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Abstract

We study interacting two-color urn models. We consider N interacting two-
colour Pólya and/or Friedman urns. Each urn i assigns a weight vector p̃i
to all the other urns. At each time step, all the urns are updated simultane-
ously according to the Friedman scheme (or the Pólya scheme) such that the
reinforcement probabilities for a given color in urn i depend on the vector p̃i
and the fraction of balls of that color across all the N urns. An interesting
characteristic in study of the interacting urn models of these kinds is the
possibility of synchronization (common limiting distribution of the fraction
of balls of each color) of all the urns as t → ∞. We obtain expressions for
the rate of synchronization in our model. We also use stochastic approxima-
tion and stable convergence techniques to further study our model and prove
fluctuation results.
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Introduction

Random Processes is a study of randomly evolving systems with certain prop-
erties. Urn models are special case of random processes with reinforcement
where at each discrete time step the state of the system is reinforced via a
randomly evolving process. In recent times, randomly evolving systems that
interact with each other have gained interest for research in Mathematics,
Physics, Computer Science etc. In this thesis, we study a model of interact-
ing Friedman and Pólya urns.

As mentioned above, urn models are an important class of Random re-
inforcement processes. The idea of urn model problems was first given by
Jacob Bernoulli in 1713 in his famous book Ars Conjectandi(The Art of
Conjecturing) [4]. He considered the problem of determining proportion of
different coloured pebbles in the urn after drawing some pebbles from the
urn. This problem is known as the Inverse Probability Problem. The
classical Pólya urn model was proposed by G. Pólya in 1923 and is defined
as follows: Consider an urn with balls of finite number of colors. At any give
discrete time t, a ball is drawn from the urn (with replacement) uniformly
at random and its colour is observed. Another ball of the same colour is
then added to the urn. This reinforcement is carried out at every time-step
t. Asymptotic properties of this urn process have been of interest in several
areas including modeling epidemic spread. The simplest case is to study an
urn with balls of two colours, namely, white and black. The most well-known
result for two-colour Pólya urns establishes that the fraction of balls of either
color converges to a random limit as t→∞. The distribution of the random
limit is given by beta distribution with parameters given by the initial state
of the system. Numerous studies have been done to generalize this simple
model. One of the earliest known extensions of Pólya urns was given by
Bernard Friedman in 1949. In a two-colour Friedman urn model at time t
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the ball drawn from the urn (again, uniformly at random) is replaced along
with α balls of the same colour and β balls of another color. A celebrated
result states that as long as both α and β are strictly positive (and the urn
has non-zero number of white and black balls in the beginning), the fraction
of balls of each colour converges to a deterministic limit of 1/2.

In recent times, single urn models have been extended to understand the
more complicated phenomenon of interacting or dependent random processes
as many system that evolve at multiple nodes with certain dependence in the
reinforcement step can be modelled using such interacting processes. In par-
ticular, dynamics of interacting urns has become a topic of interest for many
researchers in Applied Mathematics as well as interdisciplinary areas like
Network Science. Urn models are used in understanding epidemic spread,
opinion dynamics etc. In [10], authors study network epidemics where the
opinions are modelled as balls in the urns placed at each node and the opin-
ion update depends on a ball is drawn from the “super urn” which consists
of all the balls from the urn and its neighbours. In [7], pair-wise interaction
of neighbours on a graph are taken into account. In [12] the interacting urns
have a reinforcement scheme which is exponential. [9] takes into account
random step sizes in stochastic approximation schemes for urn models. [18]
is a P.h.D. dissertation on Pólya urn models with Countably infinite number
of colors.

In this thesis, we study a model of N interacting two-colour urns such
that the probability of adding α white balls (and β black balls) to each urn
at time-step t depends on weighted fraction of white balls across all urns. In
other words, we associate a non-zero weight vector p̃i = (p1i , . . . , p

N
i ) to each

urn Ui for 1 ≤ i ≤ N . At any time t, α balls of white colour (β balls of black
colour) are added to ith urn Ui with probability given by the inner product
of the weight vector of Ui and the vector of fraction of white balls in each
urn at time t. The motivation for this model comes the interacting Pólya urn
model of P. Dai Pra et. al [16], where an interacting system of Pólya urns
is considered such that the weightage given to total fraction of white balls in
the system at time t is p and that of ith urn is (1− p) for a fixed 0 ≤ p ≤ 1.
To some extent, our work in this thesis generalizes the results in [6],[16] and
[17].
It is expected that in such interacting systems, each component synchronizes
to the same “composition” as t→∞. The aim is to understand the asymp-
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totic limits of fraction of balls of white colour by studying various properties
of the interacting model. For single urn models as well as for interacting urns,
several probabilistic techniques like the method of moments, the martingale
method, stochastic approximation etc. are used to study the convergence
and fluctuation properties. We discuss these methods throughout the thesis
as and when required. For a detailed study of methods used in single urn
models and the details on the connection of urn models to random walks see
[15].

The thesis is organized as follows: In chapter 1, we discuss some basics
of single urn models and results for limiting distributions of Friedman and
Pólya urns using method of moments [8] and Exchangeability of Random
Variables [14] respectively.In chapter 2, we introduce the model and compare
it with the interacting urn model in [16] and [17]. We also obtain the rate
of convergence for synchronization. Chapter 3 consists of fluctuation results
obtained using the theory of stochastic approximation as well as ideas from
stable convergence. Chapter 4 briefly discusses the embedding of urn model
into a continuous time branching process introduced by K. B. Athreya and
S. Karlin [2].

The appendix consists of some auxiliary results on solving difference equa-
tions and the notion of stable convergence. In the appendix, we also define
and briefly discuss few other concepts mentioned in the thesis.

The results obtained in this thesis are an extension or a more general
form of existing results on a class of interacting Pólya and Friedman urns.
These models can be further extended by considering random reinforcements,
dependence of interaction parameter or interaction matrix on time and/or
dependence on the underlying graph structure. All of these are interesting
problems and are possible directions to explore in future.
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Chapter 1

Prerequisites

The simplest urn model consists of a single urn with balls of two colors.
At a given time t, a ball is drawn out of the urn and depending on the
color of this ball, some balls are added or subtracted from the urn. This
process of drawing and adding balls to the urn is a Stochastic process
[4.6.1] with ratio of balls of each color as the State Space and discrete time
as Parameter Space. We will now discuss some general terminologies and
notations used for urn models

1.0.1 Urn Scheme

Consider an urn with balls of k colors (or a k-color urn). Let Ci
t denote the

number of balls of color i in the urn at time t and Ct = (C1
t , . . . C

k
t ) denote

the corresponding vector. Clearly,
k∑
i=1

Ci
t is the total number of balls in the

urn at time t. An urn scheme is defined as follows:

Definition 1.0.1 (Urn Scheme). An Urn Scheme is a k×k matrix (aij)1≤i,j≤k
in which the entry aij denotes the number of balls of color j that are added
to the urn, when a ball of color i is drawn out of the urn.

The matrix:

A =


a11 a12 . . . . a1k
a21 a22 . . . . a2k
. . . . . . .
. . . . . . .
. . . . . . .
ak1 . . . . . akk
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is also known as the reinforcement matrix of the urn model. Then, the
reinforcement of the model is given by:

Ct+1 = ACt

Assume that each entry of this matrix is an integer. If any of the entries is
negative, then modulus of that many balls has to removed from the urn.
Throughout this thesis, we limit our discussion to two-color urns. Results
obtained can be extended to urns with balls of finitely many different colors.

1.0.2 Tenability Conditions

Suppose we have a 2 color urn containing white and black balls with urn
scheme [

−1 1
−1 1

]
Then no matter which color is drawn out of the urn, a white ball will always
be removed from the urn, which will ultimately lead to extinction of white
balls from the urn. At this point the urn scheme cannot be further executed.
Such an urn is called Untenable.

To ensure that every stochastic path is possible for the urn, entries of the
urn scheme must follow certain tenability conditions.

We limit our discussion on tenability to 2-color models. Consider a 2 × 2
urn scheme for an urn containing black and white balls.

A =

[
a b
c d

]
The tenability conditions of this urn can easily be calculated.

Tenability conditions for various urn models are discussed in detail in Chap-
ter 2 of [14]. We reproduce a summary of that discussion below.

• The cases[
− −
− −

] [
− −
− +

] [
− +
− +

] [
+ −
+ −

]
are not tenable under any conditions since they have negative columns.
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•
[
− −
+ +

]
An urn is said to be in a “Critical State” if balls of one color are
completely exempted from the urn. Let us say the urn has W0 white
balls and B0 black balls. One of the “most critical path” is to draw a
white ball whenever possible.For such a path W0 must be a multiple
of |a|.At this stage the Urn must contain at least one blue ball for the
continuation of the process. This gives

B0 −W0
b

a
> 0

The next critical stage is when number of white balls in the urn is again
0(Hence, W0 must be a multiple of c). At this stage we must have non
zero blue balls in the urn i.e.

B0 −W0
b

a
+ 2d− c b

a
> 0

the urn must be tenable at each ith critical stage. Hence,

B0 −W0
b

a
+ (i− 1)d− (i− 1)c

b

a
> 0 for all i ≥ 1

Or

B0 −W0
b

a
> (i− 1)

(
c
b

a
− d
)

for all i ≥ 1

Since i is arbitrary large and LHS is positive, we must have

cb

a
≤ d

Summarizing, urn of this case is tenable only if:

1. W0 and c are both multiples of |a|.
2. det(A) ≤ 0

3. det

∣∣∣∣ a b
W0 B0

∣∣∣∣ < 0

The case

[
+ +
− −

]
is symmetrical to this case.
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Similarly one can calculate tenability conditions for other cases. For detailed
discussion see [14].

•
[
− +
+ −

]
1. W0 and c are both multiples of |a|.
2. B0 and b are both multiples of |d|.
3. Both b and c are positive.

•
[
− +
+ +

]
W0 and c must be multiple of |a| and if b = 0, B0 must be positive.

•
[
+ +
− +

]
c = 0 and W0 = 0

1.1 The Pólya Eggenberger Urn

G. Pólya and F. Eggenberger first studied 2× 2 Urn scheme of the type[
α 0
0 α

]
i.e. if a white ball is drawn out of the urn, we put another α white balls in
the urn along with this ball and vice-versa if a black ball is drawn.

We will now look at the distribution of white balls in the urn as t→∞

Theorem 1. (Theorem 3.2 in [14])
Let W0 and B0 be the number of white and black balls respectively in Pólya
urn at time t = 0. Let W̃n be the number of times a white ball is drawn in n
drawings from the urn.

W̃n

n

D−→ β

(
W0

s
,
B0

s

)
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Proof. (Sketch of the proof)
We can choose k white balls from any of the n time instants. At rest of

the times,a black ball is chosen.

P (W̃n = k) =

(
n

k

)〈W0

s

〉
k

〈
B0

s

〉
n−k〈

τ0
s

〉
n

By Stirling’s approximation we have; as x→∞

Γ(x+ r)

Γ(x+ s)
= xr−s +O(xr−s−1)

So as n→∞

P

(
W̃n

n
≤ x

)
→

Γ
(
τ0
s

)
Γ
(
W0

s

)
Γ
(
B0

s

) ∫ x

0

u
W0
s
−1(1− u)

B0
s
−1du

= β

(
W0

s
,
B0

s

)

1.2 Bernard Friedman’s Urn

In 1949, Bernard Friedman extended the idea of Pólya urns to a model where
black as well as white balls are added to the urn on drawing of a ball. Such
Urns are called Friedman’s urn [8]. At each time step, a ball is drawn uni-
formly at random and it is added back to the urn along with α balls of the
same color and β balls of the other color. urn scheme for a Friedman urn is[

α β
β α

]
Unlike Pólya urns, in Friedman’s urn fraction of balls of either color ap-
proaches 1

2
with probability 1.

In the simulations below, Friedman’s urn is simulated 1000 times and a graph
for frequency v/s Ratio of white balls is plotted. A sharp peak appears in all
the cases because of asymptotic approach of ratio of white balls to one-half.
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Here,

ρ =
α− β
α + β

This choice of ρ will be clear as we discuss limit theorem for Friedman urns
in the next section.

In 1964, in the paper titled “Bernard Friedman urn”, David A. Freedman
proved that in certain regimes (depending on ρ) the fluctuation of fraction of
balls of either color around the limit 1

2
is Gaussian. We reproduce the results

and a sketch of the proof that uses method of moments as an important tool.
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1.2.1 Method Of Moments and Limit Theorems for
Friedman’s Urn

Theorem 2. (David A. Freedman [8],1965)

• For ρ > 1
2
,

lim
n→∞

n−ρ(Wn −Bn)

converges to a finite random variable with probability 1 and in rth mean
(0 < r <∞).

• For ρ = 1
2

the distribution of (n log n)
−1
2 (Wn−Bn) converges to normal

with mean 0 and variance (α− β)2.

• For ρ < 1
2

the distribution of n
−1
2 (Wn − Bn) converges to normal with

mean 0 and variance (1− 2ρ)−1(α− β)2.

We will now illustrate how Method of Moments[8] and Difference Equa-
tions[4.4] is used to prove the theorem in case ρ > 1

2

Notation:

ρ =
α− β
α + β

=
δ

σ

s = W0 +B0

an(j) = 1 +
jδ

s+ σn

xn(k) = E[(Wn −Bn)k]

Lemma 3. (David A. Freedman ,1965, [8])
For each nonnegative integer k,

limn→∞n
−ρkE[(Wn −Bn)k] = µ(k)

with 0 ≤ µ(k) <∞. If k is even, then µ(k) > 0.

Proof. The result is trivial for k = 0, and µ(0) = 1.The proof follows by
induction for even k.

E{(Wn+1 −Bn+1)
2k+2|Fn}
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=

[
Wn

(s+ σn)

]
(Wn −Bn + δ)2k+2 +

[
Bn

(s+ σn)

] (
Wn −Bn − δ)2k+2

=

[
Wn

(s+ σn)

] 2k+2∑
j=0

(
2k + 2

j

)
δj(Wn −Bn)2k+2−j

+

[
Bn

(s+ σn)

] 2k+2∑
j=0

(
2k + 2

j

)
(−δ)j(Wn −Bn)2k+2−j

= an(2k + 2)(Wn −Bn)2k+2

+
k∑
j=1

[(
2k + 2

2j

)
δ2j +

[ (
2k+2
2j+1

)
(s+ σn)

]
δ2j+1

]
(Wn −Bn)2k+2−2j + δ2k+2

So, we have

xn+1(2k + 2) = an(2k + 2)xn(2k + 2) + bn(2k + 2)

with
bn(2k + 2)

=
k∑
j=1

[(
2k + 2

2j

)
δ2j +

[ (
2k+2
2j+1

)
(s+ σn)

]
δ2j+1

]
x2k+2−2j
n + δ2k+2

Suppose the Lemma is true for even k ≤ 2k. Then 0 ≤ bn(2k + 2) =
O(n2kρ), and by Lemma 14,

lim
n→∞

xn(2k + 2)
n∏
ν=0

aν(2k + 2)−1

= x0(2k + 2) +
∞∑
j=0

bj(2k + 2)

j∏
ν=0

aν(2k + 2)−1

which is positive and finite. By (4.5)
n∏
ν=0

aν(2k+2) ∼ n(2k+2)ρ, and hence the

theorem holds for 2k+2. By induction, it holds for even k.

Also,
E{(Wn+1 −Bn+1)

2k+2|Fn} = an(1)(Wn −Bn)
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So,

xn+1(1) = an(1)xn(1) = x0(1)
n∏
ν=0

aν(1)

Since
n∏
ν=0

aν(1) ∼ nρ by [4.6], the Lemma holds when k = 1. The proof for

odd k can be similarly done by induction.

Now, for the proof of case ρ > 1
2

Define

Zn = (Wn −Bn)
n−1∏
ν=0

aν(1)−1

Note that Zn : n ≥ 0 is a martingale. Also by the above Lemma,
supnE(Zn) <∞. So, by Martingale Convergence Theorem, Zn converges to
a finite limit with probability 1.

Since
n−1∏
ν=0

aν(1) ∼ nρ, lim
n→∞

n−ρ(W − n − Bn) = Z exists and is finite with

probability 1.

1.3 Other Extensions

Other then Pólya and Friedman urns, there have been several attempts to
generalize these urn models. See [14].

1.3.1 Bagchi-Pal Urns

Bagchi and Pal (1985) introduced a more general model with urn scheme:[
a b
c d

]
However, tenability conditions restrict the generality of this model by the
following conditions:
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1. a+ b = c+ d = K ,Where K is some positive integer.

2. b > 0, c > 0

3. if a < 0, then a divides W0 and c.

4. if d < 0, then d divides B0 and b.

1.3.2 The Ehrenfest Urn

The Ehrenfest Urn scheme is [
−1 1
1 −1

]
This urn is slightly different from the rest since number of balls in this urn
does not change with time.
Ehrenfest urns are ideal for modelling a confined two particle two compart-
ment system where removal and addition of a ball is analogous to movement
of the ball to one of the two compartments of the system. In fact, the idea
comes from the Ehrenfest model of diffusion in physics. It was first pro-
posed by Tatiana and Paul Ehrenfest. Various other urn schemes have been
studied,especially those which replicate stochastic processes of practical im-
portance. For example, following two urn schemes have been studied in [11]:

1.

[
0 0
1 −1

]
Such an urn scheme is ideal for modelling a process of removal of
defective(black) items from a box and replacing them with the non-
defective(white) ones.

2.

[
0 0
0 −1

]
This model corresponds to mere removal of defective(black) items from
the box.

1.3.3 O.K. Corral Urn Model[
−1 0
0 −1

]
25



The process starts with W0 = B0 = N and stops when either Wn or
Bn is zero. The process was used to model famous gunfight at O.K. Corral
Arizona, United States and was first introduced in 1998 by David Williams
and Paul Mcllroy.

In the next chapter, we consider an extension of these single urn models
to multiple dependent processes.
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Chapter 2

Proposed Interacting Urn
Model: Synchronization

In recent times, interacting urn models have garnered a lot of interest from
researchers in Mathematics, Physics, Computer Science etc. It could emerge
as an important way to model random processes that update or reinforce in
a dependent manner.

A general set-up of interacting urn models is as follows:
Consider N urns such that the probability of adding αr balls of color r to ith

urn at time t depends not only on the composition of ith urn at time t but
also on composition of all or a subset of N urns at that time t.

If Xr
t (i) denotes number of balls of color r in ith urn at time t.

Xr
t+1(i) = Xr

t (i) + Y r
t+1(i)

where Y r
t+1 = αr with probability f(Xr

t (1), Xr
t (2), .., Xr

t (N)).

In this thesis, we study a special case of this general set-up.

2.1 Proposed Model

We consider N urns labelled 1, 2, . . . , N . We assume that all urns contain
equal number of balls m at time t = 0. Each urn contains ai > 0 white and
bi > 0 black balls (ai + bi = m, ∀ 1 ≤ i ≤ N) at time t = 0. We consider a
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system where that all the urns are updated simultaneously at discrete time
steps t ≥ 0.

In this generalized model, we are looking at the interaction of N identical
urns each reinforced with Friedman’s urn scheme. By interaction we mean
that the probability of a white ball drawn from urn i depends on the com-
position of ith as well as the other N − 1 urns.

Interaction between urns is governed by the following fixed N ×N Matrix:

P =



p11 p21 . . . . pN1
p12 p22 . . . . pN2
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
p1N p2N . . . . pNN


where pji = weightage of jth urn when updating ith urn and

N∑
j=1

pji ≤ 1. The

matrix P is called the interaction matrix of the model.

We use the following notation:

• Xt(i) = Number of white balls in urn i at time t.

• Zt(i) = Fraction of white balls in urn i at time t.

• Yt(i) = Number of white balls added to urn i at time t.

Note that at each time step a total number of α+ β balls are added to each
urn. Therefore, the total number of balls in each urn at any given time is
same. More precisely, the total number of balls in each urn at time t is given
by Nt = m+ (α + β)t. Hence Zt(i) = Xt(i)/Nt.
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Define:

1. n-dimensional vectors: p̃i = [p1i , p
2
i , ..., p

N
i ], the weight-vector associ-

ated with ith urn (note that this is independent of time), and Z̃t =
[Zt(1), Zt(2), ..., Zt(N)], the vector of fraction of balls of white color in
each urn at time t.

2. 〈p̃i, Z̃t〉 =
∑N

j=1 p
j
iZt(j) is the usual inner-product.

The reinforcement depends on the random variables {Yt(i)}Ni=1 for t ≥ 1.
Let Ft denote the σ-field generated by {Yt(1), . . . , Yt(N)}. The reinforcement
scheme for the model is given by:

Yt+1(i) =

{
α with probability〈p̃i, Z̃t〉
β with probability 1− 〈p̃i, Z̃t〉

(2.1)

With the above reinforcement scheme we have:

Xt+1(i) = Xt(i) + Yt+1(i)

In other words,

Zt+1(i) =
(α + β)t+m

(α + β)(t+ 1) +m
Zt(i) +

1

(α + β)(t+ 1) +m
Yt+1(i)

The corresponding n-dimensional recursion relation is:

Z̃t+1 =
(α + β)t+m

(α + β)(t+ 1) +m
Z̃t +

1

(α + β)(t+ 1) +m
Ỹt+1 (2.2)

where, Ỹt+1 = [Yt+1(1), Yt+1(2), ..., Yt+1(N)]

Remark. The model described above generalizes the models in [17] and [16].
In particular, taking pij = p/N for i 6= j and pii = 1−p+p/N for i = 1, . . . , N

gives the model considered in [16]. With the same substitution for pji ’s and
for α = 1 and β = 0, we get the model in [17].
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2.2 L2- Synchronization

In this section, we study the synchronization of Friedman urns with interac-
tions defined by the proposed model. By synchronization, we mean that the
convergence of fraction of balls of white color in each urn to a common limit
as t → ∞. In case of Friedman urns, this limit is 1/2. We obtain the rates
of convergence of:

• V ar(Zt(i)− Zt)

• V ar(Zt(i)− Zt(i)) where Zt(i) =
N∑
j=1

pjiZt(j)

Throughout this section we use the following notation from [16]:
For two positive sequences at, bt, at ∼ bt if

0 < lim inf
t→+∞

at
bt
< lim sup

t→+∞

at
bt
< +∞

Theorem 4. Let ρ = α−β
α+β

and Zt = 1
N

N∑
i=1

Zt(i)

V ar(Zt(i)−Zt) ∼



t
2

(
1−
{

(1− 1
N )pii− 1

N

∑
i 6=j

pij

}
ρ

)
for 0 ≤

{(
1− 1

N

)
pii − 1

N

∑
i 6=j

pij

}
ρ < 1

2

t−1 log t for

{(
1− 1

N

)
pii − 1

N

∑
i 6=j

pij

}
ρ = 1

2

t−1 for 1
2
<

{(
1− 1

N

)
pii − 1

N

∑
i 6=j

pij

}
ρ < 1

The idea of the proof is similar to the proof of Theorem 1 in [16].

Proof. We first compute V ar(Yt+1(i)|Ft)

V ar(Yt+1(i)|Ft) = E(Yt+1(i)
2|Ft)− (E(Yt+1(i)|Ft))2

= α2

N∑
i=1

pjiZt(j)+β
2

(
1−

N∑
j=1

pjiZt(j)

)
−

(
α

N∑
i=1

pjiZt(j) + β

(
1−

N∑
j=1

pjiZt(j)

))2

30



[
α2 − β2 − 2 (α− β) β

] N∑
i=1

pjiZt(j)− (α− β)2
(

N∑
i=1

pjiZt(j)

)2

So, we have

V ar(Yt+1(i)|Ft) =
(
α− β

)2 N∑
i=1

pjiZt(j)

[
1−

N∑
i=1

pjiZt(j)

]
(2.3)

Set xt = V ar(Zt(i)− Zt)

xt+1 = E [V ar(Zt+1(i)− Zt+1|Ft)] + V ar[E(Zt+1(i)− Zt+1|Ft)] (2.4)

E [V ar(Zt+1(i)− Zt+1|Ft)] = E

[
V ar

(
(α + β)t+m

(α + β)(t+ 1) +m

)
(Zt(i)− Zt)| Ft

+
1

(α + β)(t+ 1) +m

(
Yt+1(i)−

1

N

N∑
i=1

Yt+1(j)

)
|Ft

]

= E

[
V ar

{
1

(α + β)(t+ 1) +m

(
Yt+1(i)−

1

N

N∑
i=1

Yt+1(j)|Ft

)}]
Since Yt(i)’s are conditionally independent,

=
1

((α + β)(t+ 1) +m)2
E

[
V ar (Yt+1(i)|Ft)−

1

N

N∑
j=1

V ar (Yt+1(j)|Ft)

]

Putting equation (2.2) in the above equation we get

E [V ar(Zt+1(i)− Zt+1|Ft)] =
(α− β)2

((α + β)(t+ 1) +m)2
E

[
Zt(i)

(
1− Zt(i)

)
− Zt −

1

N

N∑
j=1

Zt(j)
2

]

Note that,

E [V ar(Zt+1(i)− Zt+1|Ft)] ∼
1

t2
(2.5)

Moving on to second term of equation (2.3),

V ar[E(Zt+1(i)− Zt+1|Ft)] =
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1

((α + β)(t+ 1) +m)2
V ar

[
((α + β)t+m)(Zt(i)− Zt) + E(Yt+1(i)|Ft)−

1

N

N∑
j=1

E(Yt+1(j)|Ft)

]

=
1

((α + β)(t+ 1) +m)2
V ar

[
((α+β)t+m)(Zt(i)−Zt)+

{
(α− β)Zt(i) + β

}

− 1

N

{
(α− β)

N∑
j=1

Zt(i) + βN

}]

=

(
(α + β)t+m+

{(
1− 1

N

)
pii − 1

N

∑
i 6=j

pij

}
(α− β)

)2

((α + β)(t+ 1) +m)2
V ar(Zt(i)− Zt)

+
(α− β)2

((α + β)(t+ 1) +m)2

∑
i 6=j

V ar

{
(pii − 1)

N
+ pji

}
Zt(j)

+
(α− β)2

((α + β)(t+ 1) +m)2

(
pii − 1

N

)2

V ar(Zt(i))+
1

((α + β)(t+ 1) +m)2
Covariance terms

Hence,

V ar[E(Zt+1(i)−Zt+1|Ft)] =

(
(α + β)t+m+

{(
1− 1

N

)
pii −

∑
i 6=j

pij

}
(α− β)

)2

((α + β)(t+ 1) +m)2
V ar(Zt(i)−Zt)

(2.6)

+O

(
1

t2

)
Combining equations (2.3),(2.4) and (2.5) we get

xt+1 =

(
(α + β)t+m+

{(
1− 1

N

)
pii − 1

N

∑
i 6=j

pij

}
(α− β)

)2

((α + β)(t+ 1) +m)2
xt +O

(
1

t2

)
(2.7)

So,

xt+1 = f(t)xt +O

(
1

t2

)
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f(t) =

(
(α + β)t+m+

{(
1− 1

N

)
pii − 1

N

∑
i 6=j

pij

}
(α− β)

)2

((α + β)(t+ 1) +m)2
= 1

+

(
1−

{(
1− 1

N

)
pii − 1

N

∑
i 6=j

pij

}
ρ

)2

(t+ 1 +m′)2
−

2

(
1−

{(
1− 1

N

)
pii − 1

N

∑
i 6=j

pij

}
ρ

)
(t+m′ + 1)2

Where ρ =
α− β
α + β

and m′ =
m

α + β

Note that
lim
t→∞

f(t) = 1 and 0 < f(t) < 1

Now set
ζt :=

xt∏t−1
k=0 f(t)

ζt+1 = ζt + F (t)

Where,

F (t) :=
1∏t

k=0 f(k)
O

(
1

t2

)
Since ζ0 = x0 = 0, we get

ζt =
t−1∑
i=0

F (i)

xt =

[
t−1∏
k=0

f(k)

]
t−1∑
i=0

F (i)

t−1∏
k=0

f(k) = exp


t−1∑
k=0

log

1− 2 (piiρ− 1)

k +m′ + 1
+

(
1−

{(
1− 1

N

)
pii − 1

N

∑
i 6=j

pij

}
ρ

)2

(k +m′ + 1)2




= exp

[
−2

(
1−

{(
1− 1

N

)
pii −

1

N

∑
i 6=j

pij

}
ρ

)
t−1∑
k=0

1

k +m′ + 1
+O(1)

]
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= exp

[
−2

(
1−

{(
1− 1

N

){(
1− 1

N

)
pii −

∑
i 6=j

pij

}
− 1

N

∑
i 6=j

pij

}
ρ

)
log(t+m′) +O(1)

]

∼ t
−2
(
1−
{

(1− 1
N )pii− 1

N

∑
i 6=j

pij

}
ρ

)

Hence,

F (t) ∼ t
−2
{

(1− 1
N )pii− 1

N

∑
i 6=j

pij

}
ρ

ζt =
t−1∑
i=0

F (i) ∼



1 for 0 ≤

{(
1− 1

N

)
pii − 1

N

∑
i 6=j

pij

}
ρ < 1

2

log t for

{(
1− 1

N

)
pii − 1

N

∑
i 6=j

pij

}
ρ = 1

2

t
1−2

{
(1− 1

N )pii− 1
N

∑
i6=j

pij

}
ρ

for 1
2
<

{(
1− 1

N

)
pii − 1

N

∑
i 6=j

pij

}
ρ < 1

Hence,

xt ∼



t
2

(
1−
{

(1− 1
N )pii− 1

N

∑
i6=j

pij

}
ρ

)
for 0 ≤

{(
1− 1

N

)
pii − 1

N

∑
i 6=j

pij

}
ρ < 1

2

t−1 log t for

{(
1− 1

N

)
pii − 1

N

∑
i 6=j

pij

}
ρ = 1

2

t−1 for 1
2
<

{(
1− 1

N

)
pii − 1

N

∑
i 6=j

pij

}
ρ < 1

Note that if P is doubly stochastic, then{(
1− 1

N

)
pii −

1

N

∑
i 6=j

pij

}
= pii −

1

N
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Theorem 5. Let ρ = α−β
α+β

and Zt(i) =
N∑
j=1

pjiZt(j)

V ar(Zt(i)−Zt(i)) ∼



t

−2


1+

(1− 1
N )pii− 1

N

∑
i 6=j

pij

(α−β)

α+β
+1


if

2

(
1+

{
(1− 1

N )pii− 1
N

∑
i6=j

pij

}
(α−β)

)
α+β

< 0

t−1 log t if
2

(
1+

{
(1− 1

N )pii− 1
N

∑
i6=j

pij

}
(α−β)

)
α+β

= 0

t−1 if
2

(
1+

{
(1− 1

N )pii− 1
N

∑
i6=j

pij

}
(α−β)

)
α+β

> 0

Proof. The computation method in this proof is exactly same as that of the
previous proof. Set yt = V ar(Zt+1(i)− Zt+1(i))

yt+1 = E
[
V ar(Zt+1(i)− Zt+1(i)|Ft)

]
+ V ar[E(Zt+1(i)− Zt+1(i)|Ft)]

E
[
V ar(Zt+1(i)− Zt+1(i)|Ft)

]
= E

[
V ar

(
(α + β)t+m

(α + β)(t+ 1) +m

)(
Zt(i)− Zt(i)

)

+
1

(α + β)(t+ 1) +m

(
Yt+1(i)−

N∑
i=1

pjiYt+1(j)

)
|Ft

]

= E

[
V ar

{
1

(α + β)(t+ 1) +m

(
Yt+1(i)−

N∑
i=1

pjiYt+1(j)|Ft

)}]

=
(α− β)2

((α + β)(t+ 1) +m)2
E

[
(1− pii)Zt(i)

(
1− Zt(i)

)
+
∑
i 6=j

pjiZt(j)(1− Zt(j))

]

So,

E
[
V ar(Zt+1(i)− Zt+1(i)|Ft)

]
∼ 1

t2

Similarly,
V ar[E(Zt+1(i)− Zt+1(i)|Ft)] =
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1

((α + β)(t+ 1) +m)2
V ar

[
((α + β)t+m)(Zt(i)− Zt(i)) + E(Yt+1(i)|Ft)−

N∑
j=1

pjiE(Yt+1(j)|Ft)

]

=
1

((α + β)(t+ 1) +m)2
V ar

[
((α+β)t+m)(Zt(i)−Zt(i))+(α−β)

{
Zt(i) +

N∑
j=1

pjiZt(j)

}]

=

{
(α + β)t+m−

(
1 +

{(
1− 1

N

)
pii − 1

N

∑
i 6=j

pij

}
(α− β)

)}2

((α + β)(t+ 1) +m)2
V ar(Zt(i)−Zt(i))+O

(
1

t2

)
Hence, we have

yt+1 =

{
(α + β)t+m−

(
1 +

{(
1− 1

N

)
pii − 1

N

∑
i 6=j

pij

}
(α− β)

)}2

((α + β)(t+ 1) +m)2
yt+O

(
1

t2

)
By following the same construction in the previous section and replacing ζ,
f(t) and F (t) by ζ ′, f(t)′ and F (t)′ respectively, we get

yt+1 = f ′(t)yt +O

(
1

t2

)
where

f ′(t) =

{
(α + β)t+m−

(
1 +

{(
1− 1

N

)
pii − 1

N

∑
i 6=j

pij

}
(α− β)

)}2

((α + β)(t+ 1) +m)2

F ′(t) ∼ t
2(1+pii(α−β))

α+β

ζ ′t =
t−1∑
i=0

F ′(i) ∼



1 if
2

(
1+

{
(1− 1

N )pii− 1
N

∑
i6=j

pij

}
(α−β)

)
α+β

< 0

log t if
2

(
1+

{
(1− 1

N )pii− 1
N

∑
i6=j

pij

}
(α−β)

)
α+β

= 0

t

2


1+

(1− 1
N )pii− 1

N

∑
i 6=j

pij

(α−β)

α+β

+1

if
2

(
1+

{
(1− 1

N )pii− 1
N

∑
i6=j

pij

}
(α−β)

)
α+β

> 0
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So,

yt ∼



t

−2


1+

(1− 1
N )pii− 1

N

∑
i 6=j

pij

(α−β)

α+β
+1


if

2

(
1+

{
(1− 1

N )pii− 1
N

∑
i 6=j

pij

}
(α−β)

)
α+β

< 0

t−1 log t if
2

(
1+

{
(1− 1

N )pii− 1
N

∑
i 6=j

pij

}
(α−β)

)
α+β

= 0

t−1 if
2

(
1+

{
(1− 1

N )pii− 1
N

∑
i 6=j

pij

}
(α−β)

)
α+β

> 0

2.3 Almost Sure convergence Results

Again, taking inspiration from [16] and [17], we try to get an almost sure
convergence result for the proposed model of interacting Pólya and Friedman
urns by using the convergence theorem of Quasi-Martingales. We first define
what are Quasi-Martingales

Definition 2.3.1. A stochastic process At on probability space (Ω,F , P ) is
a Quasi-Martingale if

+∞∑
t=0

E[|E(At+1|Ft)− At|] <∞

Lemma 6. Zt is a Quasi-Martingale when P is a doubly stochastic matrix
and Zt(i) is always a Quasi-Martingale.

Proof. For Zt:

∞∑
t=0

E|E[Zt+1|Ft]−Zt| =
∞∑
t=0

E

∣∣∣∣ Nt

Nt+1

Zt+
1

N.Nt+1

(α−β)
N∑
i=1

〈p̃i, Z̃t〉+
β

Nt+1

−Zt
∣∣∣∣

=
∞∑
t=0

E

∣∣∣∣ 1

N.Nt+1

(α− β)
N∑
i=1

(
N∑
j=1

pji )Zt(j) +
β

Nt+1

− (α + β)

Nt+1

Zt

∣∣∣∣
=
∞∑
t=0

1

Nt+1

E

∣∣∣∣ αN
( N∑

j=1

(
N∑
i=1

pji )− 1

)
Zt(j)−

β

N

( N∑
j=1

(
N∑
i=1

pji ) + 1

)
Zt(j) + β

∣∣∣∣
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( if in matrix P along with row sums one,all the columns also sum up to one
i.e. P is doubly stochastic then)

=
∞∑
t=0

1

Nt+1

E

∣∣∣∣β − 2β

N

( N∑
j=1

Zt(j)

)∣∣∣∣
=
∞∑
t=0

β

2Nt+1

E

∣∣∣∣12 − Zt
∣∣∣∣

Since for Friedman’s urn Zt → 1
2

almost surely, Zt is a quasi-Martingale if P
is a doubly Stochastic Matrix.

For Zt(i):
∞∑
t=0

E

∣∣∣∣E(Zt+1(i)|Ft)− Zt(i)
∣∣∣∣

=
∞∑
t=0

E

∣∣∣∣(Nt −Nt+1

Nt+1

)
Zt(i) +

β

Nt+1

+
(α− β)

Nt+1

Zt(i)

∣∣∣∣
=
∞∑
t=0

E

∣∣∣∣−(α− β)− β + β

Nt+1

Zt(i) +
β

Nt+1

+
(α− β)

Nt+1

Zt(i)|

=
∞∑
t=0

E

∣∣∣∣−2β

Nt+1

(
Zt(i)−

1

2

)
+

(α− β)

Nt+1

(Zt(i)− Zt(i))
∣∣∣∣

Which converges (Using the fact that in Friedman urn fraction of balls of
either color converges to one-half and theorem 5).

In fact, one can show that Z̃t converges to γ =
(
1
2
, 1
2
, ..., 1

2

)
almost surely

using theory of stochastic approximation which we shall discuss in the next
chapter.
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Chapter 3

Proposed Interacting Urn
Model: Fluctuations

In Chapter 1, Theorem 2 we discussed David A. Freedman’s limit theorems
for a single Friedman urn. Those results can be re-written to express fluc-
tuations of the fraction of white (or black) balls around the limit 1/2. In
this chapter, we prove similar fluctuation results for the proposed model of
interacting urns (Friedman and/or Polya). We take two different approaches:

1. Using the theory of Stochastic Approximation (for details see [5]).

2. Using the method proposed by Giacomo Aletti, Irene Crimaldi and
Andrea Ghiglietti in [1].

Similar results are obtained for the special case of pji = p/N for i 6= j,
pii = 1− p+ p/N for Pólya urns in [16] and for Friedman urns in [17].

3.1 Stochastic Approximation scheme for the

Proposed model

We limit our discussion on Stochastic Approximation to the results relevant
for the analysis of our model. For more details see [5].

A stochastic approximation scheme in Rd is given by :

xt+1 = xt + a(t+ 1)[h(xt) +Mt+1], t ≥ 0 (3.1)
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with following assumptions:

A1. The map h : Rd → Rd is Lipschitz: ||h(x)−h(y)|| ≤ L||x−y|| for some
0 < L <∞.

A2. {a(t)} are called step sizes satisfying
∑

t a(t) =∞;
∑

t a(t)2 <∞

A3. {Mt} is a martingale difference sequence with respect to the increasing
family of σ-fields

Ft := σ(xm,Mm,m ≤ t) = σ(x0,M1, ..,Mt), n ≥ 0

That is,
E[Mt+1|Ft] = 0 a.s. t ≥ 0

Furthermore, {Mt} are square-integrable with

E[||Mt+1||2|Ft] ≤ K(1 + ||xt||2) a.s. t ≥ 0

for some constant K > 0.

A4. supt||xt|| <∞ a.s.

In this section we will try to get a stochastic scheme for our model.
Equation (2.2) can be rewritten as

Z̃t+1 = Z̃t −
(α + β)

(α + β)(t+ 1) +m
Z̃t +

1

(α + β)(t+ 1) +m
Ỹt+1

+
1

(α + β)(t+ 1) +m
˜E[Yt+1|Ft]−

1

(α + β)(t+ 1) +m
˜E[Yt+1|Ft]

Where

˜E[Yt+1|Ft] =


E(Yt+1(1)|Ft)
E(Yt+1(2)|Ft)

.

.
E(Yt+1(N)|Ft)

 = (α− β)


〈p̃1, Z̃t〉
〈p̃2, Z̃t〉

.

.

〈p̃N , Z̃t〉

+ β


1
1
.
.
1


(Ft is the sigma algebra generated by (Z̃0, Z̃1, ...., Z̃t))

Putting ρ = α−β
α+β

in above equation we get,
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Z̃t+1 = Z̃t +
1

(t+ 1) + m
α+β

ρ

〈p̃1, Z̃t〉
〈p̃2, Z̃t〉

.

.

〈p̃N , Z̃t〉

+
β

α + β


1
1
.
.
1

− Z̃t
+ (3.2)

1

(t+ 1) + m
α+β

[
Ỹt+1 − ˜E(Yt+1|Ft)

(α + β)

]
Lemma 7. Equation (3.2) is a stochastic approximation scheme with

Mt+1 =
Ỹt+1 − ˜E[Yt+1|Ft]

(α + β)

h(Z̃t) =

ρ

〈p̃1, Z̃t〉
〈p̃2, Z̃t〉

.

.

〈p̃N , Z̃t〉

+
β

α + β


1
1
.
.
1

− Z̃t


a(t+ 1) =
1

(t+ 1) + m
α+β

Proof. 1. To show that h(Z̃t) is Lipschitz we need to show that

for any t1, t2 ∈ N ∪ {0}, ||h(Z̃t1 − Z̃t2)|| ≤ K||Z̃t1 − Z̃t2 || for some
constant K.

||h(Z̃t1 − Z̃t2)|| = ρ


〈p̃1, Z̃t1 − Z̃t2〉
〈p̃2, Z̃t1 − Z̃t2〉

.

.

〈p̃N , Z̃t1 − Z̃t1〉

− (Z̃t1 − Z̃t2)

≤ ||Z̃t1 − Z̃t1||

≤ ρ


〈p̃1, Z̃t1 − Z̃t2〉
〈p̃2, Z̃t1 − Z̃t2〉

.

.

〈p̃N , Z̃t1 − Z̃t1〉

+ (Z̃t1 − Z̃t2)
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≤ ρN

√√√√( N∑
i=1

(Zt1 − Zt2)(i)

)2

+ (Z̃t1 − Z̃t2)

≤ ρN2(Z̃t1 − Z̃t2) + (Z̃t1 − Z̃t2)

= (ρN2 + 1)(Z̃t1 − Z̃t2)

Hence assumption A1. is satisfied

2. Note that step size of our model:

a(t) =
1

(t+ 1) + m
α+β

Satisfies assumption A2.

3.

E[Mt+1|Ft] = E

[
Ỹt+1 − ˜E[Yt+1|Ft]

(α + β)

∣∣∣∣∣Ft
]

= 0

Also,

E[||Mt+1||2|Ft] = E[||(Ỹt+1 − E[ ˜Yt+1(i)|Ft])||2|Ft]

=
N∑
i=1

E[(Yt+1(i)− E(Yt+1(i)|Ft))2|Ft]

=
N∑
i=1

E[(Yt+1(i))
2|Ft]+E[E(Yt+1(i)|Ft))2|Ft]−2Yt+1(i)E[E(Yt+1(i)|Ft)|Ft]

=
N∑
i=1

[α2〈p̃i, Z̃t〉+β2(1−〈p̃i, Z̃t〉]+
N∑
i=1

E[(α〈p̃i, Z̃t〉+β(1−〈p̃i, Z̃t〉)2|Ft]

−2
N∑
i=1

E[Yt+1(i)[α〈p̃i, Z̃t〉+ β(1− 〈p̃i, Z̃t〉)]|Ft]

=
N∑
i=1

[α2〈p̃i, Z̃t〉+β2(1−〈p̃i, Z̃t〉+(α〈p̃i, Z̃t〉+β(1−〈p̃i, Z̃t〉))2−2(α〈p̃i, Z̃t〉+β(1−〈p̃i, Z̃t〉))2]

=
N∑
i=1

[α2〈p̃i, Z̃t〉+ β2(1− 〈p̃i, Z̃t〉)− (α〈p̃i, Z̃t〉+ β(1− 〈p̃i, Z̃t〉))2
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=
N∑
i=1

(α− β)2〈p̃i, Z̃t〉[1− 〈p̃i, Z̃t〉]

≤ (α− β)2
N∑
i=1

{
N∑
j=1

pjiZt(j)(1− Zt(j))

}

≤ (α− β)2N
N∑
i=1

Zt(j)

≤ (α− β)2N2[1 +
N∑
i=1

Z2
t (j)]

Hence,
E[||Mt+1||2|Ft] ≤ (α− β)2N2[1 + ||Z̃t||2]

Therefore assumption A3. is satisfied

4. Since 0 ≤ Zt(i) ≤ 1 for all t and 1 ≤ i ≤ N we have

supt||Z̃t|| <∞ a.s. and hence assumption A4. is satisfied.

Theorem 8. (theorem A.1 in [13]) For a general stochastic Approximation
scheme given by

xt+1 = xt + a(t)[h(xt) +Mt+1]

The set Θ∞ of limiting values of h as t→∞ is a.s. a compact connected
set, stable by the flow of

ODEh ≡ ẋ = h(x)

Furthermore if x∗ ∈ Θ∞ is a uniformly stable equilibrium on Θ∞ of ODEh,
then

xt → x a.s. as t→∞

Theorem 9. From Lemma 7 and Theorem 8, we conclude that Z̃t → γ a.s
where γ = (1

2
, ..., 1

2
)
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3.2 Fluctuation Theorems

Theory of Stochastic Approximation can also be used to understand fluctu-
ations around the limit. Recently these methods were used in [13] to study
urn models quite effectively.
The following result for our model is on the same lines as Theorem A.2 in
[13].

Theorem 10. For Our Proposed Model, assume that the function h is differ-
entiable at γ and all the eigenvalues of −Dh(γ) have positive real parts.Assume
that for some δ > 0,

supt≥t0E[||Mt+1||2+δ|Ft] <∞ a.s.

E[Mt+1M
t
t+1|Ft]→ Γ a.s. as n→∞

where Γ is a deterministic symmetric definite positive matrix.

For step size a(t) = 1
(t+1)+ m

α+β

(a) Forρ < 1
2

√
n
(
Z̃t − γ

)
→ N

(
0,

1

2(Re(λmin))− 1
Σ

)
as n→ +∞

λmin denotes the eigenvalue of −Dh(γ) with the lowest real part

Σ :=

∫ ∞
0

e−(−Dh(γ)
t− Id

2
)uΓe−(−Dh(γ)−

Id
2
)udu

E[Mt+1M
T
t+1|Ft]

n→∞−−−→
a.s.

Γ

(b) For ρ = 1
2
, √

n

log n

(
Z̃t − γ

)
→ N (0,Σ)

as n→∞

(c) For ρ ∈
(
0, 1

2
) , nλmin

(
Z̃t − γ

)
a.s. converges as n → ∞ towards a

finite random variable.
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Proof.

h(Z̃t) =

ρ

〈p̃1, Z̃t〉
〈p̃2, Z̃t〉

.

.

〈p̃N , Z̃t〉

+
β

α + β


1
1
.
.
1

− Z̃t


Considering Zt(i) and Zt(j) independent for all i, j jacobian of h is given by:

(ρp11 − 1) ρp21 . . . . ρpN1
ρp12 (ρp22 − 1) . . . . ρpN2
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .

ρp1N . . . . . (ρp22 − 1)


The Jacobian can be written as ρS−I where S is a matrix with row sums one.

Hence the maximum eigenvalue for Dh would be ρ− 1 and minimum eigen-
value for −Dh would be 1− ρ.

Since ρ − 1 is negative, real part of eigenvalues of Dh are negative which
implies that real part of eigenvalues of −Dh are all positive.

(a), (b) and (c) of Theorem holds respectively for ρ < 1
2
, ρ = 1

2
and

ρ ∈
(
0, 1

2

)
We explicitly calculate Γ, Σ and E[Mt+1M

T
t+1|Ft].

• Calculation of Γ

We need to calculate E[Mt+1M
T
t+1|Ft]

Mt+1M
T
t+1 =

1

(α + β)2
[A−B][AT −BT ]
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Where A =



Yt+1(1)
Yt+1(2)

.

.

.

.
Yt+1(N)



B =



E[Yt+1(1)|Ft]
E[Yt+1(2)|Ft]

.

.

.

.
E[Yt+1(N)|Ft]


= (α− β)


〈p̃1, Z̃t〉

.

.

.

.

〈p̃N , Z̃t〉

+ β


1
.
.
.
.
1


Note that E[Mt+1M

T
t+1|Ft] will be symmetric matrix

• Diagonal Elements of E[Mt+1M
T
t+1|Ft] :

(
(α−β)〈p̃i, Z̃t〉+β

)2

+E[(Yt+1(i))
2|Ft]−2

(
(α−β)〈p̃i, Z̃t〉+β

)
〈p̃i, Z̃t〉

=

(
(α−β)〈p̃i, Z̃t〉+β

)2

+(α2−β2)〈p̃i, Z̃t〉+β2−2

(
(α−β)〈p̃i, Z̃t〉+β

)
〈p̃i, Z̃t〉

Since our model is a friedman’s urn model Zt(i)→ 1
2

a.s. as t→∞ for
all i.

Hence 〈p̃i, Z̃t〉 → 1
2

a.s. t→∞ for all i.

Hence the diagonal elements of Γ will be(
(α− β)

2
+ β

)2

+
(α2 − β2)

2
+ β2 − 2

(
(α− β)

2
+ β

)
1

2

=
3

4
(α2 + β2)− (α + β − αβ)

2
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• Off-Diagonal Elements of E[Mt+1M
T
t+1|Ft]

(
(α− β)〈p̃i, Z̃t〉+ β

)(
(α− β)〈p̃j, Z̃t〉+ β

)
+E[(Yt+1(i))(Yt+1(j))|Ft]

−
(

(α− β)〈p̃i, Z̃t〉+ β

)
〈p̃j, Z̃t〉 −

(
(α− β)〈p̃j, Z̃t〉+ β

)
〈p̃j, Z̃t〉

=

(
(α− β)〈p̃i, Z̃t〉+ β

)(
(α− β)〈p̃j, Z̃t〉+ β

)
+ α2〈p̃i, Z̃t〉〈p̃j, Z̃t〉

+β2

(
1−〈p̃i, Z̃t〉

)(
1−〈p̃j, Z̃t〉

)
+αβ

(
〈p̃i, Z̃t〉+〈p̃j, Z̃t〉−2〈p̃i, Z̃t〉〈p̃j, Z̃t〉

)
−
(

(α− β)〈p̃i, Z̃t〉+ β

)
〈p̃j, Z̃t〉 −

(
(α− β)〈p̃j, Z̃t〉+ β

)
〈p̃j, Z̃t〉

Which converges to(
(α− β)

2
+ β

)2

+
α2

4
+
β2

4
−
(

(α− β)

2
+ β

)
+
αβ

2

=
1

2
(α2 + β2) + αβ − (α + β)

2

• Calculation of Σ

Σ := limT→+∞

∫ T

0

e−(−Dh(x
∗)t− Id

2
)uΓe−(−Dh(x

∗)− Id
2
)udu

= limT→+∞

∫ T

0

eue(Dh(x
∗)u)tΓe(Dh(x

∗))udu

3.3 Stable Convergence Approach

In [1] authors study a model with interacting reinforced stochastic processes.
Our model is a particular case of this model where these reinforced stochas-
tic processes are urn models. We will discuss some similarities between our
model and the model in the [1]. Their method can be adopted to obtain CLT
of the fluctuation results for our model of interacting Pólya urns.

Following definition is given in [1]:
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Definition 3.3.1. A Reinforced Stochastic Process is a S-dimensional stochas-
tic process, where S is a finite set such that Y = [Y (x) : x ∈ S] has each
component Y (x) = (Yn(x))n≥1 a stochastic process.
Conditional probabilities for these Yn’s are given by:

P (Yn+1(x) = 1|Z0(x), Y1(x), ..., Yn(x)) = Zn(x)

Where
Zn(x) = (1− rn−1)Zn−1(x) + rn−1Yn(x) (3.3)

with 0 ≤ rn ≤ 1 and Z0(x) are random variables.

Note that for our model, S is the Number of urns in the network i.e. N
and Yn(x) gives the number of balls added to urn x at time n.

For our model of friedman urns:

Z̃t+1 =
(α + β)t+m

(α + β)(t+ 1) +m
Z̃t +

1

(α + β)(t+ 1) +m
Ỹt+1 (3.4)

Where
Z̃t = [Zt(1), Zt(2), ..., Zt(N)]

And
Ỹt = [Yt(1), Yt(2), ..., Yt(N)]

Zt(i) is the fraction of balls in ith urn at time t and Yt(i) is the number of
balls added to urn i at time t.

On comparing equation (3.3) and (3.4) we get that our model is a Rein-
forced Stochastic Process with

rt =
(α + β)

(α + β)(t+ 1) +m

In [1], The transpose of Matrix P from our model is referred as the weighted
adjacency matrix.
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Assumptions and Notations

The Matrix P is irreducible and Diagonalizable. The diagonalizability of P
ensures that there exists a nonsingular matrix Ũ such that ŨTP T (ŨT )−1 is
diagonal with λj ∈ Sp(P T )( where Sp(M) for a matrix M is its spectrum) .

Without loss of generality we may assume that norm of every column in Ũ is 1

Define Ṽ = (ŨT )−1 Note that each column uj of Ũ is a left eigenvector
of P T corresponding to the eigenvalue λj ∈ Sp(P T ) and each column vj of

Ṽ is a right eigenvector of P T

From the definition of Ṽ we have

uTj vj = 1 and uTh vj = 0, ∀h 6= j

Using Frobenius-Perron theorem and the fact that P is doubly stochastic,
we have: The eigenvalue λ1 := 1 of P T has multiplicity 1,
λmax = 1 and

u1 = v1 = N−1/21 and

[v1]j := v 1,j ∈ (0,+∞) ∀j = 1, .., N

Other Notations

• U and V denote matrices whose columns are respectively left and right
eigenvectors of P T corresponding to Sp(P T )\{1}. Note that U and V

are sub matrices of Ũ and Ṽ respectively.

• λ∗ is an eigenvalue of P T such that

Re(λ∗) = max
{
Re(λj) : λj ∈ Sp(P T )\{1}

}
Interacting Pólya Urns: Asymptotics

This section gives CLT convergence results for a simplified version of our
model using stable convergence (Appendix-B).
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Consider N interacting Pólya urns with updation scheme of our model given
by interaction matrix P and urn scheme[

α 0
0 α

]
where α > 0

Following theorem for our model is on the same lines as Theorem 3.1 in
[1]

Theorem 11. There exists a random variable Z∞ such that

Z̃t → Z∞1

Proof. 1. As P is irreducible and diagonalizable, we have:

V Tu1 = UTv1 = 0 V TU = UTV = I and I = u1v
T
1 + UV T

(3.5)
Also, if D is the diagonal matrix whose elements are λj ∈ Sp(P T )\{1}
we have,

P = u1v
T
1 + UDV T (3.6)

2. The dynamics for a Pólyaurn interacting network can be expressed as:

Z̃t+1 =
t+m

t+m+ 1
Z̃t +

1

t+m+ 1
Ỹt+1

Z̃t+1−Z̃t =
−1

t+m+ 1
Z̃t+

1

t+m+ 1

[
Ỹt+1 − E[Ỹt+1|Ft]

]
+

1

t+m+ 1
αPZ̃t

Above equation can be written as:

Z̃t+1 − Z̃t =
−1

t+m+ 1
(I − αP )Z̃t +

1

t+m+ 1
∆Mt+1 (3.7)

Where ∆Mt = Ỹt − αPZ̃t is a martingale difference sequence with
respect to the filtration F := (Ft)t. Now, if v1 is a right eigenvector of
P T then it will also be a right eigenvector of αP T .
So, vT1 αP = (αP Tv1)

T = vT1 , which gives vT1 (I − αP ) = 0.
Hence, from equation (3.7) we deduce that (vT1 Zt)t is a bounded real
martingale.
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3. Idea in [1] is to decompose Z̃t into a vector, each of whose component is
a martingale and a process which approaches to zero vector as t→∞.

Z̃t = Zt1 + Ẑt

where Zt = N
−1
2 vT1 Zt = N−11TZ̃t and Ẑt = (I −N−111T)Z̃t

4. To show: Zt
a.s.−−→ Z∞

Note that Zt = N−11TZt = N−1
∑N

i=1 Zn,i. Hence Zt is bounded.
Also from equation (3.7) we have:

Zt+1 − Zt = N−1/2
1

t+m+ 1
(vT1 ∆Mt+1)

Which gives E[Zt+1−Zt|Ft] = 0 Hence, by Martingale Convergence
Theorem we have

Zt
a.s.−−→ Z∞

Where Z∞ is a finite random variable

5. To show: Ẑt
a.s.−−→ 0

(a) Pu1 = (uT1 P
T )T = u1

Which gives (I − P T )u1 = u1

Hence,

(I − P )Z̃t = (I − P )(u1
√
NZt + Ẑt) = (I − P )Ẑt

Using the above relation, equation (2.13) can be written as

Z̃t+1 − Z̃t = − 1

t+m+ 1
(I − P )Ẑt +

1

t+m+ 1
∆Mt+1

Multiplying both sides by UV T

ˆZt+1−Ẑt = − 1

t+m+ 1
[UV T−UV T (u1v

T
1 +UDV T )]Ẑt+

1

t+m+ 1
UV T∆Mt+1

= − 1

t+m+ 1
(UV T − UDV T )Ẑt +

1

t+m+ 1
UV T∆Mt+1

= − 1

t+m+ 1
U(I −D)V T Ẑt +

1

t+m+ 1
UV T∆Mt+1 (3.8)
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(b) Define ZV,t = V T Ẑt
From equation (3.5) we have Ẑt = UZV,t, so it is enough to show
that ZV,t converges almost surely to 0.

From equation (3.8) we have

ZV,t+1 =

(
I − 1

t+m+ 1
(I −D)

)
ZV,t +

1

t+m+ 1
V T∆Mt+1

So,

E[||ZV,t+1||2|Ft] = E[Z
T

V,t+1ZV,t+1|Ft]

= Z
T

V,t

(
I − 1

t+m+ 1

(
I − D̄

))(
I − 1

t+m+ 1
(I −D)

)
ZV,n+

1

(t+m+ 1)2
E[∆MT

t+1V V
T

∆Mt+1|Ft]

= Z
T

V,tZV,t −
1

t+m+ 1
Z
T

V,t

(
2I −D −D

)
ZV,t +

1

(t+m+ 1)2
ξt

where (ξt)t is a suitable bounded sequence of Ft-maesurable ran-
dom variables.
Since Re(λj) < 1 for any λj ∈ Sp(P T )\{1},the matrix 2I−(D+D)
is positive definite i.e. a symmetric matrix with all positive eigen-
values. So, we can write

E[||ZV,t||2|Ft] ≤ ||ZV,t||2 +O

(
1

t2

)
Hence (||ZV,t||2)t is a bounded positive almost submartingale and
so it converges almost surely. In order to prove that the limit is
zero, it is enough to prove that E[||ZV,t||2] converges to zero.

E[ZV,t+1||2] = E

[
Z
T

V,t

(
I − 1

t+m+ 1

(
I −D

))(
I − 1

t+m+ 1
(I −D)

)
ZV,t

]
+

1

(t+m+ 1)2
E[∆MT

t+1V V
T∆Mt+1]

≤ E

[
Z
T

V,t

(
I − 1

t+m+ 1

(
I −D

))(
I − 1

t+m+ 1
(i−D)

)
ZV,t

]
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+C1
1

(t+m+ 1)2

For some constant C1 ≥ 0.

Also,[(
I − 1

t+m+ 1

(
I −D

))(
I − 1

t+m+ 1
(I −D)

)]
jj

=

1− 2
1

t+m+ 1
(1−Re(λj)) +

1

(t+m+ 1)2
|1− λj|2

Set aj = 1−Re(λj) and a∗ = minj{aj} = 1−Re(λ).

We have

E

[
Z
T

V,t

(
I − 1

t+m+ 1

(
I −D

))(
I − 1

t+m+ 1
(I −D)

)
ZV,t

]

≤
N∑
j=2

(
1− 2aj

1

t+m+ 1

)
E
[
Z
j

V,tZ
j
V,t

]
+ C2

1

(t+m+ 1)2

≤
(

1− 2a∗
1

t+m+ 1

)
E
[
||ZV,t||2

]
+ C2

1

(t+m+ 1)2

Set xt := E [||ZV,t||2], then above inequality can be written as

xt+1 ≤
(

1− 2a∗
1

t+m+ 1

)
xt + (C1 + C2)

1

(t+m+ 1)2

Since we have Re(λ∗) < 1 ,above recursion implies that

lim
t
xt = 0

which concludes the proof.

Following two convergence results for our model with interacting Pólya urns
are on the same lines as Theorem 3.2 in [1] and Theorem 3.3 in [1] respectively.

Theorem 12. The following holds for the Proposed model with Pólya urns:
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1. if Re(λ∗) < 1
2
, then

√
n(Z̃t − Z∞1)→ N (0, Z∞(1− Z∞(Σ̃ + Σ̂)) stably,

where,

Σ̃ =
||v1||2

N
11T

and
Σ̂ := UŜUT

with

[Ŝ]h,j :=
vTh vj

1− (λh + λj)
with 2 ≤ h, j ≤ N

2. if Re(λ∗) = 1
2

then,

√
n√

ln(n)
(Z̃t − Z∞1)→ N (0, Z∞(1− Z∞)Σ̂∗ stably

where,
Σ̂∗ := UŜ∗UT

and

[Ŝ∗]h,j :=

{
vTh vj if λh + λj = 0

0 if λh + λj 6= 0

with 2 ≤ h, j ≤ N .

Theorem 13. For any h, j ∈ {1, 2.., N}, h 6= j, we have:

1. if Re(λ∗) < 1
2
, then

√
n(Zt(h)− Zt(j))→ N (0, Z∞(1− Z∞)Σh,j) stably,

where,
Σh,j := [Σ̂]h,h + [Σ̂]j,j − 2[Σ̂]h,j

2. if Re(λ∗) > 1
2
, then

√
n√

ln(n)
(Zt(h)− Zt(j))→ N (0, Z∞(1− Z∞)Σ∗h,j) stably

where,
Σ∗h,j := [Σ̂∗]h,h + [Σ̂∗]j,j − 2[Σ̂∗]h,j
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We omit the proofs as they follow from the same argument as in [1].

Although, the same results can be obtained via stochastic approximation
(as seen in section 3.1), we believe that understanding a new approach to
obtain the same results would be useful.
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Chapter 4

Branching Processes and Urn
Models

In this chapter, we discuss the concept of embedding a suitable discrete time
process into a continuous time Branching Process. Once we get a branching
process that is stochastically same as an Urn Model, various results from
branching processes and Markov chain theory can be obtained for the model.
This process of Embedding also has applications in study of contagious dis-
eases. This embedding was introduced by K.B. Athreya and Samuel Karlin
in their paper [2].

We will first state the definition and construction of a multi-type branching
process and Continuous Time Markov Branching Process and then discuss
the concept of Embedding from the book [3].The idea is to find a suitable
sequence of stopping times such that the continuous time process observed
at these times is stochastically similar to a discrete urn process.

4.1 Multi-Type Branching Process

A multi-type branching process allows finite number of particle types in which
every particle of every type can have any number of offsprings of any type.

For a r-type process, we need r generating functions, each in r variables.
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Generating function for type i particle is defined as:

f (i)(s1, ..., sr) =
∑

j1,j2,...,jr≥0

p(i)(j1, .., jr)s
j1
1 ....s

jr
r

0 ≤ sα ≤ 1 α = 1, ...r

p(i)(j1, j2, , , .jr) = the probability that a type i parent produces j1 particles
of type 1,j2 particles of type 2 and so on.
The generating function for the whole process is given by:

~f(~s) = (f (1)(~s), ..., f (r)(~s))

where ~s ∈ (0, 1)r.

Definition 4.1.1. r-type branching process is a Markov chain {An;n =
0, 1, 2...} on Rr

+ with transition function

P (~i,~j) = P{Yn+1 = ~j|Yn =~i}, ~i,~j ∈ Rr
+

= coefficient of ~sj in [f(~s)]i

4.2 The Continuous time Multitype Branch-

ing Process

Let Aj(t) = the number of type j particles existing at time t, and set

A(t) = (A1(t), ..., Ar(t));

Definition 4.2.1. (See Chapter 5, [3])
A stochastic process {A(t, ω); t ≥ 0} on a probability space (Ω, F, P ) is called
a r-dimensional continuous time Markov branching process if:

1. Its state space is Zr
+

2. It is a stationary strong Markov process with respect to the fields

Ft = σ{A(s, ω); s ≤ t};
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3. The transition probabilities P (i, j; t) satisfy

∑
j∈Rr+

P (i, j; t)~sj =
r∏

k=1

∑
j∈Rr+

P (ek, j; t)s
j

ik;

for all i ∈ Rr
+ and ~s ∈ (0, 1)r.

The transition functions are determined by the parameters

~a = (a1, ..., ar) ∈ Rr
+,

~0 ≤ p(j) = (p(1)(~j), .., p(r)(~j)),
∑
~j∈Z+

pi~j = 1

Let
~f(~s) = (~f (1)(~s), ..., ~f (r)(~s)),

where
~f i(~s) =

∑
j∈Zr+

p(i)(~j)~sj

Let
ui(~s) = ai[~f

i(~s)− si]

The function u(~s) is called the infinitesimal generating function for the con-
tinuous time branching process.

Now, we describe the embedding of urn models into a multi-type contin-
uous time branching process. Given an embedding, it is enough to describe
the infinitesimal generating functions.

4.3 Embedding of Urn Model into continuous

time Branching process

We first discuss embedding of a single Friedman Urn into a continuous time
branching process. Let Wt and Bt denote number of white and black balls
respectively in the Urn at time t.
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Consider a two-type branching process A(t) = (A1(t), A2(t)) with infinitesi-
mal generating functions

a1 = a2 = 1

h1(s) = sα+1
1 sβ2

h2(s) = sβ1s
α+1
2

This branching process is such that if any paticle dies, then it gives rise to
α + 1 particles of its own type and β particles of the other type.Let τt’s be
the times at which any particle dies. Then we have the following result:

Theorem 14. (Theorem 1 in [2])
The stochastic processes {(Wt, Bt); t = 0, 1, 2...} and {A(τt) = (A1(τt), A2(τt)); t =
0, 1, 2...} are equivalent.

Clearly, this can be extended to consider embedding of more than one
independent Friedman urns. This is done in the following example.

Example:
Consider two independent Friedman Urns with Urn schemes[

α1 α2

α2 α1

] [
α3 α4

α4 α3

]
This set of independent Friedman urns can be embedded in a four-type
branching process with infinitesimal generating functions:

a1 = a2 = a3 = a4 = 1

h1(s) = sα1+1
1 sα3

3

h2(s) = sα2+1
2 sα4

3

h3(s) = sα1+1
3 sα3

1

h4(s) = sα1+1
4 sα3

2

For our model, urns are not independent (their dependence is governed
by the parameters pji

′s and therefore a new approach is needed to understand
interacting (or dependent) urn processes from the branching processes point
of view.
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Appendix

We state some of the definitions and results mentioned or used in the thesis.

4.4 Appendix-A (Difference Equations)

We need various results from Difference equations in order to understand
the proof for theorem 2. The following results for Difference Equations have
been taken from [8].
Let xn, an, bn be real numbers for n ≥ 0 with

xn+1 = anxn + bn (4.1)

Since above equation is a recurrence relation, we can write xn+1 in terms of
x0

xn+1 = x0

n∏
ν=0

aν +
n−1∑
j=0

bj

n∏
ν=j+1

aν + bn (4.2)

=

(
n∏
ν=0

aν

)(
x0 +

n∑
j=0

bj

j∏
ν=0

a−1ν

)
(4.3)

When, aν 6= 0 for 0 ≤ ν ≤ n.

Suppose b > 0, c > 0, a is real and

an = 1 +
a

(b+ cn)
for n ≥ 0 (4.4)

Then,
n∏
ν=0

aν =

 Γ
(
b
c

)
Γ
(

(a+b)
c

)
[Γ

[
a+b
c

+ n+ 1
]

Γ
[
b
c

+ n+ 1
] ] (4.5)
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Hence,using Stirling approximation we have

n∏
ν=0

aν =

 Γ
(
b
c

)
Γ
(

(a+b)
c

)
na

c (4.6)

Using equation (3.1) and (3.6) we can conclude

Lemma 15. (Lemma 6.4 in [8])
If {an} is defined by (3.4) with a > 0; and bn = O(nd) with d < c−1a−1; and

{xn} satisfies (3.1):then limn→∞xn
n∏
ν=0

a−1ν = x0 +
∞∑
j=0

bj
j∏

ν=0

a−1ν , the series

converging absolutely.

4.5 Appendix-B (Stable Convergence)

The following section is taken from the paper [1] (Appendix B: Stable con-
vergence and its variants).

Definition 4.5.1. Let (Ω,A, P ) be a probability space, and let S be a polish
space, endowed with its Borel σ− field. a kernel on S, or a random probability
measure on S, is a collection K = {K(ω) : ω ∈ Ω} of probability measures
on the Borel σ− field of S such that, for each bounded Borel real function f
on S, the map

ω 7→ Kf(ω) =

∫
f(x)K(ω)(dx)

is A− measurable.

Given a sub-σ-field H of A, a kernel K is said to be H−measurable if all
the above random variables Kf are H−measurable.

On (Ω,A, P ), let (Yn) be a sequence of S− valued random variables, let
H be a sub-σ-field of A and let K be a H- measurable kernel on S. Then we
say that Yn converges H− stably to K, and we write Yn → K H-stably, if

P (Yn ∈ .|H)
weakly−−−−→ E[K(.)|H] for all

H ∈ H with P (H) > 0

61



4.6 Appendix-C (Auxiliary Results)

4.6.1 Stochastic Processes

A collection of random variables {X(t), t ∈ T} defined on the probability
space(Ω,F , P ) is called a stochastic process.

X : T × Ω→ R

X(t, ω) = Xω(t)

Note that X−1{(−∞, x]} ∈ F , ∀x ∈ R

The set {t ∈ T} is called the parameter space(T) of index set. Whereas
the collection of all possible values of X(t) for t ∈ T is called the state
space(S).

4.6.2 Exchangeable Random Variables

A finite sequence of Random VariablesX1, X2, ..., Xk are said to be Exchange-
able if

(X1, X2, ..., Xk)
D
= (Xi1 , Xi2 , ..., Xik)

For any permutation (i1, ..., ik) of (1, 2..., k).

An infinite sequence of Random Variables is said to be Exchangeable if every
finite collection of its variables is Exchangeable.

De Finetti’s Theorem for Indicators

Theorem 16. (Theorem 1.2 in [14])
Let X1, X2, ... be an infinitely Exchangeable sequence of indicators.Then, there
is a distribution function F (x) such that

P (X1 = 1, ..., Xk = 1, Xk+1 = 0, ..., Xn = 0) =

∫ 1

0

xk(1− x)n−kdF (x)

For each n and 0 ≤ k ≤ n
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