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Chapter 0

Introduction

In this thesis we study division algebras over fields. The main aim of the thesis is to

investigate conditions under which a given division algebra is cyclic. This is called

cyclicity problem. Division algebras and cyclic algebras are examples of, what are

called, central simple algebras. The algebra of matrices of a given size over a field is

an example of central simple algebra. By definition, associative algebras A over a field

F with centre Z(A) = F and having no proper non-trivial two sides ideal are central

simple algebras. By a theorem of Wedderburn, central simple algebras are precisely

the matrix algebras over division algebras.

The theory of central simple algberas has deep connections with number theory,

K-theory and geometry. We will be mainly interested in studying cyclic algebras.

For instance, the Hamiltonian algebra is an example of a cyclic algebra. More gen-

erally, quaternion algebras over a field are cyclic algebras. The structure of a cyclic

algebra is easier to study and has an explicit connection to second Galois cohomology

group. The 2-cocycle associated to a cyclic algebra has a very simple form. This is also

helpful in deciding, when a cyclic algebra is isomorphic to a matrix algebra over a field.

We will see that division algebras of degree two and three are cyclic. As a conse-

quence of primary decomposition theorem, degree six division algebras are also cyclic.

So, one may ask following question.

Cyclicity Question Is every division algebra over a field cyclic?

The cyclicity question in its naive form has a negative answer. As we will see

an explicit example of degree four noncyclic division algebra over a formally real

pythagorean field. Infact, there also exists cyclic algebras which are not division.

The existence of a noncyclic division algebra confirms an intimate relationship

between underlying field and the structure of a division algebra. Thus, the cyclic-
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ity of division algebras could also be questioned in the context of the base field. In

many cases after putting conditions on the field, all division algebra become cyclic.

For instance, any division algebra over a global field, i.e., a finite extension of ratio-

nal numbers or a global function fields, is always cyclic. This was proved by Hasse,

Brauer, Noether and Albert (§18.4 [Pie82]).

All the results and questions about cyclic algebras and cyclicity of division al-

gebras are discussed elaborately in chapter four. First three chapters provide the

mathematical background, which helps in understanding the problem and progress

made so far.

We now give some important conditions under which a given central division

algebra is cyclic.

• Let D be division algebra over a field F . Then D is cyclic if and only if there

exists a cyclic splitting subfield of degree deg(D).

• Let D be a division algebra over F of prime degree p. Then D is cyclic if and

only if there is a p-power central element.

In the first chapter, we define all our central tools of study, central simple algebras,

division algebras and some theorems related to them. We also study in detail about

quaternion algebras since they are centric to both, degree two cyclic and division al-

gebras. Biquaternion algebras play an important role in our study since they help us

construct a noncyclic division algebras.

Second chapter discusses the cohomological tools that are helpful to study many

objects of interest. The abelian cohomology plays an important role in the study of

crossed product algebra. The crossed product algebras and two cocycles are in one

to one correspondence. Cyclic algebras are special type of crossed product algebras

where the Galois group is cyclic. We also talk about one cocycles since they help

defining twisted action useful in the construction of cyclic algebras.

Study of division algebras is incomplete without talking about the Brauer group.

Third chapter defines and explains the Brauer group and its associated properties.

Brauer group classifies the isomorphic division algebras.

In the final chapter, we define and give examples of cyclic alegbras. Some results

are being discussed which give us condition, when a central simple algebra is cyclic.

We finally talk about the cyclicity question and mention the progress on the results

and the open questions.
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Chapter 1

Central Simple Algebras

In this chapter we’ll define the algebras we’ll be dealing with throughout the upcoming

chapters. We will also see some important results associated to them which will build

our foundation for further study.

An algebra A is called simple if A has no nontrivial two sided ideals.

Definition 1.0.1 (Central simple algebra). An Algebra A is said to be a central simple

algebra over F if and only if center of A is F and there are no nontrivial two sided

ideals of A and A is finite dimensional as a vector space over F .

We’ll denote the center of an algebra A by Z(A). A trivial example of central

simple algebra is the matrix algebra Mn(F ). Another class of examples is division

algebra. We’ll define them in the coming section.

1.1 Division algebras

Definition 1.1.1 (Division algebra). A Division Algebra is a non-commutative finite

dimensional associative algebra over some field where every non zero element has a

multiplicative inverse.

Let A be a division algebra and I be a non-trivial ideal of A. Since A is a division

algebra, so every non-zero element has an inverse, thus, 1 ∈ I. Therefore, I = A.

Since by definition A is non-commutative and it is a vector field over F , Z(A) = F .

Hence division algebras are central simple over F .

Example 1.1.2 (Hamilton’s example). The real algebra spanned by 1, i, j, k such

that i2 = j2 = k2 = −1, ij = k = −ji. A general element of this algebra looks like

r1 + r2i + r3j + r4k where r1, r2, r3, r4 ∈ R. To show that it is a division algebra we

need to find an inverse for every non zero element. We define a map φ : H→ H given

by φ(r1 + r2i + r3j + r4k) = r1 − r2i − r3j − r4k, known as conjugation. One can

check that the map defined above is actually an automorphism. Now to see that H
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is a division algebra, α−1 = φ(α)/n(α) is inverse of α where n(α) = r21 + r22 + r23 + r24

and α = r1 + r2i+ r3j + r4k.

One must observe that the quaternion algebra defined above is a non-commutative

associative algebra. And we can embed H into the algebra M2(C) using the relations:

i 7→

(√
−1 0

0 −
√
−1

)
, j 7→

(
0 1

−1 0

)
.

If we define the Hamilton’s algebra over any other field. it would result in a central

simple algebra.

Another example of central simple algebras are Cyclic algebras. They are central

object of study here and we will study about them in greater detail in chapter 4.

Definition 1.1.3 (Cyclic Algebras). Let L/F be a cyclic Galois extension of fields

with Galois group generated by σ. Choose 0 6= b ∈ F ∗ and n = degree(L/F ), we

define an algebra A = 4(L, σ, b) as follows:

A = ⊕n−1i=0 Lu
i

where un = b and the product structure is given by ux = σ(x)u ∀x ∈ L.Such an

algebra A = 4(L, σ, b) is called a Cyclic algebra.

H is the cyclic algebra 4(C/R, σ,−1), where σ is complex conjugation. It is both

a divison as well as a cyclic algebra.

We’ll see some results about Divison algebras now which will be useful in the

coming chapters.

Lemma 1.1.4. If D/F is a division algebra and F is algebraically closed then D = F .

Proof. Suppose α ∈ D \ F . Since D is finite dimensional, the ring F [α] ⊂ D is finite

dimensional. F [α] is a domain because D is, So F [α] = F (α) is a finite dimensional

field over F, thus F = F [α] which is a contradiction.

Theorem 1.1.5 (Wedderburn’s little theorem). Every finite domain is a field.

Proof. Let A be a finite domain. For each non-zero x in A, consider the two maps:

a 7→ ax, a 7→ xa

from A→ A, both are injective(by cancellation property) and Since A is finite, both

are surjective as well. Thus using the two maps we can conclude A forms a group

under multiplication. Now we need to show A forms a commutative group under

multiplication. We will use induction on size of A to prove this. Since A is a division
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ring, we’ll assume that all division rings that are a proper subset of A are fields. Since

the center of A is a field, say Z(A), we can assume A to be a vector space over Z(A)

of dimension n. Aim is to show n = 1. Let |Z(A)| = q, then A has the order qn. Now

for x ∈ A but x /∈ Z(A), consider the centralizer of x in A, Zx and as Z(A) ⊂ Zx ⊂ A.

We have Zx a field by induction since |Zx| = qd where d|n and d < n. Now consider

Z(A)∗, Z∗x, A
∗ as groups, and we can write the class equation as:

qn − 1 = (q − 1) +
∑ qn − 1

qd − 1

where sum is taken over all the conjugacy classes not contained in Z(A)∗. Now

xn − 1 =
∏
m|n

φm(x) and xd − 1 =
∏
m|d

φm(x)

for x = q, as d|n but d 6= n. φn(q) divides both qn − 1 and each qn−1
qd−1 . So φn(q) must

divide q−1. So |φn(q)| ≤ q−1. Now for n > 1, φn(x) =
∏

(x−ζ) where ζ is primitive

nth root of unity. Now take n = q and take absolute values. We get

|φn(q)| =
∏
|q − ζ|

and we know |q − ζ| > |q − 1|, Thus, we get |φn(a)| > q − 1. So, n = 1.

Theorem 1.1.6 (Frobenius theorem). It states that every finite dimensional associa-

tive division algebra over the real numbers is ismorphic to one of the following:

• R.

• C.

• H.

Proof. Let D be the division algebra over R(associative and finite dimensional). D

can be considered as finite dimensional vector space over R and so d ∈ D defines and

endomorphism of D by left multiplication and we can identify d with that endomor-

phism(so it makes sense to talk about its trace and characterstic polynomial). For

z ∈ C define Q(z : x) = x2 − 2(Re(z))x+ |z2| = (x− z)(x− z̄) ∈ R[x], for x ∈ C \ R,

Q(z : x) is irreducible over R. Let V = {a ∈ D such that a2 ≤ 0}.
Claim: V is a vector subspace of D of co-dimension 1. Moreover, D = R ⊕ V as

R vector spaces.

Proof of claim: Let m be the dimension of D as an R-vector space and pick a ∈ D
with characteristic polynomial p(x). By the fundamental theorem of algebra, we can

write

p(x) = (x−t1)(x−t2) . . . (x−tr)(x−z1)(x−z̄1) . . . (x−zs)(x−z̄s) ti ∈ R, zj ∈ C/R.
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so, p(x) = (x− t1)(x− t2) . . . (x− tr)Q(z1 : x) . . . Q(zs : x)

By Cayley-Hamilton theorem p(a) = 0⇒ either a−ti = 0 for some ti or Q(zj : a) = 0

for some j. The first case implies a is real(but a2 ≤ 0 ⇒ a = 0). So this case does

not give us any information. From the second case, we get Q(zj : x) is minimal

polynomial for a and characteristic polynomial and minimal polynomial have same

roots, therefore, p(x) = Q(zj, x)k = (x2−2(Re(z))x+|z2|)k.Now tr(a) is the coefficient

of the term x2k−1 upto sign and so tr(a) = 0 if and only if 2Re(z) = 0 and so

Re(z) = 0⇒ a2 = −|zj|2 ≤ 0. So V is the subset of all a with tr(a). In particular, it

is a vector subspace of co-dimension 1 and D = R⊕ V , as a vector space. Hence, the

claim is proved. Now for the last step let a, b ∈ V , define B(a, b) = (−ab− ba)/2 and

we know that (a+b)(a+b) = a2+b2+ab+ba⇒ ab+ba = (a+b)2−a2−b2. This implies

that B(a, b) = 0 is real and further B(a, a) = −a2 > 0(because a2 < 0 for a 6= 0).

Thus, B is a positive definite bilinear form, in other words, an inner product on

V . Suppose W ⊂ V generates D as an algebra and is minimal with respect to

this property. Let e1, e2, . . . , en be an orthonormal basis of W with respect to the

negative definite bilinear form −B, these elements satisfy e2i = −1, eiej = −ejei
(because B(ei, ei) = 1 and B(ei, ej) = 0)

• If n = 0, then D is isomorphic to R.

• If n = 1, then D is generated by 1 and e1 subject to the relation e21 = −1, so it

isomorphic to C.

• If n = 2, then D will be generated by 1, e1, e2 subject to the relations e21 = e22 =

−1 and e1e2 = −e2e1 and (e1e2)(e2e1) = 1. These are precisely the relations for

H(Hamiltonian quaternions). So then it will be isomorphic to H.

• If n > 2 then D can not be a division algebra (for that assume n > 2, Let

u = e1e2eu, so u2 = e1e2eue1e2eu = e2e1e1eue2eu = e2eueue2 = 1 So if D is a

division algebra, then 0 = u2 − 1 = (u− 1)(u+ 1)⇒ u = ±1⇒ e1e2 = ±eu, so

e1, e2, . . . , eu−1 generates D, which is contradiction to the minimality of W . So

D is not a division algebra).

1.2 Some results on central simple algebras

In this section we will discuss some essential theorems about central simple algebras.

Main theorem discussed here is the Wedderburn’s structure theorem for a simple

algebra. In general theorem is given for semisimple algebras.
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Theorem 1.2.1 (Wedderburn’s Structure Theorem §3.5, [Pie82]). Any central simple

algebra A/F has the form Mr(D) where D/F is a division algebra and Mr(D) is

the algebra of r × r matrices over D. Conversely, any algebra of the form Mr(D)

for a division algebra D/F is a central simple algebra over (i.e., with center F ).

Furthermore, if A is central simple then any A module is the direct sum of copies of

a unique (up to isomorphism) irreducible module.

As a consequence of this theorem and lemma 1.1.4:

Corollary 1.2.2. If A/F is a central simple algebra, and F is an algebraically closed

field then A 'Mn(F ).

Proof. Since the only division algebra over an algebrically closed field is itself. Thus,

by Wedderburn’s structure theorem A is isomorphic to a matrix algebra over F .

Now that we already know the structure of a central simple algebra in terms of a

division algebra. Using their structure we further define an operation on the class of

all central simple algebras over a given field.

Lemma 1.2.3. Let A be a central simple algebra over F and B be a simple F -algebra.

Then A⊗F B is also a simple F -algebra.

Proof. We have A ' Mr(D)(using Wedderburn’s structure theorem) where D is a

division ring over F , and Z(D) = Z(Mr(D)) = Z(A) = F. Since A is a finite dimen-

sional over F , so from now onwards we assume A to be a division algebra and note

every two sided ideal of Mr(A ⊗F B) comes from a two sided ideal of A ⊗F B. Let

A 6= 0 be a two-sided ideal of A⊗F B and {ei}i∈I be a F -basis of B. We can express

any a ∈ A, a 6= 0, as a =
∑

i∈J ai ⊗ ei, J ⊂ I, ai ∈ A. We call l(a) = |J | and choose

a ∈ A with l(a) minimal. We can assume aj0 = 1 by replacing a by (a−1j0 ⊗ 1)a, for

some j0 ∈ J . For any d ∈ A, a′ = (d ⊗ 1)a − a(d ⊗ 1) =
∑

(dai − aid) ⊗ ei ∈ A
and l(a′) ⊂ l(a), aj0 being 1. Since l(a) is minimal, a′ = 0 implies dai = aid for

all i ∈ J , so we get ai ∈ F for all i ∈ J Thus a ∈ A ∩ 1 ⊗ B. Since B is simple,

A ∩ (1⊗B) = 1⊗B ⇒ 1⊗ 1 ∈ A ⇒ A = A⊗F B.

Lemma 1.2.4. Let A and B be F -algebras, then Z(A⊗F B) = Z(A)⊗F Z(B).

Proof. Note that Z(A) ⊗F Z(B) ⊂ Z(A ⊗F B). Let x ∈ Z(A ⊗F B), and express

x =
∑

i ei ⊗ bi, where {ei}i∈I is a basis of A over F . By linear independence of {ei},
the condition (1 ⊗ b)x = x(1 ⊗ b) for all b ∈ B implies that bbi = bib for all b ∈ B.

Thus Z(A⊗F B) ⊂ A⊗F Z(B). Similarly we have Z(A⊗F B) ⊂ Z(A)⊗F B. So that

Z(A⊗F B) ⊂ A⊗F Z(B) ∩ Z(A)⊗F B ⊂ Z(A)⊗F Z(B).

As a consequence of lemma 1.2.3 and 1.2.4 we have the following theorem.
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Theorem 1.2.5. If A and B are central simple algebras over F then A⊗F B is also

a central simple algebra over F .

Definition 1.2.6. A is said to be a form or descent over F for the Matrix Algebra

Mn(F ) if there exists a field extension L over F such that L⊗F A
∼−→Mn(L).

Since Mn(F )⊗F F 'Mn(F ), the algebra Mn(F ) is a form over F. With the help of

the following proposition, we will show that the dimension of a central simple algebra

A/F is always of the form n2. Consequently, using Wedderburn’s structure theorem,

dimension of a division algebra is also of the form n2.

Proposition 1.2.7. The following two statements are equivalent:

1. A is a central simple algebra over F .

2. A is a form over F for the matrix algebra.

Proof. (2 ⇒ 1) Let A be a form over F for the matrix algebra and let L be a field

extension of F such that L⊗n
∼−→Mn(L). Then [A : F ] = [Mn(L) : L] = n2. By proof

of 1.2.5,

Z(L⊗F A) = L⊗F Z(A) = Z(Mn(L)) = L.

Thus [Z(A) : F ] = [L⊗F Z(A) : L] = 1 and Z(A) = F. If A 6= 0 is a two-sided ideal of

A, then L⊗F A 6= 0 is a two-sided ideal of L⊗F A
∼−→Mn(L). Since Mn(L) is simple,

we get L⊗F A = L⊗F A; hence A = A.

(1⇒ 2) A is a central simple algebra over F and Let F denote the algebraic closure

of F . Again, using the proof of Theorem 1.4, F ⊗F A is central simple over F . Since

the only finite dimensional divison algebras over an algebraically closed field is itself,

it follows, by Wedderburn’s theorem, that F ⊗F A
∼−→Mn(F ).

F ⊗F A
∼−→Mn(F ), Thus, [A : F ] = [Mn(F ) : F ] = n2. It follows from the proof:

Corollary 1.2.8. The dimension of a central simple algebra A/F (over F ) is always

of the form n2.

Definition 1.2.9. An extension L/F of fields is called a splitting field for A if

L⊗F A
∼−→Mn(L).

So we now know that for every central simple algebra there exists a splitting field,

infact, a finite dimensional splitting field exists for every central simple algebra.

Proposition 1.2.10. Every cenral simple algebra A over F admits a splitting field L

which is a finite extension of F .
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Proof. Let F denote the algebraic closure of F and φ : F ⊗F A
∼−→ Mn(F ) be an

isomorphism of F -algebras. If {ei}, 1 ≤ i ≤ n2 is a F -basis of A and φ(1 ⊗ ei) =∑
j,k λijkejk, 1 ≤ j, k ≤ n, ejk denoting the standard basis of Mn(F ), we set L =

F (λijk), 1 ≤ i ≤ n2, 1 ≤ j, k ≤ n. Then φ induces an L-algebra homomorphism

φ̃ : L ⊗F A → Mn(L). Since L ⊗F A is simple, φ̃ is injective. Since n2 = [A : F ] =

[Mn(L) : L], thus φ̃ is an isomorphism.

1.3 Quaternion Algebra

We have already defined Hamilton’s quaternions in Example 1.1.2, we will generalise

them in this section. Unless stated we will assume F to be a field of characterstic not

2. We have referred to [GS06] for this section.

Definition 1.3.1. Consider a field F and a cyclic Galois extension L = F (
√
a) of

degree 2 with Galois group G = {1, σ}. Let b ∈ F ∗, then the cyclic algebra over F is

A = L ⊕ Lη with η2 = b and ηx = σ(x)η. Algebra A is a cyclic algebra denoted by(
a,b
F

)
and is called Quaternion algebra over F .

Simplifying the above definition,
(
a,b
F

)
is the 4-dimensional F -algebra with basis

1, i, j, ij, multiplication determined by

i2 = a, j2 = b, ij = −ji.

We call the set {1, i, j, ij} a quaternion basis of
(
a,b
F

)
. We call an element q of

(
a,b
F

)
a

pure quaternion if q2 ∈ F but q /∈ F , which yields q is of the form yi+ zj + wij.

Remark 1.3.2. The isomorphism class of the algebra
(
a,b
F

)
depends only on the

classes of a and b in F ∗/F ∗2, because we can substitute i 7→ ui, j 7→ vj and induce

an isomorphism (
a, b

F

)
'
(
u2a, v2b

F

)
for all u, v ∈ F ∗.

Using this remark we can note that any algebra
(
a,b
F

)
is isomorphic to

(
b,a
F

)
via

the mapping i 7→ abj, j 7→ abi.(
a, b

F

)
'
(
a2b3, a3b2

F

)
'
(
b, a

F

)
We can define the conjugation map in a generalised quaternion algebra in the same

manner as in 1.1.2. We define the norm of an element q = x + yi + zj + wij by

N(q) = qq̄, that is,

N(q) = x2 − ay2 − bz2 + abw2

9



Lemma 1.3.3. An element q of the quaternion algebra
(
a,b
F

)
is invertible if and only

if it has non-zero norm. Hence
(
a,b
F

)
is a division algebra if and only if the norm

N :
(
a,b
F

)
→ F does not vanish outside 0.

Apart from Hamilton’s quaternions we will give another basic example of quater-

nion algebra.

Example 1.3.4 (The matrix algebra M2(F )). We take the algebra M2(F ) of 2 × 2

matrices and consider the assignment:

i 7→ I :=

[
1 0

0 −1

]
, j 7→ J :=

[
0 b

1 0

]
.

It defines an isomorphism from
(
1,b
F

)
→M2(F ). Since the matrices

Id =

[
1 0

0 1

]
, I =

[
1 0

0 −1

]
, J =

[
0 b

1 0

]
and IJ =

[
0 b

−1 0

]

and satisfy the quaternion relations, that is,

I2 = Id, J2 = b.Id, IJ = −JI.

Definition 1.3.5. A quaternion algebra over F is called split if it is isomorphic to

M2(F ) as an F -algebra.

From the above example we can observe that
(
1,b
F

)
is split.

Proposition 1.3.6. For a quaternion algebra
(
a,b
F

)
the following conditions are equiv-

alent:

1. The algebra
(
a,b
F

)
is split.

2. The algebra
(
a,b
F

)
is not a division algebra.

3. The norm map N :
(
a,b
F

)
→ F has a non-trivial zero.

4. The element b is a norm from the field extension F (
√
a)|F .

Alternatively in (4), we can also say the element a is a norm from the field extension

F (
√
b)|F .

Proof. (1)⇒ (2) is clear from the fact that there exists many elements in M2(F ) which

do not have an inverse. (2) ⇒ (3) and (3) ⇒ (2) are clear from lemma 1.3. Now we

will prove (3) ⇒ (4), If a ∈ F ∗2, then the norm of the element q = (
√
a, 1, 0, 0) is a

non-trivial zero and a is a norm from the field extension F (
√
b)|F . So we will prove

10



this for the non-trivial case, that is, when a /∈ F ∗2. Let q = x + yi + zj + wk be the

element with zero norm. Therefore x2−ay2− bz2 +abw2 = 0, (z2−aw2)b = x2−ay2,
and so in particular z2−aw2 = (z+

√
aw)(z−

√
aw) 6= 0, else a would be a square in F .

Thus, b is a norm from the field extension F (
√
a)|F . We will now assume (4) and show

that
(
a,b
F

) ∼= (1,4a2

F

)
so that the algebra

(
a,b
F

)
splits. Again we assume that a is not a

square in F . Let K = F (
√
a). If b is a norm from K, then so is b−1, so by using (4) we

have b−1 = r2− as2 for some r, s ∈ F . Take u = rj + sij, we get u2 = br2− abs2 = 1.

We then verify ui = −iu, which implies that the element v = (1 + a)i + (1 − a)ui

satisfies uv = (1 +a)ui+ (1−a)i = −vu and v2 = (1 +a)2a− (1−a)2a = 4a2. So now

change the basis for
(
a,b
F

)
to {1, u, v, uv}. We get the isomorphism

(
a,b
F

) ∼= (
1,4a2

F

)
.

From example 1.3.4 we get that
(
a,b
F

)
splits.

From this proposition we get the condition that
(
a,b
F

)
is a matrix algebra if and

only if there exists r, s ∈ F such that b = r2 − as2. All these results obtained for

quaternion algebras over field of characteristic 2 are analogous to this proposition.

We just give the definition here.

Definition 1.3.7. Let F be a field of characteristic 2, we define the generalised quater-

nion algebra
[
a,b
F

)
via the F -basis {1, i, j, ij} satisfying the relations

i2 + i = a, j2 = b, ij = ji+ j

where a ∈ F and b ∈ F ∗.

We will just state the result analogous to the previous proposition for character-

sistic not 2.

Proposition 1.3.8. Let F be a field of characteristic not 2. The quaternion algebra

over F generated by i, j with the relations i2 + i = a, j2 = b, ij = ji+ j, a, b ∈ F ∗,
is a matrix algebra if and only if there exists r, s ∈ F such that b = r2 + rs− as2.

1.3.1 Tensor product of quaternion algebras

In this section we consider the tensor product of quaternion algebras. Simplest of

these are biquaternion algebras. Let F be a field of characteristic not 2. Biquaternion

algebras are F -algebras that are isomorphic to a tensor product of two quaternion

algebras over F . We state some results here which will be used in the next chapter

in context of the Brauer group.

Lemma 1.3.9. The tensor product of two matrix algebras Mn(F ) and Mm(F ) over

F is isomorphic to the matrix algebra Mmn(F ).

11



Proof. We already knowMn(F ) ' EndF (F n) andMm(F ) ' EndF (Fm). So given any

φ ∈ EndF (F n) and ψ ∈ EndF (Fm), we map the pair (φ, ψ) to φ⊗ψ of EndF (F n⊗F
Fm). We have Mmn(F ) ' EndF (F n⊗F Fm), and the resulting map from EndF (F n)⊗
EndF (Fm) → EndF (F n ⊗F Fm) is injective as well as surjective(due to dimension

equality). Thus, we get the required isomorphism Mn(F )⊗Mm(F ) ∼= Mmn(F ).

Lemma 1.3.10. Given the elements a, b, b′inF ∗, we have an isomorphism(
a, b

F

)
⊗F

(
a, b′

F

)
∼−→
(
a, bb′

F

)
⊗F M2(F ).

Proof. Consider the standard F -basis (1, i, j, ij) and (1, i′, j′, i′j′) for the quaternion

algebras Q1 =
(
a,b
F

)
and Q2 =

(
a,b′

F

)
respectively. Consider the F -subspace of the

algebra Q1 ⊗Q2

X = F.(1⊗ 1) + F.(i⊗ 1) + F.(j ⊗ j′) + F.(k ⊗ j′)

= F.1 + F.I + F.J + F (I.J),

where we have set I = i ⊗ 1, J = j ⊗ j′ (with IJ = k ⊗ j′). It is a 4-dimensional

subspace of Q1 ⊗Q2. In fact, X is a subalgebra since it satisfies the relations

I2 = i2 ⊗ 1 = a, J2 = j2 ⊗ j′ = bb′,

− I.J = −ij ⊗ j′ = ji⊗ j′ = J.I.

So the subalgebra X is isomorphic to the quaternion algebra
(
a,bb′

F

)
. Now we look at

another F -subalgebra

Y = F.(1⊗ 1) + F.(1⊗ j′) + F.(i⊗ k′) + F.(−b′i⊗ i′)

= F.1 + F.Ĩ + F.J̃ + F.ĨJ̃ .

where Ĩ = 1⊗ j′, J̃ = i⊗ k′ (with Ĩ J̃ = i⊗ j′k′ = −b′i⊗ i′) and they satisfy

Ĩ2 =1⊗ j′2 = b′, J̃2 = i2 ⊗ k′2 = −a2b′,

− J̃ Ĩ = −i⊗ k′j′ = i⊗ j′k′ = Ĩ J̃ .

Thus, Y is isomorphic to the quaternion algebra
(
b′,−a2b′

F

)
which is isomorhpic to

M2(F ). The set {I, J} commutes elementwise with the set {Ĩ , J̃}. Thus, elements

of X commutes with elements of Y . The subalgebras X and Y generate the entire

algebra Q1 ⊗Q2. Thus, we conclude

Q1 ⊗Q2 = X ⊗ Y =

(
a, bb′

F

)
⊗F M2(F ).

12



Corollary 1.3.11. For a quaternion algebra
(
a,b
F

)
the tensor product algebra

(
a,b
F

)
⊗F(

a,b
F

)
is isomorphic to the matrix algebra M4(F ).

Proof. In the previous lemma we substitue b′ = b and using the example 1.3.4 and

lemma we get(
a, b

F

)
⊗F
(
a, b

F

)
∼=
(
a, b2

F

)
⊗FM2(F ) ∼=

(
a, 1

F

)
⊗FM2(F ) ∼= M2(F )⊗FM2(F ) ∼= M4(F ).

Now we will define an Albert form associated to a biquaternion algebra which

will help us determine when a biquaternion algebra is division. Let A =
(
a,b
F

)
and

B =
(
a′,b′

F

)
be given quaternion algebras over F . The respective spaces of pure

quaternions, A0 and B0, carry the following ternary quadratic forms:

qA := 〈−a,−b, ab〉, and qB := 〈−a′,−b′, a′b′〉.

We define an Albert form of A⊗F B to be the 6-dimensional form

q := qA⊥〈−1〉qB = 〈−a,−b, ab, a′, b′,−a′b′〉. (1.1)

Theorem 1.3.12 (Albert). For a biquaternion algebra A = Q1 ⊗F Q2 over F the

following statements are equivalent:

1. The algebra A is not a division algebra.

2. There exists a, b, b′ ∈ F ∗ such that Q1
∼−→
(
a,b
F

)
and Q2

∼−→
(
a,b′

F

)
.

3. The Albert form 1.1 has a nontrivial zero on A.
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Chapter 2

Galois Cohomology

We introduce in this chapter, some cohomological tools which will be useful in defining

some concepts in upcoming chapters. We begin by defining some terms which are

going to be used to define the cohomological tools. In this chapter we have mainly

referred from the books [GS06] and [Ber10].

Let G be a group. By a (left) G-module, we talk about an abelian group A,

equipped with a left action by G. We can also refer A as a module over the integral

group ring Z[G] via the action

(
∑

nσσ)a :=
∑

nσσ(a),

for elements
∑
nσσ ∈ Z[G] and a ∈ A. We say that A is a trivial G-module if G

acts trivially on A, that is, σa = a for all a ∈ A. We denote by AG the subgroup of

G-invariant elements in a G-module A. For the rest of chapter, we let F to be a field

with a finite Galois extension L. Let the Galois group of L/F be G of order n. Let

A be any discrete topological space.

Definition 2.0.1. For any G-set A, we set

H0(G,A) = AG

The set H0(G,A) is called the 0th cohomology set of G with values in A. If A is a

G-group, then this is a subgroup of A. Hence we call H0(G,A) as zeroeth cohomology

group of G with values in A.

2.1 Abelian Galois cohomology

In general, only second cohomology group is abelian. Here we consider A to be a

G-module.
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Definition 2.1.1. A (normalized) 2-cocycle of G with values in A is a map f :

G×G→ A satisfying f(1, 1) = 1 and

σ1f(σ2, σ3)f(σ1, σ2σ3)f(σ1σ2, σ3)
−1f(σ1, σ2)

−1 = 1 for all σ1, σ2, σ3 ∈ G

The set of 2-cocycles of G with values in A is denoted by Z2(G,A). This set is an

abelian group for the operation (f + g)(s, t) = f(s, t)g(s, t).

Remark 2.1.2. Since f is a normalised 2-cocycle f(σ, 1) = f(1, σ) = 1 for all σ ∈ G.

1.f(1, σ)f(1, 1.σ)f(1, σ)−1f(1, 1) = 1

⇒ f(1, σ) = 1.

Similary substitue σ1 = σ3 = 1 and σ2 = σ to get f(σ, 1) = 1.

Definition 2.1.3. Two 2-cocycles f, g are said to cohomologous or equivalent if there

exists a continous map h : G→ A such that

g(s, t) = s(h(t))(h(st))−1h(s)f(s, t) for all s, t ∈ G

It is denoted by f ∼ g.

Definition 2.1.4. The equivalence classes of 2-cocycles form an abelian group, de-

noted by H2(G,A), called the second cohomology group of G with values in A.

We can also define the second cohomology group using coboundaries.

Definition 2.1.5. A (normalised) 2-coboundary is a map δh : G × G → A of the

form (s, t) 7→ s(h(t))(h(st))−1h(s) where h : G→ A is a map with h(1) = 1.

We first verify that δh is a 2-cocycle.

s δh(t, r) δh(s, tr) (δh(st, r))−1(δh(s, t))−1

= st(h(r))s(h(tr)−1)s(h(t))s(h(tr))h(str)−1h(s)(st(h(r))h(str)−1h(st))−1(s(h(t))h(st)−1h(s))−1

= 1

The set of 2-coboundaries form a subgroup of Z2(G,A), denoted by B2(G,A) and

we have the second cohomology group H2(G,A) = Z2(G,A)/B2(G,A).

2.2 Non-abelian Galois cohomology

Definition 2.2.1. Let A be a G-group. A 1-cocycle of G with values in A is a

continuous map α : G→ A such that

α(στ) = α(σ)σα(τ) for all σ, τ ∈ G.
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We denote by Z1(G,A) the set of all 1-cocycles of G with values in A. The constant

map

G→ A

σ 7→ 1

is an element of Z1(G,A), which is called the trivial 1-cocycle. Notice also that for

any 1-cocycle α, we have α(1) = 1.

Remark 2.2.2. If G acts trivially on A, a 1-cocycle is just a continuous homomor-

phism α : G→ A.

We will now define the first cohomology set H1(G,A). In order to define it, we

need the notion of cohomologous cocycles.

Definition 2.2.3. Two 1-cocycles α, α′ are said to be cohomologous if there exists

a ∈ A satisfying

α′σ = a−1.aσ.σ(a) for all σ ∈ G.

It is denoted by α ∼ α′.

The relation ∼ obtained above is an equivalence relation on Z1(G,A).

Definition 2.2.4. We denote by H1(G,A) the quotient set

H1(G,A) = Z1(G,A)/ ∼ .

It is called the first cohomology set of G with coefficients in A.

The set H1(G,A) is not a group in general. If A is a G-module, the set Z1(G,A)

is an abelian group for the pointwise multiplication of functions. This operation is

compatible with the equivalence relation, hence it induces an abelian group structure

on H1(G,A).

2.3 Twisting

In this section, we alter the given action of group G on a set. This change in action

will be termed as twisting and will be used in construction of a cyclic algebra.

2.3.1 Construction

Let A be a group equipped with a left action by another group G. Suppose further

that X is a set on which both G and A act in a compatible way, that is, we have

σ(a(x)) = (σ(a))(σ(x)) for all x ∈ X, a ∈ A and σ ∈ G

17



Given a 1-cocycle, σ 7→ aσ of G with values in A we define the twisted action of G on

X by the cocycle aσ, via the rule:

(σ, x) 7→ aσ(σ(x)).

We first verify that it is a G-action on X. If σ = 1, a1 is also trivial. Thus, 1 ∈ G
acts trivially on X. Now for any σ, τ ∈ G we have:

(στ, x) = aστ (στ(x))

= aσστ (στ(x))

= aσσ(aτ (τ(x)))

= aσσ(τ, x)

= (σ, (τ, x))

Thus, it is indeed a G-action. In the above construction, we took X be a set. Similar

construction can be done when X has some algebraic structure, that is, it is a group or

a vector space. When X has algebraic structure G and A act on it by automorphisms,

and the twisted action is also by automorphisms.

We denote X equipped with the twisted G-action by the cocycle aσ, by aσX. The

above construction can only be carried out on the level of cocycles and not on that

of cohomology classes. Equivalent cohomology classes give rise to different twisted

actions.

Consider a field F with Galois extension L with Galois group G. We let A =

PGLn(F ) and X = Mn(F ), a central simple F -algebra. We take a 1-cocycle aσ from

G to PGLn(F ). Claim is that the G-invariants aσX
G under the twisted action form

a central simple algebra over F that is split by L.

2.3.2 Galois descent

In this subsection, we describe Galois descent for central simple algebra. We mainly

follow an article by Jahnel [Jah].

Proposition 2.3.1 (Galois descent). Let L/F be a finite Galois extension of fields

and G := Gal(L/F ) be its Galois group. Further, let X = Mn(L) be a central simple

algebra over L together with a (left) G-action on X, that is, G acting on Mn(L) entry

wise. Thus for each σ ∈ G, the action is a σ-linear map Tσ : X → X.

Then there is a central simple algebra Y over F such that there is an isomorphism

Y ⊗F L ' Mn(L). This isomorphism respects the algebraic structure as well as the

G-action. The G-action on Y ⊗F L is the canonical action of G on L.
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Proof. Define Y := XG. We need to show if X is a central simple algebra over L then

Y is a central simple algebra over F . This can be directly concluded if we are able

to prove XG ⊗F L = Mn(L). To prove this, we let {l1, ..., ln} be a F -basis of L and

show the following claim.

Claim: There exist an index set J and a subset {xj|j ∈ J} ⊂ XG such that {lixj|i ∈
{1, ..., n}, j ∈ J} is an F -basis of X.

By Zorn’s Lemma, there exists a maximal subset {xj|j ∈ J} ⊂ XG such that {lixj|i ∈
{1, ..., n}, j ∈ J} ⊂ X is a system of F -linearly independent vectors. Assume that,

system is not a basis of X. Then 〈lixj|i ∈ {1, ..., n}, j ∈ J〉F is a proper G-invariant

L-sub-vector space of X and one can choose an element x ∈ X/〈lixj|i ∈ {1, ..., n}, j ∈
J〉F . For every l ∈ L, the sum∑

σ∈G

Tσ(lx) =
∑
σ∈G

σ(l)Tσ(x)

is G-invariant. Now, by linear independence of vectors, the matrix
σ1(l1) . . . σ1(ln)

...
. . .

...

σn(l1) . . . σn(ln)


is of maximal rank. This implies, there exists an l ∈ L such that

xβ :=
∑
σ∈G

σ(x)σ(l)

has a non-zero image in X/〈lixj|i ∈ {1, ..., n}, j ∈ J〉F . Therefore,

{lixj|i ∈ {1, ..., n}, j ∈ J} ∪ {lixβ|i ∈ {1, . . . , n}}

is a F -linearly independent system of vectors contradicting the maximality of {xj|j ∈
J}.

In the above proposition, instead of entry wise action, we will consider the twisted

G-action. Since Mn(L) is split by L, the algebra obtained by the above proposition

is central simple algebra over F split by L. Infact we will state a stronger result.

We denote by [A], the set of all isomorphic classes of central simple algebra A of

dimension n2 over F and split by L.

Theorem 2.3.2. Let L/F be finite extension of fields, G := Gal(L/F ) its Galois

group. Then there exists a bijection between the set of all which are of dimension n2

19



over F and split by L and the first cohomology set of G with values in PGLn(L)

α : [A]
∼=−→ H1(G,PGLn(L))

A 7→ aA

Proof. Let A be a central simple algebra over F split by L, then

A⊗F L
∼=−→
f
Mn(L).

The following diagram:

A⊗F L
f−−−→ Mn(L)yσ yσ

A⊗F L
f−−−→ Mn(L)

for σ ∈ G does not commute in general. Thus, we put f ◦ σ = aσ ◦ (σ ◦ f) where

aσ ∈ PGLn(L) for each σ. Now, we have:

f ◦ στ = (f ◦ σ) ◦ τ

= aσ ◦ (σ ◦ f) ◦ τ

= aσ ◦ σ ◦ (f ◦ τ)

= aσ ◦ σ ◦ (aτ ◦ (τ ◦ f))

= aσ ◦ σaτ ◦ (στ ◦ f)

= aστ ◦ (στ ◦ f).

That is, aσ ◦ σaτ = aστ . Thus, aσ for σ ∈ G is a cocycle. If f ′ : A⊗F L→ Mn(L) is

another isomorphism, then cocycle obtained using f ′ is cohomologous to the cocycle

obtained by f . Indeed, there exists some b ∈ PGLn(L) such that f = b ◦ f ′. The

equality f ◦ σ = aσ ◦ (σ ◦ f) yields

f ′ ◦ σ = b−1 ◦ f ◦ σ = b−1 · aσ ◦ (σ ◦ (b ◦ f ′)) = b−1 · aσ ·σ b(σ ◦ f ′)

Thus f ′ yields a cocycle that is cohomologous to aσ. Thus, the mapping α is well

defined.

Injectivity of α: Suppose α is not injective, then there exist A and A′ in [A] that yield

the same cohomology class aσ in H1(G,PGLn(L)) for a suitable choices of f and f ′.

Thus, we have f ◦ σ = aσ ◦ (σ ◦ f) and f ′ ◦ σ = aσ ◦ (σ ◦ f ′) satisfying the following
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diagram

A⊗F L
f−−−→ Mn(L)

f ′−−−→ A′ ⊗F L

σ

y σ

y yσ
A⊗F L

f−−−→ Mn(L)
f ′−−−→ A′ ⊗F L

Consequently, f ′ ◦ σ ◦ f ′−1 ◦ σ−1 = f ◦ σ ◦ f−1 ◦ σ−1 and therefore,

f ◦ σ ◦ f−1 ◦ f ′ ◦ σ ◦ f ′−1 = Id

Since, the outer part commutes, taking G-invariants on both sides, we get A ∼= A′.

Surjectivity of α: Let (aσ)σ∈G ∈ H1(G,PGLn(L)) be a cocycle. We define a new

G-operation on Mn(L), by letting σ ∈ G operate as

aσ ◦ σ : Mn(L)
σ−→Mn(L)

aσ−→Mn(L).

This is a σ linear mapping, also satisfying the relation

(aσ ◦ σ) ◦ (aτ ◦ τ) = aσ ◦ σ · aτ ◦ στ = aστ ◦ στ.

So, we have a new (left) G-action on Mn(L). Using Galois descent 2.3.1, we get a

desired algebra that is central simple over F and is split by L.
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Chapter 3

Brauer Group

In this chapter, we characterize the set of isomorphism classes of division algebras.

We will first define Brauer group to classify division algebras. For this exposition we

follow notes by Sridharan and Parimala (Chapter I, [SR]).

3.1 Brauer Group

We form a set S consisting of isomorphism classes of central simple algebras over F .

S is a commutative monoid with tensor product over F as the operation. We have

already seen in 1.2.1 that if A is a central simple algebra over F , then A
∼−→Mr(DA)

where DA is a central divison algebra over F (Wedderburn’s Theorem). Using this,

we define an equivalence relation on S:

Definition 3.1.1. Two central simple algebras, A and B over F are said to be

Brauer equivalent if DA and DB are isomorphic.

Equivalently, two algebras A and B are Brauer equiavlent if and only if MR(A)
∼−→

Ms(B). A and B are isomorphic if they are Brauer equivalent and [A : F ] is equal to

[B : F ]. The equivalence relation on S is compatible with the monoid structure on

S. Thus, the set S/ ∼ is again a commutative monoid under the operation induced

by tensor product over F . We denote class of Brauer equivalent algebras of A by [A].

The identity element is the class of all matrix algebras over F i.e. [Mn(F )].

We further realize that it is not just a commutative monoid but a group with [Aop],

inverse of [A].

Proposition 3.1.2. For a central simple algebra A over F , if Aop denotes the opposite

algebra. Then Aop is central simple and [A][Aop] = [F ] in S/ ∼.

Proof. If A is central simple then so is Aop. We take the help of the maps A →
EndFA, a 7→ La and Aop → EndFA, a 7→ Ra;La, Ra denoting the left and right

multiplication, to induce a homomorphism φ : A ⊗F Aop → EndFA, since La ◦ Rb =
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Rb ◦La; a, b ∈ A. And A⊗F Aop is simple, φ is injective. Now, we check the dimension

[A⊗F Aop : F ] = [A : F ]2 = [EndFA : F ], which implies φ is surjective and hence an

isomorphism. For a suitable choice of basis of A over F , EndFA is isomorphic to a

matrix algebra over F .

The group S/ ∼ is called the Brauer Group of F , denoted by Br(F ). Thus, Brauer

group classifies finite dimensional central division algebras over F .

Example 3.1.3. If F is an algebraically closed field, the only finite dimensional

division algebra over F is itself 1.1.4. Thus, Br(F ) is trivial.

Example 3.1.4 (Wedderburn’s little theorem 1.1.5). If F is a finite field then Br(F )

is trivial.

Example 3.1.5 (Frobenius theorem 1.1.6). Br(R) = Z/2Z

Further, if F ⊂ L then Br(F ) ⊂ Br(L).

3.2 Existence of Galois Splitting Field

Following two theorems help us in giving some insight about the structure of a simple

sub algebra sitting in a central simple algebra.

If B is a simple subalgebra of a central simple algebra A over F :

Theorem 3.2.1. The commutant B
′

of B is equal to {a ∈ A| ab = ba ∀ b ∈ B}.
Also [B : F ][B

′
: F ] = [A : F ].

Theorem 3.2.2. IF φ : B → A is a F -algebra homomorphism. Then there exists a

u ∈ A which is a unit such that, φ(x) = uxu−1 ∀ x ∈ B. In other words, φ extends

to an inner automorphism of A.

A commutative subring B of A is said to be maximal commutative subring if it is

not contained in any other commutative subring of A.

Corollary 3.2.3. If L is a subfield of a central simple algebra A over F . Then L is

a maximal commutative subring of F if and only if [L : F ]2 = [A : F ].

The above corollary is also valid for a central division algebras over F .

Proposition 3.2.4. If L is a maximal commutative subring of a central simple F -

algebra A, then L is a splitting field of A.

Proof. One can see A as the bimodule AAL. The mapping A→ EndLA, a 7→ La and

L → EndLA, x 7→ Rx commute to yield an induced homomorphism φ : L ⊗F A →
EndLA. Since the field L is a maximal commutative subring of A, [L : F ]2 = [A :
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F ] = [A : L][L : F ] = n2 so that [L ⊗F A : L] = n2 = [EndLA : L]. Since L ⊗F A is

central simple over L, φ is an isomorphism. The algebra EndLA can be identified as

Mn(L) through a choice of an L-basis for A.

Lemma 3.2.5. If L is a splitting field for A, then L is also a splitting field for Aop.

In fact, L is a splitting field for all central simple F -algebras, B which are Brauer

equivalent to A.

Thus, using the above lemma, it makes sense to talk about splitting field of an

element of Br(F ).

Proposition 3.2.6. Let A be a central simple algebra over F and L, a finite extension

of F . Then L is a splitting field for A if and only if there exists a central simple algebra

B, Brauer equivalent to A, which contains L as a maximal commutative subring. The

algebra B is unique up to isomorphism.

Proof. If B, B′ are two central simple algebras Brauer equivalent to A and both of

which contain the field L as a maximal commutative subring, then [B : F ] = [L :

F ]2 = [B′ : F ]. Thus B and B′ are Brauer equivalent central simple F -algebras of the

same rank and hence isomorphic. This proves the uniqueness of B up to isomorphism.

B ∼ A contains L as a maximal commutative subring. Then L splits B and hence L

splits A. Conversely, A is a central simple algebra over F , split by a finite extension

L over F . Without loss of generality, we take A = D is a division algebra over F .

Since L also splits Dop, we have an isomorphism φ : L⊗F Dop ∼−→ Mn(L). We regard

Ln as a bimodule LL
n
D through φ. Let m be the dimension of Ln regarded as a right

vector space over D. Then we have an injection L ↪→ EndDL
n ∼−→ Mm(D). Thus

B = Mm(D) is a central simple algebra over F , Brauer equivalent to D, containing

L as a subfield. We have mn2 = [Ln : D][D : F ] = [Ln : F ] = n[L : F ] so that

[L : F ] = mn. Further, [Mm(D) : F ] = m2n2. Thus, L is a maximal commutative

subring of Mm(D).

We define degree of an algebra to be the squareroot of its dimension which is a

natural number (Since dimension of an algebra over a field is always an integral square

1.2.8).

Index of A is defined to be degree of DA.

Corollary 3.2.7. Index of a central simple algebra A always divides [L : F ] where L

splits A.

Proof. Since L splits A, using the previous proposition, there exists a central simple

algebra B, Brauer equivalent to A, such that L is a maximal commutative subring of

B. Index of A is same as that of B and we have B = Mr(DA) for some r ∈ N. By

dimension equality [B : F ] = r2[DA : F ], then, [L : F ]2 = r2deg(DA)2. Therefore,

deg(DA)|[L : F ].
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Theorem 3.2.8. If D is a central division algebra over F , then there exists a maximal

commutative subring L of D which is separable over F .

Corollary 3.2.9. If A is a central simple algebra over F , then there exists a finite

Galois extension L of F which splits A.

Proof. We can assume, A is a central division algebra over F . Let L1 be a maximal

commutative subfield of A, separable over F , existence of such a subfield is guaranteed

by previous theorem. Using 3.2.4, L1 splits A. Any field containing L1 again splits

A, so we chose Galois closure of L1 over F to be the finite Galois extension L.

3.3 Crossed product algebra

Let L be a finite Galois extension of F with Galois group G(L/F ) = G. We have

already defined the 2nd cohomology group in section 2.1. We fix a 2-cocycle f in

Z2(G,L∗). Recall that a (normalised) 2-cocycle is a map from G×G→ L∗ such that

f(1, 1) = 1 and it satisfies the following condition

σ1f(σ2, σ3)f(σ1, σ2σ3)f(σ1σ2, σ3)
−1f(σ1, σ2)

−1 = 1 for all σ1, σ2, σ3 ∈ G.

Now, for each σ ∈ G, we consider a symbol {eσ} and define (L,G, f) to be a vector

space over L with basis {eσ}σ∈G, that is,

(L,G, f) = ⊕σ∈GLeσ.

The vector space (L,G, f) acts as an algebra over F with the following multiplication:

(λeσ)(µeτ ) = λσ(µ)f(σ, τ)eστ .

This multiplication will be helpful in giving algebra structure to (L,G, f). The vector

space (L,G, f) is known as a crossed product over L.

Proposition 3.3.1. The multiplication (L,G, f) mentioned above makes it a central

simple algebra over F with L as a maximal commutative subring of (L,G, f) via the

injection x 7→ xe1, that is, [(L,G, f) : F ] = [L : F ]2.

Proof. Since f is a 2-cocycle, we get

(eσ1eσ2)eσ3 = f(σ1, σ2)eσ1σ2eσ3

= f(σ1, σ2)f(σ1σ2, σ3)eσ1σ2σ3

= σ1f(σ2, σ3)f(σ1, σ2σ3)eσ1σ2σ3

= eσ1(f(σ2, σ3)eσ2σ3)

= eσ1(eσ2eσ3).
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Thus, (L,G, f) follows associativity. Further, because f is a normalized cocycle, it

implies that e1 is the identity element of (L,G, f). Since, (L,G, f) is a (left) vector

space over L of dimension |G| = [L : F ], it follows

[(L,G, f) : F ] = [(L,G, f) : L][L : F ] = [L : F ]2.

Thus, L is a maximal commutative subring of (L,G, f). Now, if (L,G, f) is not central

over F , then there exists a central element x =
∑

σ∈G xσeσ, xσ ∈ L of (L,G, f). Then,

for every a ∈ L∗, the condition ax = xa implies xσ = 0 for σ 6= 1. Thus, we get

x = x1e1. Further, the condition xeσ = eσx for all σ ∈ G implies that σ(x1) = x1,

so x1 ∈ F . Now, we are left to prove that (L,G, f) is simple. Let A be a non-zero

two-sided ideal of (L,G, f). For x ∈ A, x 6= 0, if x =
∑

σ∈G xσeσ, we define l(x) =

the number of xσ 6= 0 in this expression. Let x ∈ A be an element with l(x) minimal.

Let σo be such that xσo 6= 0. We multiply x on the left by x−1σo and on the right by

e−1σo . Thus, we can assume x = 1.e1 +
∑

σ 6=1 xσeσ. For every d ∈ L, l(dx− xd) < l(x),

unless (dx − xd) = 0. Since (dx − xd) ∈ A, it follows that dx − xd = 0 for every

d ∈ L, that is, xσ = 0 for all σ 6= 1. Thus x = e1 ∈ A so that A = (L,G, f). Hence

(L,G, f) is a central simple algebra over F .

Corollary 3.3.2. If {e′σ}σ∈G are non-zero elements of (L,G, f) satisfying e′σx =

σ(x)e′σ, for all x ∈ (L,G, f), then there exist non-zero elements uσ ∈ L∗, for each

σ ∈ G, such that e′σ = uσeσ.

Proof. Let x = e−1σ λ, where λ ∈ L. We have

e′σe
−1
σ λ = σ(e−1σ λ)e′σ

= σ(σ−1(λ)e−1σ )e′σ

= λσ(e−1σ )e′σ

= λe′σe
−1
σ

.

Thus, e′σe
−1
σ commutes with every element of L. Since L is a maximal commutative

subring of (L,G, f), we get e′σe
−1
σ = uσ ∈ L∗.

Infact, the following proposition shows that the isomorphism class of (L,G, f) is

uniquely determined by the cohomology class [f ] of f in H2(G,L∗).

Proposition 3.3.3. Let f and g ∈ Z2(G,L∗), then (L,G, f) and (L,G, g) are iso-

morphic if and only if f − g ∈ B2(G,L∗).

Proof. (⇐) Suppose f − g = δh where h : G → L∗ is a map with h(1) = 1. Let

{eσ}, {e′σ}σ ∈ G be basis of (L,G, f) and (L,G, g) respectively satisfying the algebra
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structure. With the help of the map eσ 7→ h(σ)e′σ, x 7→ x;x ∈ L we induce an

isomorphism of the F -algebras (L,G, f) onto (L,G, g).

(⇒) Conversely, suppose we have an isomorphism of F -algebras, φ : (L,G, f) →
(L,G, g). Since Le′1 and φ(Le1) are simple subalgebras of (L,G, g), both are isomor-

phic to L. With the help of previous corollary, there exists a unit u ∈ (L,G, g) such

that φ(xe1) = u(xe′σ)u−1 for all x ∈ L. Now by replacing φ by Intu−1 ◦ φ, we can

assume that φ(xe1) = xe′1. Then, since {φ(eσ)}, σ ∈ G, satisfy the algebra structure

of the crossed algebra, there exists uσ ∈ L∗ such that phi(eσ) = uσe
′
σ with u1 = 1

again by previous corollary. Let h : G→ L∗ be defined by h(σ) = uσ. From here we

get f = g + δh.

Proposition 3.3.4. For f ∈ Z2(G,L∗), the algebra (L,G, f) is isomorphic to matrix

algebra if and only if f ∈ B2(G,L∗).

Proof. (⇐) Let f ∈ B2(G,L∗). With the help of 3.3.3, it will suffice our purpose if

(L,G, f) is a matrix algebra for f = 1, the trivial cocycle. Consider the assignment

φ(eσ) = σ, φ(x) = Rx, x ∈ L,Rx denoting multiplication by x. This assignment

extends to a F -algebra homomorphism φ : (L,G, f) → EndFL, which is indeed an

isomorphism.

(⇒) If (L,G, f)
∼−→ Mn(F ), n = [L : F ] and since (L,G, 1)

∼−→ Mn(F ), it follows

from 3.3.3 that f ∈ B2(G,L∗).

Proposition 3.3.5. Let f, g ∈ Z2(G,L∗), then the algebra (L,G, f + g) is Brauer

equivalent to (L,G, f)⊗F (L,G, g).

3.4 The Brauer Group is Torsion

In this section, we aim to prove that the Brauer group of a field is torsion, that is,

every element has a finite order. We denote the subset of Br(F ), consisting of those

Brauer classes which are split by L, by Br(L/F ). By the last proposition of previous

section, Br(L/F ) forms a subgroup of Br(F ).

We define a map c : H2(G,L∗) → Br(L/F ) as [f ] 7→ [(L,G, f)]. Using the

previous section, this map is an injective homomorphism. Infact, we will prove it is

an isomorphism using the next proposition.

Proposition 3.4.1. Every Central simple algebra F , split by a finite Galois extension

L/F is Brauer equivalent to a crossed product over L.

Proof. Let A be a central simple algebra over F , split by a finite Galois extension L

of F . With the help of 3.2.6, A ∼ B where B contains L as a maximal commutative

subring. Since every σ ∈ G = Gal(L/F ) can be extended to an inner automorphism
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Intuσ of B, uσ being a unit of B. We choose u1 = 1. Since, Int(uσuτ ) and Int(uστ )

both extend στ ∈ G, it follows that uσuτu
−1
στ commutes with every element of L

and hence belong to L∗. Let f(σ, τ) = uσuτu
−1
στ ;σ, τ ∈ G. Then f(1, 1) = 1 and

the condition (uσ1uσ2)uσ3 = uσ1(uσ2uσ3) implies that f is a 2-cocycle. The map

eσ 7→ uσ, x 7→ x, x ∈ L, σ ∈ G defines a homomorphism φ of (L,G, f) onto B. Since,

(L,G, f) is simple and [(L,G, f) : F ] = [B : F ] = n2, φ is indeed an isomorphism.

Corollary 3.4.2. Every central simple algebra over F is Brauer equivalent to a

crossed product over some finite Galois extension of F .

Proof. For any central simple algebra A, there exists a finite Galois extension that

splits it. Thus, by previous proposition there exists a crossed product algebra B over

some finite Galois extension of F that is Brauer equivalent to A.content...

Therefore, we have the following result:

Theorem 3.4.3. We have an isomorphism c : H2(G,L∗)
∼−→ Br(L/F ) given by

[f ] 7→ [(F,G, f)], where L is a finite Galois extension of F with Galois group G.

One must note that we are talking about Brauer equivalence, not isomorphism,

since every central division algebra will not necessarily contain a maximal commuta-

tive subfield which is Galois over F .

For a central simple algebra A over F , we define the exponent of A to be order of

[A] in Br(F ), denoted by exp(A). We will show that exp(A) is finite for every central

simple algebra A in Br(F ).

Theorem 3.4.4. For any central simple algebra A over F , exp(A) divides index(A),

i.e, Brauer Group is torsion.

Proof. By definition, the exponent and index are Brauer class invariants, thus, it

suffices the purpose to prove the theorem for division algebra D. Let [D : F ] = n2, so

that indexD = n. We already know D is Brauer-equivalent to a crossed product over

some finite Galois extension L of F . Let φ : (L,G, f) → Mm(D) be an isomorphism

of F -algebras, G = Gal(L/F ), m ≥ 1. Since L is a maximal commutative subring of

(L,G, f), [L : F ]2 = [(L,G, f) : F ] = [Mm(D) : F ] = m2n2. So, we have [L : F ] =

mn. We can also see L as a maximal commutative subring of Mm(D) through φ. We

regard left Mm(D)-module Dm as a left vector space over L with dimension p. Then

[Dm : F ] = [Dm : L][L : F ] so that mn2 = pmn⇒ p = n.

Now for any σ ∈ G, φ(eσ) ∈Mm(D) operates onDm and φ(eσ)(λx) = σ(λ)φ(eσ)(x),

for λ ∈ L, x ∈ Dm, that is, φ(eσ) is σ-semilinear. For a choice of basis {ei}1 ≤ i ≤ n

of Dm over L, {φ(eσ)}σ∈G can be represented by matrices Tσ ∈Mn(L). The condition

eσeτ = f(σ, τ) · eστ translates into the condition Tσσ(Tτ ) = f(σ, τ)Tστ , where the ac-

tion of G on Mn(L) is entry-wise. Let h(σ) = detTσ, σ ∈ G. Then h : G→ L∗ is a map
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with h(1) = 1. We have σ(h(τ))h(σ) = f(σ, τ)nh(στ); that is, nf ∈ B2(G,L∗). Thus,

[(L,G, f)]n is trivial in Br(F ). Thus, expD = exp(L,G, f) divides n = degreeD.

3.5 Quaternion Algebras

We have already discussed about quaternion algebras in chapter one. In this section,

we will talk about quaternion algebras in context of Brauer group. We will show that

the 2-torsion elements in the Brauer Group are precisely Quaternion Algebras. We

will begin by proving the following lemma.

Lemma 3.5.1. Let A be a central simple algebra over F . If p is a prime which divides

index A, then p divides exp A.

Proof. Since index and exponent are Brauer class invariants, we let A to be a crossed

product algebra over a finite Galois extension L of F . Let G = Gal(L/F ). Since L

splits A, index A divides [L : K]. Thus, p divides [L : F ] = order of G. Let H be a

p-sylow subgroup of G and let L1 be the fixed field of H, so that [L1 : F ] = [G : H]

is coprime to p.

Claim: L1 ⊗F A is not a matrix algebra oevr L1.

Otherwise, index A would divide [L1 : F ], and p|[L1 : F ] is a contradiction. Further,

L⊗L1(L1⊗FA) ' L⊗FA
∼−→Mn(L), so that index L1⊗FA divides [L : L1] = pk, k ≥ 1.

Let index L1 ⊗F A = pr, r ≥ 0. In fact r ≥ 1 since L1 ⊗F A is not a matrix algebra.

Since exp L1⊗F A divides index L1⊗F A, exp L1⊗F A = pr, with r ≥ 1. Since Br(F )

→ Br(L), induced by [A] → [L ⊗F A] is a homomorphism, expL1(L1 ⊗F A) divides

exp A so that p divides exp A.

Let 2Br(F ) denote the 2-torsion subgroup of Br(F ), that is, the subgroup of ele-

ments of order ≤ 2. Let [A] ∈ 2Br(F ). From the previous lemma, we can conclude

that index A is a power of 2.

Definition 3.5.2. An involution (of the first kind) of a central simple algebra A over

F is an antiautomorphism σ : A→ A such that σ2 = identity and σ is identity on F .

An algebra A is involutorial if it admits an involution. If A is involutorial, then

A
∼−→ Aop so that [A] ∈2Br(F ).

Lemma 3.5.3. Let A and B be central simple algebras over F which are Brauer

equivalent. If A has an involution, then B has an involution.

Proof. We can prove this by proving if D is central division algebra over F , D has an

involution if and only if Mr(D) has an involution.

If D has an involution σ, x 7→ σ(xt) defines an involution of Mr(D), the action of σ

on Mr(D) being entry-wise.
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Suppose Mr(D) has an involution σ. Let σ(eij) = fji, where {eij}, 1 ≤ i, j ≤ r

are the matrix units of Mr(D). Since σ is an anti-automorphism, it follows that

{fij}, 1 ≤ i, j ≤ r are again metric units of Mr(D) so that they generate an F -

subalgebra of Mr(D), isomorphic to Mr(F ). Thus, there exists a unit u ∈Mr(D) such

that fij = ueiju
−1, for all i, j. We have fij = σ(eji) = ueiju

−1 and eji = σ(ueiju
−1) =

σu−1uejiu
−1σu. Thus v = u−1σu commutes with Mr(F ) so that v belongs to the

commutant of Mr(F ) in Mr(D), that is, D.

Case 1. Let u+ σu = 0. Then v = −1 and σ′ = Intu−1 ◦ σ is an involution of Mr(D).

Since σ′(eij) = eji, σ
′ maps Mr(F ) onto itself and hence maps the commutant of

Mr(F ), that is, D onto itself, thus giving an involution on D.

Case 2. Let u + σu 6= 0. Then v 6= 0 and 1 + v ∈ D is a unit. Thus u′ = u + σu =

u(1 + v) is a unit of Mr(D) and σprime = Int(u′−1) ◦ σ defines an involution of Mr(D)

which restricts again to an involution of D.

Lemma 3.5.4. Let A be an algebra of exponent 2 which is a crossed product over

some L ⊃ F . Then A has an involution.

Proof. Let A
∼−→ (L,G, f) with G = Gal(L/K), 2f ∈ B2(G,L∗). Let h : G → L∗ be

a map with h(1) = 1 and such that for all σ, τ ∈ G, f(σ, τ)2 = σ(h(τ))h(στ)−1h(σ).

Thus, the assignment eσ 7→ e−1σ h(σ), l 7→ l, l ∈ L, σ ∈ G induces an involution of

(L,G, f).

From the above lemma we get the following theorem:

Theorem 3.5.5. For a central simple algebra A over F , the following statements are

equivalent:

1. [A] ∈2 Br(F )

2. A admits of an involution over F .

We have already seen in chapter one that there exists a canonical involution in

quaternion algebras, that is, conjugation. In fact we have a much stronger result

mentioned below.

Lemma 3.5.6. Central simple algebras over F of rank 4 are quaternion algebras over

F .
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Chapter 4

Cyclic Algebras

In this chapter, we will first discuss about cyclic algebras. After getting acquainted

with the basics we will discuss the central question of the cyclicity of a division algebra.

4.1 Cyclic algebras

Definition 4.1.1 (Cyclic algebras). Let F be a field and L/F be a cyclic Galois

extension of degree n with Galois group G generated by σ. We define A = ⊕i=n−1i=0 Lui

where un = b and the product structure is given by uy = σ(y)u for all y ∈ L. The

algebra A is called a Cyclic Algebra over F and is denoted by 4(L/F, σ, b).

The central simple algebra A over F defined above is split by L.

Example 4.1.2 (Hamilton’s quaternions). Consider the field of real numbers R and

its cyclic Galois extension C of degree 2 with Galois group G = {1, σ}. Let b = −1,

then the cyclic algebra over R is A = C⊕Cj with j2 = −1 and jx = x̄j (σ being the

conjugation map). Thus A = R + Ri+ Rj + Rij.

Hamilton’s quaternions could be generalised over any field.

Example 4.1.3 (Quaternion algebra). Consider a field F and a cyclic Galois exten-

sion L = F (
√
a) of degree 2 with Galois group G = {1, σ}. Let b ∈ F ∗, then the

cyclic algebra over F is A = L ⊕ Lη with η2 = b and ηx = σ(x)η. Algebra A is a

cyclic algebra denoted by (a,b
F

) and is called Quaternion algebra over F .

Quaternion algebra is the degree two case of symbol algebra.

Example 4.1.4 (Symbol algebra). Consider a field F containing a primitive nth

root of unity ρ and a cyclic Galois extension L = F (a1/n) of degree n with Galois

group G generated by σ where σ(a1/n) = ρ(a1/n). Let b ∈ F ∗, consider the algebra

A = ⊕i=n−1i=0 Lηi with ηn = b and ηx = σ(x)η. The algebra A is a cyclic algebra

denoted by (a, b)F,n and is called a Symbol algebra over F .
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4.1.1 Construction of a Cyclic algebra

In this section we construct a cyclic algebra over F as a twisted form of a matrix

algebra over F . Main reference of this section is (§2.3, [GS06]). We keep notations as

in the definition (4.1) above. Recall that a 1-cocyle is a map f : G → L∗ satisfying

f(st) = f(s)sf(t) for all s, t ∈ G.

We fix a character of G, χ : G
∼−→ Z/nZ and consider the matrix

F̃ (b) =



0 1 0 . . . 0 0

0 0 1 . . . 0 0

0 0 0 . . . 0 0
...

...
...

. . .
...

...

b 0 0 . . . 0 0


∈ GLn(F )

Let F (b) denote image of F̃ (b) in PGLn(F ). We note that F̃ (b)n = b.In since

F̃ (b) =

[
0 In−i

b.Ii 0

]
.

Hence F (b)n = I. Thus the element F (b) has exact order n in PGLn(F ) and we can

consider the homomorphism from Z/nZ to PGLn(F ) sending 1 to F (b). Composing

this homomorphism and injection of PGLn(F ) in PGLn(L) we get a homomorphism

z(b) from G to PGLn(L).

z(b) : G
∼−→ Z/nZ→ PGLn(F ) ↪→ PGLn(L)

Since the action of G on PGLn(F ) (acting element wise) is trivial, z(b) is infact a 1-

cocycle from G to PGLn(L). Now using the twisted G-action z(b)Mn(L) on the matrix

algebra Mn(L) coming from z(b) and taking G-invariants, we get a F -algebra which

is central simple and is split by L as proved 2.3. We denote this algebra by (χ, b). We

will show that this construction yields a cyclic algebra which is in accordance with

our definition (4.1).

Before that let us first look at example 4.1.2 again using above construction. We

keep the same notations.

Example 4.1.5. Consider the automorphism χ : G → Z/2Z, which maps 1 7→ 0

and σ 7→ 1. Fix b = −1, then F̃ (b) =

(
0 1

−1 0

)
and z(b) : G → PGL2(C) maps
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σ 7→

(
0 1

−1 0

)
. The twisted G-action on M2(C) is as follows:

(
σ,

(
x11 x12

x21 x22

))
=

(
0 1

−1 0

)(
x̄11 x̄12

x̄21 x̄22

)(
0 −1

1 0

)
=

(
x̄22 −x̄21
−x̄12 x̄11

)
.

Taking G-invariants of the twisted G-action on M2(C) we get the algebra

A′ =

{(
x y

−ȳ x̄

)}
⊂M2(C).

There is an isomorphism between A in the example 1.1.2 and A
′

given by i 7→(
i 0

0 −i

)
and j 7→

(
0 −1

1 0

)
.

One can follow the same process for quaternion algebra and symbol algebra but

the calculation of G-invariants would become extremely difficult in case of symbol

algebra. We will now prove this in general.

Proposition 4.1.6 (Proposition 2.5.2, [GS06]). There is an element y ∈ (χ, b) con-

structed above such that (χ, b) is generated as a F -algebra by L and y, with the relations

ym = b, yλ = σ(λ)y

for all λ ∈ L, where σ is the generator of G mapped to 1 by χ.

Proof. Let us denote by A the algebra generated by y and L i.e. A = ⊕i=n−1i=0 Lyi,

equipped with the given relations. We aim to prove that (χ, b) ' A. Thus we define a

F -algebra homomorphism j : A → Mn(L) and then verify that j maps A bijectively

to (χ, b).

j(y) = F̃ (b) and j(λ) = diag(λ, σ(λ), . . . , σn−1(λ)) for λ ∈ L

We have already chosen F̃ (b) in such a way that F̃ n = b.In and by matrix multiplica-

tion we can easily verify that j is indeed a homomorphism since

F̃ (b)j(λ) = j(σ(λ))F̃ (b). (4.1)

Now we will verify that j(A) comprises of elements which are G-invariant under the

twisted action i.e j(A) comprises of all those M such that F̃ (b)−1σ(M)F̃ (b) = M . We

check this on the generators of A, F̃ (b) satisfies the above relation. Also for j(λ) since

it satisfies the relation (4.1) above. Thus the image of j(A) lands in (χ, b). Now all

we need to verify is that j : A→ (χ, b) is an isomorphism. Since the dimension after
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tensoring with L is equal, verifying surjectivity will serve our purpose. The image of

j ⊗L idK in (χ, b) ⊗F L ∼= Mm(L) is the L- subalgebra generated by F̃ (b) and the

diagonal subalgebra L⊕ . . .⊕ L. If Ei,j is the usual basis of Mm(L), we just need to

check that Ei,js belong to this subalgebra for i 6= j. This is achieved by computing

Ei,j = F̃ (b)i−jEj,i for i 6= j.

4.1.2 Some Results

We will now see some results on when a given algebra is cyclic. First we will first

mention some standard results which will be useful.

Proposition 4.1.7 (Proposition 2.2.8, [GS06]). A central simple algebra A of degree

n over a field F is split if and only if it contains a F -subalgebra isomorphic to the

direct product F × . . .× F .

Lemma 4.1.8 (Speiser, Lemma 2.3.8, [GS06]). Let L|F be a finite Galois extension

with group G, and V a F -vector space equipped with a semi-linear G-action, i.e. a

G-action satisfying

σ(λν) = σ(λ)σ(ν) for all σ ∈ G, ν ∈ V and λ ∈ F.

Then the natural map

λ : V G ⊗F L→ V

is an isomorphism, where the superscript G denoted the invariants under G.

Theorem 4.1.9 (Skolem-Noether theorem, Lemma 2.5.4, [GS06]). Let A be a central

simple F -algebra of degree n containing a F -subalgebra L which is a cyclic Galois field

extension of degree n. Then there exists y ∈ A∗ such that

y−1xy = σ(x) (4.2)

for all x ∈ L, where σ is a generator of G = Gal(L/F ).

We use these results to prove the following proposition:

Proposition 4.1.10. Let A be a central simple F -algebra of degree n containing a

F -subalgebra L which is a cyclic Galois extension of degree n. Then A is isomorphic

to a cyclic algebra given by

A ' ⊕i=n−1i=0 Lyi

satisfying the relations

yn = b, yl = σ(l)y
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for all ∈ L, where σ is the generator of G and b ∈ F .

Proof. We are given a central simple algebra A of degree n containing a subfield L

of dimension n over F . Consider the y in 4.1.9, we first verify that ym ∈ F . We

substitute σ(x) in place of x for x ∈ L, in σ(x) = y−1xy, and get σ2(x) = y−2xy2.

Iterating it n− 1 times we get

x = σn(x) = y−nxyn

Thus yn commutes with all x ∈ L and hence it lies in L because ZA(L) = L, L being

the maximal commutative subring of A. Now again in 4.2 we put x = yn, so we get

σ(yn) = yn, that is, yn ∈ F .

We set b := yn. Now we just need to show that L and powers of y generate A. If

1, y, . . . , yn−1 are L-linearly independent in A, where L acts by left multiplication. If

this is not the case then there exists a non-trivial L-linear relation
∑
λiy

i = 0 with

least number of nonzero coefficients. We multiply by a power of y and assume that

λo and λj for some j 6= 0 are not 0. Now we chose l ∈ L∗ with l 6= σ(l). Again after

iteration of 4.2 we get ∑
yiσi(l)λi = l(

∑
yiλi) = 0.

Then
∑
yi(lλi − σi(l)λi) = 0 is a non-trivial L-linear relation with lesser nonzero

coefficients, which is a contradiction.

Now that we have proved the proposition, we can consider following as the defini-

tion of cyclic algebra.

Definition 4.1.11. A central simple algebra A is cyclic if and only if there exists a

strictly maximal subfield L of A such that E/F is a cyclic extension.

Thus a cyclic algebra will always contain a maximal cyclic subfield but it can also

contain other maximal subfields which are not cyclic. Here is an example.

Example 4.1.12. Consider a field extension L = Q(α) over Q where α is a root

of the polynomial x4 − 4x2 + 2 over Q. Roots of the polynomial are ±
√

2 +
√

2,

and ±
√

2−
√

2 all of which lie in Q(α). The automorphism σ : Q(α) → Q(α) over

Q given by σ(
√

2 +
√

2) = −
√

2−
√

2, and σ(
√

2−
√

2) =
√

2 +
√

2 is of order 4.

Therefore, Q(α)/Q is a cyclic Galois extension of degree 4.

Consider the cyclic algebra A = (Q(α), 〈σ〉, 3) over Q. By Skolem-Noether theorem

let z ∈ A∗ be such that σ(x) = z−1xz for all x ∈ L and z4 = 3. Since Q(α)σ
2

= Q(
√

2),

we have z2 ∈ CA(Q(
√

2)). Thus, Q(
√

2, z2) ⊂ A. As (z2)2 = 3, we have Q(
√

2, z2) ∼=
Q(
√

2,
√

3) ↪→ A.

Hence, A is a cyclic algebra of degree 4 containing both maximal 4-degree cyclic

subfield as well as a maximal subfield that is biquadratic.
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4.1.3 Cohomological Equivalence

We saw that cyclic algebra are particular case of a crossed product algebra. Cyclic

algebra is a crossed product algebra with a finite cyclic Galois extension. The crossed

product algebra is given with the help of a 2-cocycle. In this section we give an explicit

mapping between a cyclic algebra and 2-cocycle corresponding to it.

Proposition 4.1.13 (§15.1, Proposition a, [Pie82]). Let L/F be a cyclic extension

such that G = Gal(L/F ) is cyclic of order n with the generator σ. If a central simple

algebra A contains L as a maximal subfield, then there is an element u in A that

satisfies

1. A = ⊕0≤j<nLu
j.

2. ul = σ(l)u for all l ∈ L, and

3. un = b where b ∈ F ∗.

Conversely, if A is the F -algebra that is defined by the conditions 1, 2 and 3, then

A ∼= (L,G, φb), where φb is a 2-cocycle from G×G→ L∗ given by

φb(σ
i, σj) =

1 if 0 ≤ i, j, i+ j < n,

b if 0 ≤ i, j < n ≤ i+ j.

Proof. (⇒) We have already proved the first part of the proposition in proposition

4.1.10.

(⇐) For converse we first verify that φb is a 2-cocycle.

Now we give an isomorphism between (L,G, φb) and A

e1 7→ 1A

eσ 7→ u.

The map is well defined since φb is normalized. If 1 < j < n, then eσeσj−1 =

φb(σ, σ
j−1)eσj = eσj . Therefore, eσj = uj for all 1 ≤ j < n by induction. Also,

un = eσeσn−1 = φb(σ, σ
n−1)e1 = b. Thus, A is the algebra that satisfies 1, 2 and 3.

From now onwards we denote (L,G, φb) by (L, σ, b). As a consequence of the

previous proposition we have the following corollaries:

Corollary 4.1.14. We have (L, σ, a)⊗F (L, σ, b) ∼ (L, σ, ab).

Proof. We have the 2-cocycles φa and φb satisfying (φaφb)(x, y) = (φa(x, y))(φb(x, y)).

Thus, φaφb = φab. Hence, it follows that (L, σ, a)⊗F (L, σ, b) ∼ (L, σ, ab).
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Example 4.1.15. Let F be a field containing primitive nth root of unity, ξ. Let

(a, b)F,n and (a, c)F,n be symbol algebras over F of degree n. By the above corollary

(a, b)F,n ⊗F (a, c)F,n ∼ (a, bc)F,n.

Corollary 4.1.16. If k ∈ Z is co-prime to n, then (L, σk, ak) ∼= (L, σ, a).

Proof. Since k is co-prime to n, G = 〈σ〉 = 〈σk〉. By, Skolem-Noether theorem σk(x) =

u−kxuk and (σk)n = 1. Thus, (uk)n = ak.

Remark 4.1.17. The cyclic algebra (L, σ, 1) is split for any cyclic Galois extension

L of F .

Indeed, we have an explicit isomorphism from (L, σ, 1) → EndF (L) which suffices

our purpose since Mn(F ) ' EndF (L). Consider the map φ : (L, σ, 1) → EndF (L)

given by

eσ 7→ σ

λ 7→ lλ

where both σ and lλ are L-isomorphisms given by

σ(x) = σ · x

lλ(x) = λx,

that is, σ has the usual G-action since σ lies in the Galois group of L/F . To verify

that the given map is well defined we need to verify the cocycle condition.

φ(eσy)(x) = φ(σ(y)eσ)(x)

= φ(σ(y))φ(eσ)(x)

= lσy ◦ σ(x)

= σ(y)σ(x)

= σ(yx)

= σ(ly(x))

= φ(eσ)φ(y)(x).

Thus, the given map respects the algebra structure also note that map is injective.

By dimension count, it is surjective as well.

Hence, we can say whenever there exists a cyclic Galois extension of degree n over

F , there always exists a cyclic algebra over it, that is, Mn(F ).

4.1.4 The Primary Decomposition of Cyclic Algebras

In this section we will prove that A is cyclic if and only if its primary components are

cyclic. Before proving we will state two lemmas which will be useful in proving the
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result.

Lemma 4.1.18. Let L1/F and L2/F be finite field extensions where L1 and L2 are

subfields of the algebraic closure of F .

1. If [L1 : F ] and [L2 : F ] are relatively prime, then L1 and L2 are linearly disjoint

over F .

2. If L1/F and L2/F are Galois, and L1 and L2 are linearly disjoint over F , then

(L1 ⊗ L2)/F is Galois and G((L1 ⊗ L2)/F ) ∼= G(L1/F )×G(L2/F ).

3. If L/F is Galois, Gal(L/F ) = H1×H2, L1 is the fixed field of H1 and L2 is the

fixed field of H2. Then, L1 and L2 are linearly disjoint over F . L = L1 ⊗ L2,

L1/F and L2/F are Galois and G(L1/F ) = H1 and G(L2/F ) = H2.

Lemma 4.1.19. Let L1/F and L2/F be cyclic extensions with G(L1/F ) = 〈σ1〉 and

G(L2/F ) = 〈σ2〉. Assume that n1 = [L1 : F ] is relatively prime to n2 = [L2 : F ],

say n1a + n2b = 1 where a, b ∈ Z. If y ∈ F ∗, then (L1, σ1, y
a) ⊗F (L2, σ2, y

b) '
((L1 ⊗ L2), (σ1, σ2), y).

Now we will prove the main result which will be useful in the coming section in

proving cyclicity of degree 6 algebra.

Proposition 4.1.20. If A and B are central simple algebras over F of relatively

prime degrees. Then, A⊗F B is cyclic if and only if A and B both are cyclic.

Proof. Let degree(A) = n1 and degree(B) = n2 where n1a + n2b = 1, a, b ∈ Z. (⇒)

Let A⊗B = (L, σ, y), where ymn ∈ F ∗ and G(L/F ) = 〈σ〉. Under the correspondence

σ 7→ (σn2b, σn1a), we get 〈σ〉 ∼= 〈σn2b〉 × 〈σn1a〉. Let L1 be the fixed field of σn2b

and L2 be the fixed field of σn1a. By lemma 4.1.18 L = L1 ⊗ L2, and G(L1/F ) =

〈σn2b〉, and G(L2/F ) = 〈σn1a〉. Using corollary 4.1.14 we have A1 = (L1, σ
n2 , y) ∼=

(L1, σ
n2b, yb) and B1 = (L2, σ

n1 , y) ∼= (L2, σ
n1a, ya). By lemma 4.1.19, A1 ⊗ B1

∼=
(L1 ⊗ L2, (σ

n2b, σn1a), y) = (L, σ, y) = A ⊗ B. Since Deg(A1) = Deg(A) = n1 and

Deg(B1) = Deg(B) = n2, it follows that in the Brauer group, [A] = [A][A]−an1 [B]bn2 =

([A][B])bn2 = [A⊗B]n2b = [A1 ⊗B1]
bn2 = [A1]. Similary we get [B] = [B1]. Since the

dimension of A is same as of A1 and dimension of B is same as of B1. So, A and B

are cyclic.

(⇐) If A and B are cyclic, then using lemmas 4.1.18 and 4.1.19 A ⊗ B is also

cyclic.

Corollary 4.1.21. A central division algebra is cyclic if and only if its primary

components are cyclic.
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4.2 The Cyclicity Question

Now we will address the central question for which the basics have been build so far.

This section mostly discusses a survey article by Saltman in detail (cf. [Sal05]). The

main question in the article is following.

Question 4.2.1. Whether every division algebra is cyclic?

This question has a negative answer. We will give an explicit example of a non-

cyclic division algebra. Let us first see a result on the condition when a division

algebra is cyclic.

Theorem 4.2.2. A division algebra D/F is cyclic if and only if there is a subfield

L ⊂ D of degree deg(D) over F which is cyclic over F .

Proof. Since we have already proved proposition 4.1.10, this theorem is a corollary of

it as division algebras are special type of central simple algebras.

4.2.1 Non-cyclic division algebra

In this section we give an explicit example of a non-cyclic division algebra. We use

some results from the theory formally real fields and valued fields. All the results

mentioned here are referred from (Chapter VI and Chapter VIII, [Lam05]).

Definition 4.2.3 (Pythagorean field). A field F pythagorean if sum of squares is

again a square, i.e., F 2 + F 2 ⊆ F 2.

If char(F ) = 2, we have a2 + b2 = (a + b)2, so F is always pythagorean. We will

use a field that is formally real pythagorean field, i.e., pythagorean field where −1 can

not be written as a sum of squares. For example, the field of real numbers R is a

formally real pythagorean field whereas complex numbers C is pythagorean but not

formally real. We denote the Laurent series field of F by F ((t)). It consists of all

formal Laurent series of the form

f = ant
n + an+1t

n+1 + . . . (n ∈ Z, ai ∈ F )

Proposition 4.2.4. Let F be a formally real pythagorean field and F1 = F ((t)).

Then, F is a pythagorean field if and only if F1 is.

Proof. (⇐) Let F1 be a formally real pythagorean. Then F is also formally real.

Moreover F1 follows the pythagorean property for all values of t. In particular for

t = 0. Thus, F is also pythagorean.
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(⇒) Assume F is formally real pythagorean. Consider f 2 + g2 ∈ F1, where

f = ant
n + an+1t

n+1 + . . . , g = bmt
m + bm+1t

m+1 + . . . , an 6= 0 6= bm.

Assume n < m, then f 2 + g2 = (ant
n)2(1 + . . .) which is a square in F1. Now assume

m = n, and write

a2n + b2n = c2n(cn ∈ F ∗).

Thus, we have f 2 + g2 = (cnt
n)2(1 + . . .), which is again a square in F1.

Lemma 4.2.5. Let L/F be a cyclic Galois extension of degree 4. Then there is a

unique intermediate field F ⊆ K ⊆ L such that K = F
√
a with a ∈ F ∗, and a is a

sum of squares.

We will state Springer’s theorem, but we will first define what a valuation on a

field is.

Definition 4.2.6 (Valuation). Let F be a field and let Γ be a totally ordered abelian

group. A valuation on F is any map

v : F → Γ ∪ {∞}

which satisfies the following properties for all a, b ∈ F :

1. v(a) =∞ if and only a = 0.

2. v(ab) = v(a) + v(b)

3. v(a+ b) ≥ min(v(a), v(b)) with equality if v(a) 6= v(b).

We associate with a valuation following rings:

• A valuation ring, Ov = {x ∈ F : v(x) ≥ 0}

• A unique maximal ideal, mv = {x ∈ F : v(x) > 0} ⊂ Ov

• A residue class field, F = Ov/mv.

• The group of units of Ov, U = {x ∈ F ∗ : v(x) = 0}.

The image of x ∈ Ov in the residue field is denoted by x. We are interested in

valuation with the value group, Γ = Zr for some natural number r. A valuation is

called discrete if the value group is Z. For a discrete valuation v, an element π ∈ mv

with v(π) = 1 is called a uniformizer of F .
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Theorem 4.2.7 (Springer’s theorem). Let F be a complete discrete valued field such

that char(F ) 6= 2. Suppose that φ = q1 ⊥ 〈π〉q2, where q1 = 〈u1, . . . , ur〉 and q2 =

〈ur+1, . . . , un〉 (ui ∈ U). Then q is anisotropic over F if and only if q1 and q2 are

anisotropic over F .

Example 4.2.8 (Non-cyclic division algebra). Let F = R((x))((y)), and B =
(−1,−1

F

)
,

C =
(
x,y
F

)
. Consider the biquaternion algebra A = B ⊗F C. By using theorem 1.3.12

we can show that the algebra A is a division algebra. Thus, we need to verify that

the Albert form q of B ⊗F C is anisotropic over R((x))((y)). Viewing R((x))((y)) as

L((y)), where L = R((x)), the Albert form

q ∼= 〈1, 1, 1, x, y,−xy〉
∼= 〈1, 1, 1, x〉 ⊥ 〈1,−x〉〈y〉

By (theorem 4.2.7, applied to y-adic valuation on L((y))), q is anisotropic if and

only if 〈1, 1, 1, x〉 and 〈1,−x〉 are anisotropic over R((x)). Again by (theorem 4.2.7,

applied to x-adic valuation on L), 〈1, 1, 1, x〉 (respectively 〈1,−x〉) is anisotropic if

and only if 〈1, 1, 1〉 and 〈1〉 (respectively 〈1〉 and 〈−1〉) are anisotropic over R. Since

R is a formally real, the quadratic forms 〈1, 1, 1〉, 〈1〉 and 〈−1〉 are indeed anisotropic.

Hence, by Albert’s theorem(1.3.12) A is a division algebra.

If A is a cyclic algebra, then it contains a degree 4 cyclic Galois extension L over

F . By (lemma 4.2.5) L will have a unique proper subfield of the form K = F
√
r2 + s2

over F . Since F is a formally real pythagorean field ( cf. proposition 4.2.4), K = F

which is a contradiction. Hence, A must be a non-cyclic division algebra.

4.3 Prime Degree Division Algebras

In this section we first prove that degree 2 and 3 division algebras are cyclic.

Division algebras of degree 2 are cyclic We have already seen in chapter 1 §3.5,

that degree 2 division algebras over any field are precisely quaternion algebras which

are cyclic.

Thus, degree 2 division algebras over any field are always cyclic.

4.3.1 Factorization theorem

In this section we follow Chapter 5, [Lam91]. Let R be any ring with identity, and R[t]

denote the polynomial ring in one variable t over R, where t commutes elementwise

with R. For a polynomial

f(t) =
n∑
i=0

ait
i
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and an element r ∈ R, we define f(r) :=
∑n

i=0 air
i ∈ R. Note that to evaluate

f = gh ∈ R[t] at r ∈ R we first write f in the form
∑
ait

i, and then substitute r for

t.

Definition 4.3.1. An element r ∈ R is said to be a right root of f ∈ R[t] if f(r) = 0.

• In general, if f = gh it does not follow that f(r) = g(r)h(r). Indeed, consider a

division algebra D with center F , and d, d1 ∈ D \ {0} are such that dd1 6= d1d.

Put g(t) = (t− d), and h(t) = (t− d1). Then g(D)h(D) = 0, while

gh(d) = (t2 − (d+ d1)t+ dd1)|t=d
= d2 − d2 − d1d+ dd1

= dd1 − d1d

6= 0.

• Over a field, a polynomial of degree n has at most n distinct roots. Over a

division algebra, this is no longer true. For instance, in the Hamiltonian division

algebra H over R, any conjugate of i is a root of t2 + 1, since i has infinitely

,any conjugates, t2 + 1 has infinitely many roots.

• If f =
∑
ait

i ∈ F [t], and d ∈ D is a root of f , then any comjugate zdz−1 is also

a root. Indeed, zf(t)z−1 =
∑
zait

iz−1 =
∑
ai(ztz

−1)i (since zai = aiz). Also,

zf(t)z−1 = f(t).

Definition 4.3.2. We say that a conjugacy class A is algebraic over F if one (and

hence all) of its elements is algebraic over F .

Lemma 4.3.3. Let D be a division ring and let f = gh ∈ D[t]. Let d ∈ D be such

that a := h(d) 6= 0. Then

f(d) = g(ada−1)h(d).

In particular, if d is a root of f but not of h, then ada−1 is a root of g.

Proof. Let g =
∑
bit

i. Then f =
∑
bih(t)ti, so

f(d) =
∑

bih(d)di =
∑

biad
i

=
∑

biad
ia−1a

=
∑

bi(ada
−1)ia

= g(ada−1)h(d).

Since D is a division algebra, if d is a root of f but not of h, then ada−1 is a root of

g.
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Lemma 4.3.4. For f(t) ∈ D[t] and d ∈ D, we have

f(t) = q(t)(t− d) + f(d).

In particular, d is a root of f if and only if t− d divides f .

Proof. We proceed by induction on deg f(t). If deg (f(t)) = 1, f(t) = at + b, then

f(t) = a(t−d) +ad+ b, i.e., we can take q(t) = a. Suppose degf = n > 1 and dn ∈ D
be the leading coefficient of f(t). Put g(t) = f − dntn−1(t − d), then deg g < degf ,

and f(d) = g(d). Thus, by the induction there exists q1 ∈ D[t] such that g(t) =

f(t)− dntn−1(t− d) = q1(t− d) + g(d). Hence, f(t) = (q1 + dnt
n−1)(t− d) + f(d).

Proposition 4.3.5. Let D be a division ring and let f be a polynomial of degree n in

D[t]. Then the roots of f lie in at most n conjugacy classes of D. If f =
∏i=n

i=1 (t−ai),

where ai ∈ D, then any root of f is some conjugate of ai.

Proof. We induct on n, the degree of polynomial f . If n = 1, then f = t − a, and

proposition is clear. For n ≥ 2, let d ∈ D be a root of f , and write f = g(t)(t − d).

Suppose d′ 6= d is another root of f . Then by lemma 4.3.3, d′ is conjugate root of g.

By induction hypothesis, d′ lies in at most n− 1 conjugacy classes of D. Hence, roots

of f lie in at most n conjugacy classes of D.

Proposition 4.3.6. Let D be a central division algebra over F and A be a conjugacy

class of D which is algebraic over F with minimal polynomial f ∈ F [t]. If a polynomial

h ∈ D[t] \ {0} vanishes identically on A, then degh ≥ degf .

Proof. Let h = tm + d1t
m−1 + . . .+ dm ∈ D[t] be such that h(A) = 0 and m = degh <

degf is as small as possible. Since h /∈ F [t] there exists some di /∈ F , and s ∈ D such

that dis 6= sdi. For any a ∈ A, h(a) = am + d1a
m−1 + . . .+ dm = 0. Hence

0 = (sas−1)m + d1(sas
−1)m−1 + . . .+ dm.

On the other hand, using sdja
m−js−1 = sdjs

−1sam−js−1 = (sdjs
−1)(sas−1)m−j we

also have

0 = (sas−1)m + (sd1s
−1)(sas−1)m−1 + . . .+ (sdms

−1).

Hence the polynomial
m∑
j=1

(dj − sdjs−1)tm−j

vanishes on sAs−1 = A. Since dis 6= sdi, the above polynomial is nonzero, and its

degree < m. This contradicts the choice of m.

Theorem 4.3.7 (Wedderburn’s factorization theorem). Let D be a central division

algebra over F , let A be a conjugacy class of D which is algebraic over F with minimal

45



polynomial f ∈ F [t] of degree n. Then there exists a1, . . . , an ∈ A such that f =∏n
i=1(t−ai) ∈ D[t]. Also, f is product of the same linear factors, permuted cyclically.

The element a1 ∈ A can be arbitarily prescribed.

Proof. Fix a1 ∈ A, and consider a factorization of f

f = g(t)(t− ar) . . . (t− a1)

with g ∈ D[t], ai ∈ A, where r is chosen as large as possible. We claim that h =

(t − ar) . . . (t − a1) vanishes identically on A. Indeed, for a ∈ A we have f(a) = 0.

If h(a) 6= 0 then by lemma 4.3.3, g(ar+1) = 0 for a conjugate ar+1 of a. Then we

can write g = g1(t)(t − ar+1) for some g1 ∈ D[t], and thus f has a right factor

(t − ar+1)(t − ar) . . . (t − a1), which contradicts with choice of r. Hence h(a) = 0

for every a ∈ A. Hence by proposition 4.3.6, degf ≥ degh ≥ degf , i.e., f(t) =∏n
i=0(t− ai).
To prove the last assertion, we show that for f ∈ F [t] if f = gh ∈ D[t], then

f = hg ∈ D[t]. Indeed, for g ∈ D[t], we have gf = fg since coefficients of f are in F .

Thus, gf = fg = ghg, i.e., g(f − hg) = 0 ∈ D[t]. Hence, f = hg.

4.3.2 Division algebras of degree 3 are cyclic

This section is followed from the exercises based on Chapter 24, [Row08].

Lemma 4.3.8. Let a, b ∈ D with v = ab − ba 6= 0. Then vav−1 = b if and only if

(a+ b)ba = ba(a+ b).

Proof. We have

vav−1 ⇔ va = bv

⇔ (ab− ba)a = b(ab− ba)

⇔ ab− ba2 = bab− b2a

⇔ aba+ b2a = bab+ ba2

⇔ (a+ b)ba = ba(b+ a)

⇔ (a+ b)ba = ba(a+ b).

Lemma 4.3.9. Let d1 be a root of f(t) = (t− d3)(t− d2)(t− d1) ∈ F [t], and d1d2 6=
d2d1. Then

d3 = (d1d2 − d2d1)d2(d1d2 − d2d1)−1.

Moreover, for i, j ∈ Z/3 we have

didj − djdi ∈ {(d1d2 − d2d1),−(d1d2 − d2d1)}.
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Proof. Let g(t) = (t− d2)(t− d1) = t2 − (d1 + d2)t+ d2d1. Thus, f(t) = (t− d3)g(t).

Consider g(d2) = d22 − (d1 + d2)d2 + d2d1 6= 0, i.e. d2 is not a root of g(t). By

lemma 4.3.3, (−d1d2 + d2d1)d2(−d1d2 + d2d1)
−1 must be a root of (t − d3), so d3 =

(−d1d2 + d2d1)d2(−d1d2 + d2d1)
−1.

For the second part, we put b = d1d2 − d2d1. We have d1 + d2 + d3 = α ∈ F .

Consider i, i+ 1, i+ 2 ∈ Z/3, and

didi+1 − di+1di = di(α− di − di+2)− (α− di − di+2)di

= diα− d2i − didi+2 − αdi + d2i + di+2di

= di+2di − didi+2

Therefore, we get

d2d3 − d3d2 = d1d2 − d2d1 = d3d1 − d1d3 = b.

While,

d1d3 − d3d1 = d1(α− d1 − d2)− (α− d1 − d2)d1 = d2d1 − d1d2 = −b.

Lemma 4.3.10. Let A be a central division algebra over F . There exists 0 6= a ∈ A
such that TrdA(a) = 0.

Proof. By (theorem 3.2.8), there exists a ∈ A such that [F (a) : F ] = n. Since D is

non-commutative there exists b ∈ A \ F (a) such that ab 6= ba. We have

φ : F (a)→ F, x 7→ TrdA(x(ab− ba)).

Thus, kerφ 6= {0}.

Proposition 4.3.11. A central division algebra of degree 3 is cyclic.

Proof. Let D be a central division algebra of degree 3. By previous lemma, we get

an element d1 ∈ A \ F such that TrdD(d1) = 0. Let f(t) ∈ F [t] be the minimal

polynomial of d1 over F . By Wedderburn’s Factorization theorem, we can write

f = (t− d3)(t− d2)(t− d1). Put b = d1d2 − d2d1, and d3 = bd2b
−1 and d3d2 − d2d3 =

−(d1d2 − d2d1) = −b. Also,

f = (t− d1)(t− d3)(t− d2),
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consequently d1 = bd3b
−1. Since d1 + d2 + d3 = 0 we have

b(d3d
−1
2 )b−1 = bd3b

−1bd−12 b−1

= d1d
−1
3

= (−d2 − d3)d−13

= −1− d2d−13 .

Hence, K = F [d3d
−1
2 ] has a nontrivial automorphism over F given by conjugation

by b, and thus cyclic. Therefore, D ∼= (K/F, Int(b), b3), and hence D is a cyclic

algebra.

Corollary 4.3.12. Division alegbra of degree 6 over any field F is always cyclic.

Proof. We have already seen that division algebras of degree 2 and 3 are cyclic. With

help of proposition 4.1.20, degree 6 division algebras are also cyclic.

4.3.3 Cyclicity of higher degree division algebras and open

questions

We have already seen degree two and three algebras are cyclic. The question now

arises for higher prime degree division algebras. We first state some results regarding

their cyclicity.

Theorem 4.3.13 (Albert). Let D be a prime degree p division algebra over F . Then

D/F is cyclic if and only if there is a d ∈ D \ F such that dp ∈ F .

A division algebra over a field of characteristic p is called p-algebra if its degree is

p-primary. We now state a characterization of p-algebra in terms of existence of a

purely inseparable maximal field extension. More precisely, we have the following

result.

Theorem 4.3.14 (Hood, [Hoo71]). Suppose that D is a central division p-algebra

over F . Then D is cyclic if and only if there is a subfield L ⊂ D such that L/F is

purely inseparable and has degree equal to deg(D).

In the other direction, we consider a division algebra of prime degree p over a field

of characteristic different from p. We have the following criterion for cyclicity in terms

of multiplicative group structure of D∗.

Theorem 4.3.15 (Mahdavi-Hezavehi, Tignol, [MHT03]). Suppose D has prime de-

gree p not equal to the characteristic of F . Then D is cyclic if and only if the multi-

plicative group D∗ contains a metabelian, nonabelian subgroup.
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We have already seen that degree 2 and 3 division algebras are cyclic. For degree

5 division algebras, all dihedral division algebras are cyclic [RS82]. But in general,

and for higher prime degree algebras cyclicity is now known.

The study of a cyclic algebra is an intense area of research. We now state some

open problems as stated in [Sal05] related to cyclicity question.

Question 4.3.16. Suppose D is a division algebra over F of prime degree p. Is D

cyclic?

The above problem is elaborated in [ABGV11].

Question 4.3.17. Suppose D/F is a division algebra of degree n, and K/F is a finite

extension of degree prime to n. Assume D⊗FK is cyclic. Does this imply D is cyclic?
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