idea of manifold and tangent bundle more clear one

can take the case of Newtonian potential system, where the configuration space is Euclidean, and

the Lagrangian function is the difference between kinetic and potential energy [8], though for gravity

we need to look for a general Lagrangian.

2.1 Variational Principle

In order to derive the equation of motion from a given Lagrangian one makes use of Hamilton’s

Principle of Least Action, which states that the motion of the system from time t1 to time t2 is

such that the line integral, also called the action, has a stationary value for the actual path of the

motion.The action S is defined as[2],

(2.1) S =
∫ t2

t1

L(q, q̇ , t )d t

For the action to be stationary its variation should be zero, which implies that δS should be zero,

(2.2) δS =
∫ t2

t1

δL(q, q̇ , t )d t = 0

(2.3) δS =
∫ t2

t1

(∂L

∂q
δq + ∂L

∂q̇
δq̇

)
d t

3
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The variation in the second term, in the above equation, can be further simplified by integrating

by parts:

(2.4)
∫ t2

t1

∂L

∂q̇
δq̇d t = ∂L

∂q̇
δq

∣∣∣∣t2

t1

−
∫ t2

t1

d

d t

(∂L

∂q̇

)
δqd t

and putting in the boundary conditions :δq(t1) = δq(t2) = 0, i.e, the endpoints are fixed, we obtain

the following equation which is the so-called Euler-Lagrange equation or equations of motion:

(2.5)
∂L

∂q
− d

d t

(∂L

∂q̇

)
= 0

2.1.1 Higher order Lagrangian

The Euler-Lagrange equation can be obtained for Lagrangian containing higher order derivatives

in a similar manner using variational principle, except that it will be endowed with more boundary

conditions.Now, considering a system whose Lagrangian depends non-degenerately upon q̈ which

means that ∂L
∂q̇ depends on q̇ , L(q, q̇ , q̈)[4].The action is given as:

(2.6) S =
∫ t2

t1

L(q, q̇ , q̈)d t

and the corresponding change in action is :

(2.7) δS =
∫ t2

t1

(∂L

∂q
δq + ∂L

∂q̇
δq̇ + ∂L

∂q̈
δq̈

)
d t

again simplifying the above equation by integrating by parts :∫ t2

t1

∂L

∂q̈
δq̈d t = ∂L

∂q̈
δq̇

∣∣∣∣t2

t1

−
∫ t2

t1

d

d t

(∂L

∂q̈

)
δq̇d t

= ∂L

∂q̈
δq̇

∣∣∣∣t2

t1

− d

d t

(∂L

∂q̈

)
δq

∣∣∣∣t2

t1

+
∫ t2

t1

d 2

d t 2

(∂L

∂q̈

)
δqd t

(2.8)

and putting in the boundary conditions, δq(t1) = δq(t2) = 0 and δq̇(t1) = δq̇(t2) = 0, i.e, both the

generalized coordinates and its first derivative, are fixed at the boundaries, we obtain the following

Euler-Lagrange equation:

(2.9)
∂L

∂q
− d

d t

(∂L

∂q̇

)
+ d 2

d t 2

(∂L

∂q̈

)
= 0

2.2 Lagrangian formulation for Fields

A field, in essence, is a set of numbers at every point in space-time.Action for fields is written keeping

in mind that now time is not the only independent variable. An integral over space is also taken

into account; by doing this, space and time are treated on the same footing, this integrand has

dimensions of Lagrangian density, but here simply the term Lagrangian is used for the sake of

4
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brevity.The Lagrangian depends upon fields which we denote by φ and it’s higher order derivatives

with respect to space-time like L(φ,∂µφ), the corresponding action is[3]

(2.10) S =
∫

L(φ,∂µφ)d 4x

The quantity ∂µφ denotes the first derivative of field φ with respect to space-time, written in Einstein

summation convention, here ∂µ ≡
(
∂
∂t , ∂

∂x , ∂
∂y , ∂

∂z

)
.Now the variation in the action is given as:

(2.11) δS =
∫ [∂L

∂φ
δφ+ ∂L

∂(∂µφ)
δ(∂µφ)

]
d 4x

Now converting the second term into a surface integral and keeping any variation in field zero at

boundaries, the following equations are obtained, respectively.

(2.12) δS =
∫ {[∂L

∂φ
−∂µ

( ∂L

∂(∂µφ)

)]
δφ+∂µ

( ∂L

∂(∂µφ)
δφ

)}
d 4x

(2.13) ∂µ

( ∂L

∂(∂µφ)

)
− ∂L

∂φ
= 0

The above equation is the Euler-Lagrange equation for the fields.Now, considering a case of a system

for which Lagrangian has a dependence on second-order derivative of the field i.e, L(φ,∂µφ,∂µ∂νφ),

the action is given as:

(2.14) S =
∫

L(φ,∂µφ,∂µ∂νφ)d 4x

The variation in action is ,

(2.15) δS =
∫ [∂L

∂φ
δφ+ ∂L

∂(∂µφ)
δ(∂µφ)+ ∂L

∂µ∂νφ
δ(∂µ∂νφ)

]
d 4x

Again integrating by parts and discarding the following terms as they will vanish on the boundary,

(2.16)
[ ∂L

∂(∂µφ)
−∂β

( ∂L

∂(∂µ∂βφ)

)]
∂νφ+ ∂L

∂(∂µ∂βφ)
∂β(∂νφ)

we get the following Euler-Lagrange equation,

(2.17)
∂L

∂φ
−∂µ

( ∂L

∂(∂µφ)

)
+∂ν∂µ

( ∂L

∂(∂µ∂νφ)

)
= 0

Here both δφ and δ(∂φ) are fixed on the boundary.

2.3 Noether’s theorem

Noether’s theorem states that each continuous symmetry of the system can be associated with a

conserved quantity.These are not associated with discrete symmetry because they are static in nature.

5
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Noether’s theorem can be used to derive conserved quantities from the Lagrangian, one can do it for

Lagrangian of discrete particles and fields. Considering the Lagrangian L, for a point particle, of form

L = L(q, q̇ , t ) and taking an infinitesimal change in the coordinate q i.e, q ⇒ q +δq , the Lagrangian

can change at most by time derivative of some constant quantity K, which is, in this case, of the

form K(q,t) i.e, depending on q and t only, thus we get the following equations after introducing

infinitesimal variation in the coordinates q,

(2.18) δL = ∂L

∂q
δq + ∂L

∂q̇
δq̇ = dK

d t

(2.19)
(∂L

∂q
− d

d t

(∂L

∂q̇

))
δq + d

d t

(∂L

∂q̇
δq

)
− dK

d t
= 0

Now the first quantity in the bracket with δq is nothing but the Euler-Lagrange equation which is

zero for the classical system and thus whenever the equations of motion hold we have,

(2.20)
d J

d t
= 0

where J is the conserved quantity which is given as,

(2.21) J = dL

d q̇
δq −K

On closer look, it turns out that, one of the quantities in the above equation is nothing but, the

boundary term that we were earlier discarding while calculating Equation of Motion.On the same

line Noether’s theorem can be used to calculate conserved quantities for Lagrangian of fields which

are of the form, L = L(φ,∂µφ), and introducing infinitesimal variation in field φ⇒φ+δφ,

(2.22) δL = ∂L

∂φ
δφ+ ∂L

∂(∂µφ)
δ(∂µφ

The Lagrangian in case of fields can change almost by a divergence of some term.So we have,

(2.23)
[∂L

∂φ
−∂µ

( ∂L

∂(∂µφ)

)]
+∂µ

( ∂L

∂(∂µφ)
δφ

)
−∂µK µ = 0

The first part of the equation is the Euler-Lagrange equation.

(2.24) ∂µ jµ = 0

(2.25) jµ = ∂L

∂(∂µφ)
δφ−∂µK µ

Now looking at one particular example of conserved quantity which is Stress-energy tensor which is

obtained by introducing Space-Time translations i.e,

(2.26) φ(x) ⇒φ(x +a) =φ(x)+aµ∂µφ

6
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variation in the Lagrangian is,

(2.27) L′ = L+aµ∂µL = L+aν∂µ(δµνL)

The stress-energy tensor is given as

(2.28) T µν = ∂L

∂(∂µφ)
∂νφ− gµνL

The stress-energy tensor on generalizing for the Lagrangian depending on the second derivative of φ,

L = L(φ,∂µφ,∂µνφ), is given as

(2.29) T µν =
[ ∂L

∂(∂µφ)
−∂β

( ∂L

∂(∂µ∂βφ)

)
∂νφ

]
+ ∂L

∂(∂µ∂βφ)
∂β(∂νφ)− gµνL

7
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3
THE THEOREM OF OSTROGRADSKY

T
he theorem of Ostrogradsky shows that for the Lagrangian which depends on higher time

derivatives of generalized coordinates have a linear instability in the Hamiltonian associated

with them.Here we look at the usual Hamiltonian construction in context of single, one

dimensional point particle with Lagrangian depending on no higher than first time derivatives and

then review the Ostrogradsky’s construction for Hamiltonian for Lagrangian involving second time

derivative and also as to why this construction at all.The result is then generalized to Lagrangian

depending on N derivatives [4,7] In the usual case of L = L(q, q̇), The Euler-Lagrangian equation is:

(3.1)
∂L

∂q
− d

d t

∂L

∂q̇
= 0

We are assuming here that the Lagrangian is nondegenerate, which means that ∂L
∂q̇ depends upon q̇

and, this gives us the advantage of writing the laws of physics in the form that Newton assumed,

(3.2) q̈ = F(q, q̇) =⇒ q(t ) = Q(t , q◦, q̇◦)

And the solutions to above equation depends upon two initial values namely, q◦ = q(0) and q̇◦ = q̇(0),

so we need two canonical coordinates Q and P, which are taken to be:

(3.3) Q ≡ q and P ≡ ∂L

∂q̇

The assumption of nondegeneracy allows us to invert the phase space transformation to solve for q̇

in terms of Q and P, i.e, there exits a function v(Q,P), such that,

(3.4)
∂L

∂q̇

∣∣∣∣q=Q
q̇=v

= P

The Hamiltonian is obtained by the Legendre transformation on q̇ ,

(3.5) H(Q,P ) ≡ P q̇ −L

9



CHAPTER 3. THE THEOREM OF OSTROGRADSKY

The canonical evolution equations reproduce the Euler -Lagrange equations, and this is what is

meant by the statement that, "the Hamiltonian generates time evolution."

(3.6) Q̇ ≡ ∂H

∂P
= v +P

∂v

∂P
− ∂L

∂q̇

∂v

∂P
= v

(3.7) Ṗ ≡−∂H

∂Q
=−P

∂v

∂Q
+ ∂L

∂q
+ ∂L

∂q̇

∂v

∂P
= ∂L

∂q

Now consider a Lagrangian, L = L(q, q̇ , q̈), which depends nondegenerately upon q̈ , the Euler-

Lagrange equation is,

(3.8)
∂L

∂q
− d

d t

∂L

∂q̇
+ d 2

d t 2

∂L

∂q̈
= 0

Following the outlines of Hamiltonian construction of the previous section, if the same is done for

the Hamiltonian construction of the Lagrangian of form, L = L(q, q̇ , q̈), we will have the following

Legendre transformation on q and q̇ ,

(3.9) H = p1q̇ +p2q̈ −L(q, q̇ , q̈)

here Hamiltonian H = H(p1, p2, q̇ , q̈) thus,

(3.10) d H = ∂H

∂p1
d p1 + ∂H

∂p2
d p2 + ∂H

∂q̇
d q̇ + ∂H

∂q̈
d q̈

(3.11) d H = p1d q̇ + q̇d p1 + q̈d p2 − ∂L

∂q
d q − ∂L

∂q̇
d q̇ − ∂L

∂q̈
d q̈

comparing above two equations, we get following relations,

(3.12) q̇ = ∂H

∂p1
, q̈ = ∂H

∂p2

(3.13) p1 − ∂L

∂q̇
= ∂H

∂q̇
,
∂H

∂q
=−∂L

∂q

(3.14) p2 = ∂L

∂q̈

thus we have five relations and only four initial conditions which implies there is some redundancy

in some information and thus we need to modify our construction.

Since the Lagrangian is nondegenerate in q̈ , one can have following form,

(3.15)
....
q = F(q, q̇ , q̈ ,

...
q ) =⇒ q(t ) = Q(q◦, q̇◦, q̈◦,

...
q◦)

10



and since the solution depends upon four initial values we need four canonical coordinates and the

Ostrogradsky’s choices for these are,

(3.16) Q1 ≡ q , P1 ≡ ∂L

∂q̇
− d

d t

∂L

∂q̈
,

(3.17) Q2 ≡ q̇ , P2 ≡ ∂L

∂q̈

Again due to the assumption of nondegeneracy phase space transformation can be inverted to solve

for q̈ in terms of Q1 ,Q2 and P2, thus there exits a function a(Q1,Q2,P2) such that,

(3.18)
∂L

∂q̈

∣∣∣∣q=Q1
q̇=Q2
q̈=a

= P2

and the Hamiltonian is,

(3.19) H(Q1,Q2,P1,P2) ≡
2∑

i=1
Pi q (i ) −L = P1Q2 +P2a(Q1,Q2,P2)−L

(
Q1,Q2, a(Q1,Q2,P2)

)
They also generate time evolution equations,

(3.20) Q̇1 = ∂H

∂P1
=Q2,

(3.21) Q̇2 = ∂H

∂P2
= a +P2

∂a

∂P2
− ∂L

∂q̈

∂a

∂P2
= a,

(3.22) Ṗ2 =− ∂H

∂Q2
=−P1 −P2

∂a

∂Q2
+ ∂L

∂q̇
+ ∂L

∂q̈

∂a

∂Q2
=−P1 + ∂L

∂q̇
,

(3.23) Ṗ1 =− ∂H

∂Q1
=−P2

∂a

∂Q1
+ ∂L

∂q
+ ∂L

∂q̈

∂a

∂Q1
= ∂L

∂q

Thus Ostrogradsky’s choices indeed reproduce time evolution equations.For the Lagrangian depend-

ing on n times derivative, the choices for 2N phase space coordinates are,

(3.24) Qi ≡ q (i−1) and Pi ≡
N∑

j=i

(
− d

d t

) j−i ∂L

∂q j

We are assuming Non-degeneracy which means that we can solve for q (N ) in terms of PN and the

Qi ’s, and that there exists a function A(Q1, ...,QN ,PN ) such that,

(3.25)
∂L

∂q (N )

∣∣∣∣q (i−1)=Qi

q (N )=A

= PN

11



CHAPTER 3. THE THEOREM OF OSTROGRADSKY

and the generalized Hamiltonian is and evolution equations are,

(3.26) H ≡
N∑

i=1
Pi q (i ) −L

(3.27) H = P1Q2 +P2Q3 + .....+PN−1QN +PN A−L(Q1....,QN , A)

(3.28) Q̇i ≡ ∂H

∂Pi
and Ṗi ≡− ∂H

∂Qi

It can be seen from equation (3.27) that the Hamiltonian is only bounded from below with respect to

PN , and thus is unstable over half of the classical phase space.

12
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4
LAGRANGIAN FORMULATION

I
n this chapter we derive field equations,first in General Relativity and then in f (R) theories.We

have also discussed the Gibbons-Hawking-York ,GHY,term which is needed in order for action

to remain well posed.

4.1 Field equations in GR

The Einstein field equation can be obtained from the Hilbert-Einstein action by using variational

principle[13],

(4.1) SE H =
∫

d 4x
p−g R

Here LG =p−g R is the Einstein Lagrangian , R is Ricci scalar and g is the determinant of the met-

ric.Ricci scalar,R can be further written as contraction of Ricci tensor and metric,R = g abRab .The

variation in action is given as:

(4.2) δSE H =
∫

d 4x +
[p−g Rabδg ab +Rδ(

p−g )+p−g g abδRab

]
I I I I I I

Thus we need to calculate the variation in each of the above terms,which are calculated separately

here, the first term is
p−g Rabδg ab for which we need to evaluate δg ab , which is given as follows:

(4.3) gad → gad +δgad

(4.4) g ad → g ad +δg ad

13



CHAPTER 4. LAGRANGIAN FORMULATION

Now,

(4.5) δa
c = g ad gdc

the variation in δ is,

(4.6)
=(g ad +δg ad )(gdc +δgdc )

= δa
c +δgdc g ad +δg ad gdc +O(δ2)

and since δa
c is constant tensor it implies that,

(4.7) δgdc g ad +δg ad gdc = 0

contracting above term with g cb

(4.8) δb
dδg ad + g cb g adδgdc = 0

(4.9) δg ab =−g cb g adδgdc

Now for variation in II term,

(4.10) δ(
p−g ) = 1

2

p−g gµνδgµν

Now we need to calculate variation in Ricci tensor is,

(4.11) δRab =∇c (δΓc
ab)−∇b(δΓc

ac )

(4.12)
∫ p−g g abδRabd 4x =

∫
d 4x

p−g g ab[∇c (δΓc
ab)−∇b(δΓc

ac )

(4.13) ∇c (
p−g g abδΓc

ab) =∇c (
p−g g ab)δΓc

ab +
p−g g ab∇c (δΓc

ab)

(4.14) ∇c (
p−g g ab) = 0

Thus we are left with

(4.15) ∇c (
p−g g abδΓc

ab) =p−g g ab∇c (δΓc
ab) ,

Similarly,

(4.16) ∇b(
p−g g abδΓc

ac ) =p−g g ab∇c (δΓc
ac )

Thus the integration becomes

(4.17)
∫

d 4x[∇c (
p−g g abδΓc

ab)−∇b(
p−g g abδΓc

ac )]

14



4.1. FIELD EQUATIONS IN GR

Now using the identity,

(4.18) ∇µV µ = 1√|g | ∂µ(
√|g |V µ)

we have,

(4.19)
∫
∂c (

p−g g abδΓc
ab −

p−g g acδΓb
ab)dΩ

Now above term is converted into a surface integral by the divergence theorem ,which vanishes as all

the variations on the surface are taken to be zero.Though there is one subtle point here which we will

discuss later, as for now there is no contribution from this term.The final integral is,

(4.20) δSE H =
∫

−p−g [Rcd − 1

2
Rg cd ]δgcd d 4x

(4.21) Gcd = Rcd − 1

2
Rg cd

where Gcd is the Einstein tensor and equating variation equal to zero , we get the Einstein field

equation for vacuum,

(4.22) Gcd = 0

In the presence of other field which can be described by an appropriate Lagrangian density LM ,the

matter Lagrangian, the action becomes[13]:

(4.23) S =
∫

(LG +κLM )d 4x

LG is Lagrangian for GR and κ= 8πG/c4and on variation with respect to metric gab :

(4.24)
δLG

δgab
=−p−g Gab

and

(4.25)
δLM

δgab
=−p−g T ab

where T ab is stress-energy tenor for the fields present.The field equations in presence of matter fields

becomes:

(4.26) Gab = κT ab

15



CHAPTER 4. LAGRANGIAN FORMULATION

4.1.1 The GHY term

The Ricci tensor is obtained by contracting the Riemann tensor with metric,

(4.27) Rµν = gλβRλνβµ = Rλ
µλµ

and the Riemann tensor has the following structure,

(4.28) Rλ
µβν = ∂βΓλµν−∂νΓλµβ+ΓσµνΓλσβ−ΓσµβΓλσν

And in the Connection Γ,has the following structure,which depends on the first derivative of the

metric,

(4.29) Γλµν =
1

2
gλσ

[
∂µgσν+∂νgσµ−∂σgµν

]
,

And by looking at the structure of equations above it’s easy to see that the Ricci tensor and the

Riemann tensor depends on the second derivative of the metric and thus while calculating the

variation of action involves a term depending on the second derivative of the metric and in order

for,
∫
∂c (

p−g g abδΓc
ab −

p−g g acδΓb
ab)dΩ term, to vanish on the boundary one also needs to put

the variation in the first derivative of g i.e,∂µg zero on the boundary,which is not traditionally put to

zero and neither we have a particular reason to do so.Thus in order for Action to remain well posed ,a

boundary term was added to Einstein-Hilbert action by Gibbons,Hawking and York which is the so

called GHY term in order to cancel out the boundary term that comes while evaluating the variation

in Ricci tensor.The new action thus becomes[5,12],

(4.30) SE H +SG HY =
∫
Ω

d 4x
p−g R +2

∫
∂Ω

d 3 yε
p

h K

Here,

• h is the determinant of the induced metric hab on the boundary.

• K is the trace of the extrinsic curvature.

• ε is -1 for spacelike surfaces and +1 for the timelike surfaces.

• y a are the coordinates on the boundary.

This extra boundary term leaves the Einstein Field equation invariant.We first need to define certain

terms before giving the full calculation.The induced metric hab is like the metric tensor, on the hyper-

surface in the y a coordinates.A hyper-surface for 4D ,Space-Time manifold is a 3D submanifold

,which can have timelike,spacelike or null.We define a unit normal to the surface which is given as,

nαnα ≡ ε
+1 Σ i s t i mel i ke

−1 Σ i s spacel i ke

16



4.1. FIELD EQUATIONS IN GR

Now,

(4.31) eαa =
(∂xα

∂y a

)
∂M

a = 1,2,3

all these three are tangential to the hyper-surface and the induced metric is defined as,

(4.32) hab = gαβeαa eβb

we also have,

(4.33) nαeαa = 0

Now we define transverse metric as,

(4.34) hαβ = gαβ−εnαnβ

and the inverse of the hab is hab and satisfies the following relation,

(4.35) hαβ = habeαa eβb

Now we will look at variation in Einstein-Hilbert action once again and assume that the δgαβ
∣∣
∂M = 0.

(4.36) δSE H =
∫

M

[p−g Rαβδgαβ+Rδ(
p−g )+p−g gαβδRαβ

]
d 4x

The first two terms give us the usual Einstein Field equation,

(4.37) δSE H =
∫

M

(
Rαβ−

1

2
gαβR

)
d 4x +

∫
M

(
p−g gαβδRαβ)d 4x

Now we are going to evaluate the last term in the above equation on the boundary for which we will

make use of the following identities,

(4.38) δ
p−g =−1

2

p−g gαβδgαβ

(4.39) δRαβ ≡∇µ(δΓµ
αβ

)−∇β(δΓµαν)

Now let,

(4.40) gαβδRαβ = δV µ
;µ

(4.41) δV µ = gαβδΓµ
αβ

− gαµδΓβ
αβ

We will use ’;’ where ever we have a Covariant derivative and ’,’ for the partial derivative .Now using

the Stokes theorem in the following form,∫
δM

Aµ
;µ
p−g d 4x =

∫
δM

(
p−g A) ;µd 4x

=
∮
∂M

AµdΣµ

=
∮
∂M

Aµnµ
√
|h|d 3 y

(4.42)

17



CHAPTER 4. LAGRANGIAN FORMULATION

Let Aµ = δV µ,thus

(4.43)
∫
δM

V µ
;µ
p−g d 4x =

∮
∂M

V µnµ
√
|h|d 3 y

Now we need to evaluate δV µnµ
∣∣
∂M,assuming thatδgαβ

∣∣
∂M = 0,

δΓ
µ

αβ

∣∣∣
∂M

= 1

2
δgµν(gνα,β+ gνβ,α+ gαβ,µ)+ 1

2
gµν(δgνα,β+δgνβ,α+δgαβ,µ)S

= 1

2
gµν(δgνα,β+δgνβ,α+δgαβ,µ)

(4.44)

contracting the above equation with gαβ we get,

(4.45) gαβ δΓµ
αβ

∣∣∣
∂M

= 1

2
gαβgµν(δgνα,β+δgνβ,α+δgαβ,µ)

and similarly the term gαµ δΓβ
αβ

∣∣∣
∂M

is

(4.46) gαµ δΓβ
αβ

∣∣∣
∂M

= 1

2
gαµgβν(δgνα,β+δgνβ,α+δgαβ,µ)

Now swappingα and ν and using the symmetric property of the metric and then subtracting equation

7 from 6 we obtain,

(4.47) δV µ = gµνgαβ(δgνβ,α−δgαβ,ν)

Now we need to evaluate δV µnµ
∣∣
∂M,

δV µnµ
∣∣
∂M = nµgµνgαβ(δgµβ,α−δgαβ,µ)

= nνgαβ(δgνβ,α−δgαβ,ν)
(4.48)

replacing ν with µ

δV µnµ
∣∣
∂M = nµgαβ(δgµβ,α−δgαβ,µ)

= nµ(hαβ+εnαnβ)(δgµβ,α−δgαβ,µ)

= nµ(hαβ(δgµβ,α−δgαβ,µ)

= nµ(habeαa eβbδgµβ,α+hαβδgαβ,mu

=−nµhαβδgαβ,µ

(4.49)

And thus finally the variation in the Einstein Hilbert Action is,

(4.50) δSE H =
∫

M

(
Rαβ−

1

2
gαβR

)
d 4x −

∮
∂M
εnµhαβ

√
|h|δgαβ,µd 3 y

The variation in the GHY term is given as,

(4.51) δSG HY = 2
∫
∂M

d 3 yε
p

h δK
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4.1. FIELD EQUATIONS IN GR

Here K is the trace of the extrinsic curvature and it is given as covariant derivative of unit normal,

K = nα
;α

= gαβnα;β

= (hαβ+εnαnβ)nα;β

= hαβnα;β

= hαβ(nα,β−Γγαβnγ)

(4.52)

The variation in K is

δK =−hαβδΓ
γ

αβ
nγ

=−hαβnµgµγ[
1

2
gγσ(δgσα,β+δgσ,β,α−δgαβ,σ)]

= hαβnµδgαβ,µ

(4.53)

Thus finally we get,

(4.54) δSG HY = 2
∮
∂M

d 3 yε
p

h hαβnµδgαβ,µ

which cancels out the boundary term in the Einstein -Hilbert action i.e; in the equation(3.46) and

thus maintaining the action well posed.
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CHAPTER 4. LAGRANGIAN FORMULATION

4.2 Field equations for f (R) Theory

f(R) theory is a modified theory of gravity in which we replace Ricci scalar,R, by some function of R

i.e; f(R) in the Lagrangian for GR which takes the following form [1,5,12],

(4.55) L =p−g f (R)

The action is given as:

(4.56) S =
∫

d 4x
p−g f(R)

Now the variation of Action w.r.t metric is ,

δS =
∫

[δ(
p−g ) f (R)+p−g δ f (R)]d 4x

=
∫ [

− 1

2

p−g gµν f (R)δgµν+p−g f ′(R)δR
]

d 4x
(4.57)

Here we have taken Taylor series expansion of f(R) upto first order,

(4.58) f (R +δR) = f (R)+ f ′(R)δR

Now we need to re-evaluate expression for δR,

δR = δgµνRµν+∇σ
(
gµν(δΓσµν)− gµσ(δΓγµγ)

)
= δgµνRµν+ gµν∇σ∇σ(δgµν)−∇σ∇γ(δgγσ)

= δgµνRµν+ gµνä(δgµν)−∇µ∇ν(δgµν)

(4.59)

Here we have infer equation (3.40),(3.41) and (3.42) and defined ä≡∇σ∇σ.Putting the final variation

for R in equation(3.53):

(4.60) δS =
∫

d 4x
p−g

[
f ′(R)

(
δgµνRµν+ gµνä(δgµν)−∇µ∇ν(δgµν)

)
− 1

2

p−g gµν f (R)δgµν
]

We need to further evaluate the following terms and convert them into boundary terms so that we

can discard them later:

(4.61)
∫

d 4x
p−g f ′(R)gµνä(δgµν) ,

∫
d 4x

p−g f ′(R)∇µ∇ν(δgµν)

Introducing the following two quantities:

(4.62) Aα = f ′(R)gµν∇α(δgµν)−δgµνgµν∇α f ′(R)

and

(4.63) Bβ = f ′(R)∇γ(δgβγ)−δgβγ∇γ f ′(R)

20



4.2. FIELD EQUATIONS FOR F (R) THEORY

Now taking the covariant derivative of(3.58) and applying the compatibility condition ∇αgµν = 0

∇αAα =∇α( f ′(R)gµν∇α(δgµν))−∇α(δgµνgµν∇α f ′(R))

= f ′(R)gµνä(δgµν)−δgµνgµνä f ′(R)
(4.64)

Similarly,taking the covariant derivative of equation(3.59)

∇βBβ =∇β( f ′(R)∇γ(δgβγ))−∇β(δgβγ∇γ f ′(R))

= f ′(R)∇σ∇β(δgσβ)−δgσβ∇σ∇β f ′(R)
(4.65)

substituting equation(3.60) and (3.61) in equation (3.56) one obtains the following form:

δS =
∫

d 4x
p−g

[
f ′(R)δgµνRµν− 1

2

p−g gµν f (R)δgµν+δgµνgµνä f ′(R)+δgµν∇µ∇ν f ′(R)
]

+
∫

d 4x
p−g (∇αAα+∇βBβ)

(4.66)

Using the Stokes theorem(3.38) and re-writing the last two terms as surface derivatives ,the above

action becomes:

δS =
∫

d 4x
p−g

[
f ′(R)δgµνRµν− 1

2

p−g gµν f (R)δgµν+δgµνgµνä f ′(R)+δgµν∇µ∇ν f ′(R)
]

+
∮

d 3 yε
√
|h|nαAα++

∮
d 3 yε

√
|h|nβBβ

(4.67)

where h,n,ε has their usual meanings as defined before in section(3.1.1).Now we need to evaluate Aα

and Bβ at the boundary.Since have fix the variation of the metric at the boundary, i.e, δgµν = 0,we

obtain the following expression for Aαnα and Bβnβ:

Aαnα
∣∣
∂M =− f ′(R)nα(εnµnν+hµν)∂α(δgµν)

=− f ′(R)nαhµν∂α(δgµν)
(4.68)

Bβnβ
∣∣∣
∂M

=− f ′(R)nβ(hβν+εnβnµ)(hγµ+εnγnµ)∂γ(δgµν)

=− f ′(R)nµhγν∂γ(δgµν)

= 0

(4.69)

finally , the equation (3.63) becomes:

δS =
∫

d 4x
p−g

[
f ′(R)δgµνRµν− 1

2

p−g gµν f (R)δgµν+δgµνgµνä f ′(R)+δgµν∇µ∇ν f ′(R)+
]

−
∮
∂Ω

d 3 yε f ′(R)nαhµν∂α(δgµν)

(4.70)

Now in order to kill the surface derivatives in equation(3.66) one needs to take into account the GHY

term for f(R),which is given as:

(4.71) S f
G HY =−2

∮
∂Ω

d 3 yε f ′(R)
√

|h|K
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CHAPTER 4. LAGRANGIAN FORMULATION

now the variation of above term is:

(4.72) δS f
G HY = 2

∮
∂Ω

d 3 yε
√
|h| f ′′(R)δRK +

∮
∂Ω

d 3 yε f ′(R)nαhµν∂α(δgµν)

where the second term cancels the surface term in the equation(3.66) and for the first term to vanish

we need to impose that δR = 0. Thus finally the field equations for f(R) is:

(4.73) f ′(R)Rµν−∇µ∇ν f ′(R)+ gµνä f ′(R)− 1

2
gµν f (R) = 0

Now if we equate f (R)=R , f (R)
dR = 1 and one recovers Einstein’s field equations for vacuum,

(4.74) Rµν− 1

2
gµνR = 0
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5
EQUIVALENT SCALAR REPRESENTATION

T
he general Lagrangian of f(R) theory is conformally equivalent to general relativity plus a scalar

field matter source and a self-interacting potential of a particular form.We derive what form

this potential has and also what are some general f(R) theories corresponding to a particular

potential. The Action for general relativity plus an ordinary scalar field is,

S =
∫

d 4x
p−g [R − 1

2
∇µφ∇µφ−V (φ)]

=
∫

d 4x
p−g [R − 1

2
gµν∇µφ∇νφ−V (φ)]

(5.1)

On varying the above action with respect to metric we have

(5.2)

δS =
∫

d 4
[

Rδ(
p−g )+p−g δR − 1

2
δ(
p−g )gµν∇µφ∇νφ− 1

2
δ(gµν)

p−g ∇µφ∇νφ−δ(
p−g )V (φ)

]
Substituting value of δ(

p−g ) =−1
2
p−g gµνδ(gµν), we get following scalar field equations:

(5.3) Gµν =∇µφ∇νφ− 1

2
gµνgαβ∇αφ∇βφ− gµνV (φ)

Taking the following conformal transformation [6]:

(5.4) g̃µν =Ω2gµν , f ′(R) =Ω2

whereΩ is a smooth, non-vanishing function of space-time,is a point independent rescaling of the

metric and is called a conformal factor. It preserves the causal structure of the manifold, by preserving

angle between vectors.

The field equation for f(R) Lagrangian is:

(5.5) f ′(R)(Rµν− 1

2
Rgµν)− 1

2
( f (R)−R f ′(R))gµν−∇µ∇ν f ′(R)+ gµνä f ′(R) = 0
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CHAPTER 5. EQUIVALENT SCALAR REPRESENTATION

Here f ′(R) ≡ d f
dR .Under the above confromal transformation the Ricci scalar and the Ricci tensor has

the following form for D=4, where D is the dimension[6]:

(5.6) R̃µν = Rµν− 3

2

1

Ω4 ∇µΩ2∇νΩ2 − 1

Ω2 ∇µ∇νΩ2 − 1

2
gµν

1

Ω2 äΩ2

(5.7) R̃ = 1

Ω2 (R + 3

2

1

Ω4 ∇αΩ2∇αΩ2 −3
1

Ω2 äΩ2)

ReplacingΩ2 with f ′ in the equation (4.6) and (4.7) and rewriting them, they take the following form:

(5.8) R̃µν = Rµν− 3

2

1

f ′2 ∇µ f ′∇ν f ′− 1

f ′∇µ∇ν f ′− 1

2
gµν

1

f ′ä f ′

(5.9) R̃ = 1

f ′ (R + 3

2

1

f ′2 ∇α f ′∇α f ′−3
1

f ′ä f ′)

The rescaled Einstein tensor is:

(5.10) R̃µν−1

2
R̃ g̃µν = Rµν−1

2
Rgµν−3

2

1

f ′2 ∇µ f ′∇ν f ′− 1

f ′∇µ∇ν f ′−3

4

1

f ′2 gµνgαβ∇α f ′∇β f ′+ 1

f ′ gµνä f ′

Now substituting value of R − 1
2 Rgµν from equation (4.5) in equation (4.10) we get,

(5.11) G̃µν =−3

2

1

f ′2 ∇µ f ′∇ν f ′− 3

4

1

f ′2 g̃µν ˜gαβ∇α f ′∇β f ′+ 1

2

1

f ′2 ( f −R f ′)g̃µν

Introducing the scalar field φ,

(5.12) φ=
√

2

3
l n( f ′(R))

The conformally transformed equations are:

(5.13) G̃µν =∇µφ∇νφ− 1

2
g̃µν(∇αφ∇αφ)− g̃µνV (φ)

which are the field equations for general relativity plus a scalar field matter source and a self in-

teracting potential of the form V (φ) = 1
2

1
f ′2 ( f −R f ′). Now for various form of f(R) and we have its

corresponding form of potentials[9]. For f (R) = R one finds the potential to be, V (φ) = 0 and for

V (φ) =C , constant one finds f (R) = 1
8C R2, and for V (φ) =λφn wheren = 2,3,4 and putting p =Ω2, we

get V (p) =µ(lnp)n , where µ≡ ( 3
2 )n/2λ and corresponding f [r (p)] = 2µp2(l np +n)(l np)n−1, where

r (p) = 2µp(2l np +n)(lnp)n−1.
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6
SPHERICALLY SYMMETRIC SOLUTION

I
n this chapter we look at the spherically symmetric solution in f(R) gravity via Noether Symmetry

Approach.We look at a particular class of f(R) theories of form, R s , where s is a real number and

R is Ricci scalar.[10,11]

6.1 Noether Symmetry Approach

If we have the following Euler-Lagrange equation :

(6.1) ∂µ
∂L

∂(∂µq j )
− ∂L

∂q j
= 0

and on contracting the above equation by α j (q), a variable,

(6.2) α j
(
∂µ

∂L

∂(∂µq j )
− ∂L

∂q j

)
= 0

we can further convert the first term into a surface term :

(6.3) α j∂µ
∂L

∂(∂µq j )
= ∂µ

(
α j ∂L

∂(∂µq j )

)
−∂µα j ∂L

∂(∂µq j )

We get the following equation by substituting (5.3)in (5.2),

(6.4) ∂µ

(
α j ∂L

∂(∂µq j )

)
−∂µα j ∂L

∂(∂µq j )
− ∂L

∂q j
= 0

Defining vector X to be,

(6.5) X =α j ∂

∂q j
+ (∂µα

j )
∂

∂(∂µq j )
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Equation (5.4) takes the form,

(6.6) ∂µ

(
α j ∂L

∂(∂µq j )

)
= LX L

where LX is the Lie derivative of L w.r.t vector X, if LX L = 0, the term on L.H.S. is conserved.

(6.7) α j ∂L

∂(∂µq j )
= Jµ

where Jµ is a constant.

6.2 Point-Like Lagrangian

One can find the spherically symmetric solutions for the f(R) theory by formulating a point-like

Lagrangian from the following action:

(6.8) S =
∫

d 4x
p−g f (R)

by putting spherically symmetric constraints, for which the line element is given as:

(6.9) d s2 =−A(r )d t 2 +B(r )dr 2 +M(r )(dθ+ si n2θdφ)

Now we want to recast the action in(5.8) to the action of the form:

(6.10) S =
∫

dr L(A, A′,B ,B ′, M , M ′,R,R ′)

where the configuration space is described by Q= (A,B , M ,R).In order to recast the action we will

make use the concept of Lagrange Multiplier,

(6.11) S =
∫

d 4x
p−g

(
f (R)−λ(R − R̄)

)
here λ is the Lagrange Multiplier and on varying the action(5.11) with respect to δR one finds that,

λ= fR , fR ≡ d f

dR
, f (R) ≡ f

and R̄ is the Ricci scalar calculated from (5.9), which has the following form:

(6.12) R̄ = R∗+ A′′

AB
+ 2M ′′

B M

(6.13) R∗ = A′M ′

AB M
− A′2

2A2B
− M ′2

2B M 2 − A′B ′

2AB 2 − B ′M ′

B 2M
− 2

M

here prime donates the derivative with respect to the radial coordinate.Now after substituting for R̄

and λ the action becomes:

S =
∫

dr M
p

A
p

B
(

f − fR (R −R∗)
)

=
∫

dr M
p

A
p

B
(

f − fR (R − R̄ − fR (
A′′

AB
+ 2M ′′

B M
))

)
=

∫
dr M

p
A
p

B
(

f − fR (R − R̄ −
( fR Mp

A
p

B

)′
A′−2

(pAp
B

fR

)′
M ′

)(6.14)
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where the second term differs from third by a divergence term, which is discarded as we want only

first order derivative terms in the Lagrangian, which is given as:

(6.15)
( fR M A′
p

A
p

B

)′
=

( fR Mp
A
p

B

)′
A′+ fR M A′′

p
A
p

B

(6.16)
(pAp

B
fR M ′

)′
=

(pAp
B

fR

)′
M ′+

p
Ap
B

fR M ′′

Now expanding the term
(

fR Mp
A
p

B

)′
A′:

(6.17)
( fR Mp

A
p

B

)′
A′ = fRR R ′M A′

p
A
p

B
+ fR M ′A′
p

A
p

B
+ fR M A′2

2A
p

A
p

B
− fR MB ′A′

2B
p

A
p

B

Expanding the term
(p

Ap
B

fR

)′
M ′:

(6.18)
(pAp

B
fR

)′
M ′ = 2

p
A fRR R ′M ′
p

B
+ fR M ′A′
p

A
p

B
− fR M ′B ′pA

B
p

B

Substituting these in the action(5.14) we get :

(6.19)

S =
∫

dr M
p

A
p

B
(
−
p

A fR M ′2

2M
p

B
− fRp

A
p

B
A′M ′− M fRRp

A
p

B
A′R ′−2

p
A fRRp

B
R ′M ′−

p
A
p

B [(2+MR) fR−M f ]
)

The point-like Lagrangian is :

(6.20) L =−
p

A fR M ′2

2M
p

B
− fRp

A
p

B
A′M ′− M fRRp

A
p

B
A′R ′−2

p
A fRRp

B
R ′M ′−

p
A
p

B [(2+MR) fR −M f ]

Since the Lagrangian(5.20) is independent of B the Euler-Lagrange equation for B gives:

(6.21)
∂L

∂B
= 0

and by evaluating the above equation and equating it equal to 0

∂L

∂B
=

p
A fR M ′2pB

4M
+ fR A′M ′pB

2
p

A
+ M fRR A′R ′pB

2
p

A
+
p

A fRR R ′M ′pB −
p

A

2
p

B
[(2+MR) fR −M f ]

(6.22)

the value of B is calculated to be:

(6.23) B = 2M 2 fRR A′R ′+2M fR A′M ′+4AM fRR M ′R ′+ A fR M ′2

2M [(2+MR) fR −M f ]

substituting this value back to equation (5.20), the Lagrangian is simplified to:

(6.24) L = [(2+MR) fR −M f ]

M
[2M 2 fRR A′R ′+2M M ′( fR A′+2A fRR R ′)+ A fR M ′2]
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and the equation(5.24) is the general point-like Lagrangian for f(R).For f(R)=R, the above Lagrangian

is that of GR[10]:

(6.25) LGR = 4M ′R A′+ 2ARM ′2

M

and value of B is:

(6.26) BGR = M ′2

4M
+ A′M ′

2A

Looking at the Lagrangian for GR we find that degree of freedoms are further reduced to only two i.e,

on A and M only.Evaluating the equation of motion for A

(6.27)
∂L

∂A
= 2RM ′2

M
,
∂L

∂A′ = 4M ′R ,
∂

∂r

∂L

∂A′ = 4M ′′R +4M ′R ′

(6.28)
2RM ′2

M
= 4M ′′R +4M ′R ′

Similarly Equation motion for M gives:

(6.29) 4A′′M 2 +4A′M ′M +4AM ′′M −2AM ′2 = 0

and Equation motion for R gives:

(6.30)
2A′

A
=−M ′

M

If one takes the following value of A,B and M

(6.31) A = c1 − c2

r + c3
, B = c1c4

A
, M = c4(r + c3)

Differential equations of (5.28),(5.29) and(5.30) are satisfied.For c2 = 2GM , c1 = 1, c3 = 0 and c4 = 1,

one obtains the Schwarzschild solution.The quantity LX L for LGR is:

(6.32) α1
∂L

∂A
+∂rα1.

∂L

∂A′ +α2
∂L

∂M
+∂rα2.

∂L

∂M ′ = 0

The values of α for which above equation is satisfied are:

(6.33) αGR ≡ (−k A,kM)

where k is constant of integration.The conserved charge or constant of motion is obtained from

boundary term is

Σ◦ =α.∇q ′L

= 2GM

c2

(6.34)
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which is Schwarzschild radius. Similarly for general f (R) = R s the value of αs′ are:

(6.35) α= (α1,α2,α3) = ((3−2s)k A,−kM ,kR)

and the corresponding constant of motion is

(6.36) Σ◦ = 2skMR2s−3[2s + (s −1)MR][(s −2)R A′− (2s2 −3s +1)AR ′]

For f (R) = R2 i.e, scalar field in the presence of the cosmological constant, the Lagrangian in (6.24)

takes the following form:

(6.37) L = (4R +MR2)

M
[4M 2 A′R ′+4M M ′R A′+8M M ′AR ′+2M ′2 AR]

fR = 2R and fRR = 2. The value B (6.23) is:

(6.38) B = 4M 2 A′R ′+4MR A′M ′+8M AM ′R ′+2ARM ′2

2M(4R +MR2)

the corresponding value of αs′ (6.35) are:

(6.39) α≡ (−k A,−kM ,kR)

and the constant of motion has the following form:

(6.40) Σ◦ = 4kMR(4+3MR)(2R A′−3AR ′)
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7
RESULTS AND CONCLUSIONS

W
e obtained the field equations for f(R) theories and looked at the role played by GHY term to

keep the action well posed.We studied the equivalence between f(R) theories and the scalar

field theory.We looked at the constant of motions obtained, for spherically symmetric case,

which are obtained from Boundary terms.The results from each chapter are summarized below:

• In chapter 2, we got the equation for Lagrangian depending on Higher order derivative terms

and also a structure for Noether Charge.

• In chapter 3, we studied Theorem of Ostrogradsky and argued why we need Ostrogradsky

construction .

• In chapter 4, we derived field equations for GR and f(R) and studied importance of GHY term

for both of them respectively.

• In chapter 5, we studied the equivalence between f(R) theories and the scalar field theory.

• In chapter 6, we looked at Spherically symmetric solutions of f(R) via Noether symmetry

approach.

We learned why the Lagrangian for a physical theory contains terms upto first order derivative

only and why Lagrangian containing higher order derivative terms are unstable . We also learned the

importance of boundary terms in theories such as f(R) and GR, and that they should not be taken

for granted.For future research we would like to study f (R) = R2 i.e, a scalar field in the presence of

cosmological constant and its dynamics in more detail.
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