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Abstract

We say that a set A < R"™ holds a Poisson summation formula in terms of
tempered distribution if it supports a measure y which is a tempered distribution

such that its Fourier transform i is also a measure.

The aim of my thesis is to understand whether a Poisson summation formula
can hold for any uniformly discrete subsets of R™. If it holds for a set then what will
be its characterization. We will see that for the lattice Z", a Poisson summation
formula holds. Naturally, we can ask whether there are other uniformly discrete
sets for which it holds. Initially, Cordoba has investigated this case with some
control conditions on Dirac masses. The result was later generalized by Nir Lev

and Olevskii recently in 2014.

We begin this report with an introduction on tempered distributions and
defining some operations on tempered distributions. We will also explain the well
known identity, the Poisson summation formula which holds for a suitable class
of functions. Then, we will state and prove Cordoba’s first, second result and Nir

Lev and Olevskii’s result.

One of the key concept used in the proof of Nir Lev and Olevskii’ result is
‘Meyer sets’. Meyer sets was discovered by Yves Meyer in 1970’s. It has applica-

tions in Number theory also. We will also explain and understand these sets.

v
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Chapter 1

Tempered distribution

1.1 Introduction

The Schwartz space S(R") is defined to be the space of all smooth functions on

R"™ that are rapidly decreasing at infinity with all their derivatives. That is
S(R") = {p e C*(R") : [2%(07)(x)| < 0}
for all o, 5 e N". Let a = (ay, ..., ) and 5 = (S, ..., ) then

ol =a1+ ...+ ;

(6% a1 Q9 [67%%

= afey? . al
and
P = 6’(51+52+"'+5”)/8x11x§2 . xﬁ"
We now define increasing sequence of norms || - ||y, where N € N, as

[¢lly = sup  [2%(0%9)(x)].

zeR™ |a|,|B|<N
Hence for all ¢ € S(R") we have that ||¢||y < oo for every N.

We say that a sequence ¢ — ¢ in S(R™) whenever ||¢r —¢||y — 0, as k — o,
for every N.
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Now let us define tempered distribution §’. Tempered distribution is the

space of all complex continuous linear functionals on S(R™).

Proposition 1.1. Suppose p is a tempered distribution. Then there is a positive

integer N and a constant C' > 0, such that

(@) < ClIol|w, for all ¢ € S(R™).

Proof. From the definition of metric it follows that the sets Uy. = {¢ € S(R") :
|¢||ny < e}, where e > 0 and N € N, forms a basis around 0 € S(R™). Since p is a
tempered distribution, it is continuous at 0. Thus, there exists a neighbourhood
Un . around 0 such that |u(¢)| < 1 whenever ¢ € Uy .. Let 0 < €’ < ¢ and consider
the Schwartz function ¢ = (¢'/||¢||n)¢. We see that ¢ € Uy .. Therefore,

(& /lelln) ()] = ()] < 1

Hence if we let C' = 1/¢’ then

()] < Cligllv

Let us look at an example of tempered distributions.

Example 1.1. Let 6, be the translate of Dirac delta ‘function’, where x € R™. The

‘function’ 6, acts on a Schwartz function ¢ in the following way

Clearly, it is a linear functional on S(R™). Let ¢, — ¢ in S(R™). Hence we get
102 (0 — &)| = |ok(x) — p(x)| = 0 as k — 0. Thus, 6, is continuous.

1.2 Operations on tempered distributions

First we will define the support of a tempered distribution.

Definition 1.2. For a tempered distribution p we say that p vanishes in an open

set if (@) = 0, for all Schwartz function ¢ having their support in that open set.
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Thus the support of a tempered distribution is defined to be the complement

of largest open set on which p vanishes.
Now we will define few operations on tempered distributions.

e We will define the product of a slowly increasing smooth function with a
tempered distribution. Slowly increasing means that for each «, (0%¢)(z) =
O(|z|N), for some N, > 0. Let 1 be a slowly increasing C* function and p

be a tempered distribution, then we define the product ¢ - u by
(V- pu)(0) = p(g) Voe SR

e A key feature of tempered distributions is that it can be differentiated any

number of times. We define the derivative 0*u of a tempered distribution

[ as
(0*m)(¢) = (=D u(0°¢), whenever ¢ € S(R")

Note that the above two operations on a tempered distribution is again a

tempered distribution.

e We extend the notion of convolution of appropriate functions to the con-
volution of Schwartz functions and tempered distributions which is again a
smooth function. Let ¢ € S(R") and u be a tempered distribution then the

function 1 = p is defined as

where &x(y) = (x —vy).

Proposition 1.3. Suppose p is a tempered distribution and ¢ € S(R™).

Then v = p is a slowly increasing smooth function.

Proof. Let z, — x as n — o0, then ¢, (y)—1,(y)| = [ (xn—1y)—(z—y)| —
0 as n — oo uniformly in y. And, all the partial derivative of @D;n exists and
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converges uniformly to the corresponding partial derivative of v,. Hence

Yy — 1hy in S(R™). Since p is continuous we get that

o (@) = () = p(ths) =1 * p(z)

as n — oo. Similarly we have

(0@ = ) (@n) = p(0*(r,) = (0% (W) = (0°( = ) ()

as n — 0.

Since p is a tempered distribution, there exist C' > 0 and N € N such that
(o) < C||o||n for ¢ € S(R™). Observe that

10%(@)[n < [16]|n+1a

and
ool v < (1 + [z]™)][¢] |

for ¢ € S(R™). Thus,
(09 = ) () = (=11 p(0*) < Celll v s1a (1 + |2]Y) = O(lz[™).
Hence , ¢ * u is a slowly increasing smooth function. |

Proposition 1.4. Let i be a tempered distribution whose support is A and
¢ € S(R™) has a compact support B. Then the support of ¢ = u is contained
in A+ B.

Proof. The support of 1, is © — B. Thus, for each z such that u(z/;x) # 0, we
must have that An (x—B) # 0. Let ye An(zx—B),thenx =y+ (x—y) €

A + B. Thus supp(¢ = u) € A + B. [

e The definition of Fourier transform i for a tempered distribution y is

(¢) = 1(9), VoeSRY.

=

Since, ¢ — ¢ is a continuous linear mapping and p is also continuous, we

have that f is also a tempered distribution.



Chapter 2

The Poisson summation formula

and Cordoba’s first result

First we will understand what is a Poisson summation formula. And for what kind
of functions does it hold. Then we will present the Poisson summation formula in
terms of tempered distribution. And then, we will state and prove Cordoba’s first

result.

2.1 Poisson summation formula

Theorem 2.1. Suppose that f € L*(R), then the series

F(t)= > f(t+n)

neZ

converges in L0, 1] and is a period 1 function. The Fourier coefficient is obtained

as

A~ A~

F(k) = f(k), kel

A~

In addition if Y, |f(n)| < oo, then the Fourier series of F' converges and we have
nez
the almost everywhere equality

F(#) = Yt +n) = Y fm)em.

neZ meZ
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Proof. Let N € N and t € [0, 1]. Consider the partial sums

N

Fy(t) = ) f(t+n).

-N

Then
1
[ Fnerx — Fnlloioa) < Z f\f(t—i—nﬂdt
N<|n|<N+K*,
< | e

|z|>N

which tends to 0 as N, K tends to infinity since f is an L'(R) function. So

Fy — F e L'[0,1].

Next, by Dominated convergence theorem we have

1

F(k) = J <Z flt+ n)> e 2kt gy

0 nez

1
= ij(t +n)e 2Tkt
0

nez

n+1

_ Z f f(11,)6727rik(xfn)d'r

nez

_ ff(l’)e_%rilmdl‘

~

— f(k).

~

If >7|f(n)] < oo, then the Fourier series of f convergence uniformly to an

neZ

L0, 1] function g. By the uniqueness of Fourier transform, g = F a.e. Therefore,

F(t) = Zf(t +n) = Zf(m)e2”mt a.e.

nez meZ

If f is continuous,

F(0) = Y. f(n) = D} f(m)

neZ meZ
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There are many applications of Poisson summation formula. One of the ap-

plication is Benedicks theorem, which states that

Theorem 2.2. Let f € L'(R) be such that

~

[supp(f)|[supp(f)| < o0

Then f =0 a.e.

Proof. Let us assume that f, fe L' n Cy(R). And by using dilations assume that
[supp(f)[ < 1.

A~

Let A:={zeR: f(z) # 0} and B:={{eR: f(&) # 0}. Let

G() =D xB(€+n)

neZ

where yp is the indicator function of the set B. Then

1

J Z xB(€ +n)d¢ = |B| < .
0 nez

So G(§) is finite almost everywhere. It follows that there exists a subset E <

[0,1], |E| = 1 such that for £ € E, ({ + Z) n B is a finite set.

For each n € E, define a 1 - periodic function

an(x) _ Z f(ZL' + n)e_an(aH_n).
nez
Then ¢, € L'[0,1] and g/b;(k‘) — f(n+ k). Since |B| < o we have that supp(gﬁ;)
is finite for a.e n € [0,1]. Hence ), _, ]&;(nﬂ < o and by Poisson summation

formula we get

Sy(x) = dy(k)e>miok.

keZ
It follows that ¢, is a trigonometric polynomial and can have only finitely many

zeroes in [0, 1], unless it is identically zero.
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On the other hand, note that

|6y (2)] <D xalz +n)|f(z +n)
< |I£llo D xalz +n).

1
J ZXA(x +n)dr = |A| < 1.
0 n

Therefore, >, xa(x +n) <1lie. >, xa(z+mn)=0 for a positive measure. Hence
¢, = 0 for a positive measure. This means that for almost all € [0,1], ¢, = 0,
so f(n+n) =0aemne[0,1]. Hence f = 0 a.e. The result can be generalized to

L' functions since L' n Cy is dense in L

2.2 Cordoba’s first result

For a function f lying in appropriate function space, we have a Poisson summation

formula in n - dimension, i.e.

> fm) =37 k).

mezm kezm™

Hence for a Schwartz function, Poisson summation formula holds.

The Poisson Summation Formula in terms of tempered distribution is as fol-

lows,

(S/Z\n = 5Zn.

If ¢ € S(R) then
(8 = Y dm)

mezZmn

and

o (9) = ), ¢(m).

mezn
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Basically, a Poisson summation formula in terms of tempered distribution
means that if gy = dz» is a tempered distribution as well as a measure supported

by Z" then its Fourier transform is also a measure.

Definition 2.3. A set A < R" is called uniformly discrete if

d(A):= inf [A=XN|>0
AMNEANAN

Can we find any other uniformly discrete sets X of R™ such that if a measure
1 supported by X is a tempered distribution and its Fourier transform is also a

measure. The next proposition gives the answer.

Proposition 2.4. If A : R* — R" is an invertible linear transformation and if
X =AZ" and Y = (A~Y)YZ", then the Poisson summation formula for the sets X

and Y 1s
(2.1)

Proof. Let ¢ be a Schwartz function on R" and x € X (i.e. z = Az for some

z € Z"), then we have that

r

J ¢(y>6—2m'<y,x>dy

o(a)

J ¢(y)672m'<y,Az>dy

r

J ¢(y>6—27ri<(A)ty,z>dy

l

Since we know that < y,Az >=< (A)'y,z >. Now by substituting y = (A®)"!s

we get,

) = g | AAY e
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where 1 (z) = ¢((A")"x). Therefore, we get

0x(6) = Y 6(x)

reX

hence proving the proposition. [ |

Are there any sets other than lattices for which a Poisson summation holds?
Cordoba tried to investigate this assuming different conditions. His first result is
stated below.

Theorem 2.5. Let X = {xx} and Y = {yx} be uniformly discrete subsets of R",
and let {c;} be positive real numbers. Let ji1 = Y, 0y, and po = Y0, be tempered
distributions. If fiy = uo, then there exists a linear transformation A : R* — R
such that X = AZ™ and Y = (A=1)'Z" with det(A) = 1. In particular, c; = 1.

Proof. We will prove this theorem for the case of dimension 1. The theorem in
1 dimension means that X = Z and Y = Z. So only Z can satisfy the above
hypothesis.

Consider a continuous positive function ¢ with supp(¢) < [—1, 1], and such that

$(0) = 1,0(¢) > 0VE € R, ¢(0) = 1 and ¢ < ¢(1 + |¢])"=%. For example, let
2
¢ = (1 —|z|(=1,1)). Then $(§) = (%) . And ¢ satisfies all the mentioned

properties.

1. We claim that under the hypothesis, 0 e X & 0€Y.
Suppose 0 ¢ X. Now choose €y > 0 such that d(X,0) > €. Then for all

0 <e<e, |zp|/e > 1.

0= Zc@(%) = €D dlem) >0,
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Which gives us the contradiction. By similar arguments we can show that
0OeY.

2. We show that z;.y, € Z for all j k. Let,

¢a,b,e<$> _ 627ria:c¢(6—1(l, o b))

Then,
Pape(€) = e ™EDG(c(€ — a))

Fix b = z; and let € < m1£{|xl — 2%|}. Then we have,
1

2 ckgba’mj,e(xk) = Z Ck627ria:ck¢<€—l(xk o ZL'])> _ Cj627ria:cj

k k

— e 3 o205 ¢y, — a)
k

Hence,

€ . A~
1= = 3" 2 g e(y, — a)).
Cj A

Taking x; = 0, we also get,

€ ~

L= — > o(e(ys — a))

Cjk

and by comparing we get ™% = 1 and so yy.z; € Z.

3. Choose t = x; such that ¢ is minimal and ¢ > 0.
Let, Az; = t1 = A =[1]. Put, 5% = (A" Yy = yr. By Poisson

summation formula, we get,
£ Bt — a)) = 1 (2:2)
Taking a = y, we get,

t6(0) +t > Sty — r,)) =1 = t< L.
k+#kg
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Since tyy € Z we can write y, = my/t. Integrating both sides of (2.2),
2 P ~
o= | e at - ada
E2 2k

=3 [ bttt - a))da

Choose z = t(yy — a), we have

But since ¢(u) > 0, we must have U[t(y; — D tlye +3)] = Ulmy —t/k, my +
t/k] = R a.e. Hence,t =1 & {yx} = Z. Now since x;y;, € Z Vj we also have
{Jik} = 7.



Chapter 3

Cordoba’s second result

3.1 Introduction

In the previous chapter we have seen that the only uniformly discrete sets which
hold a Poisson summation formula with equal Dirac masses are lattices. In other
words, if p is a measure with equal Dirac masses and if ji is also a measure with
Dirac masses equal to 1, then the support of i has to be a lattice. And it turns out
that the masses of p is also equal to 1. In Cordoba’s second result the restriction
on Dirac masses is relaxed to some extent. In this chapter we will prove Cordoba’s

second result.
Before that let us look at an example.

Example 3.1. Consider the two disjoint lattices Ay = 1/2+27 and Ay = Z and let

A=Ay Uy Let ay,as be distinct complex numbers. Now, consider the tempered

uzalz&ﬁ—agZ(Sy

IGAl y€A2

distribution

Let us analyze how the fourier transform of u looks like. Let ¢ € S(R).

A(0) = n(d) = a1 Y. o) +az Y. d(y) (3.1)

zeN yeAa

13
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Observe that for the latter sum of R.H.S we can just apply PSF of Z. Let x =
1/2 + 2n, then

o) = 6(1/2 + 2n)
= (1/2)(6(y/2)e ™) (n)

By applying PSF we get

S10(@) = 2(1/2)(@w/2)e ™2 () = Y (1/2)(6(n/2)e ™)

xeN nez nez

= (1/2) Y} d(m)e ™™

meZ/2

Therefore,
fi= 0 (a1/2)e ™5, + > asd,. (3.2)

meZ/2 nez

We see that supp(i) < Z v Z/2, which is a uniformly discrete set.

We can write Z = 27 n (1 + 2Z). Then
= Z {(a1/2)e_mm + (az/2)(1 + 6_2”"”)]5%
Hence supp(ir) < Z,/2.

In the above example for a distribution, whose support is union of two disjoint
lattices having two distinct masses, has a Fourier transform whose support is again
a uniformly discrete set but with different masses. Now we can ask what happens
if we consider a distribution with support being finite disjoint union of subsets of
R™ having distinct masses and assume that its Fourier transform is also a measure
with different masses. It turns out that the support of such distribution is a finite
superpositions of periodic structures. Cordoba has proved that the support has
to be a finite disjoint union of translates of full dimensional lattices. Let us state

and prove Cordoba’s result.
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3.2 Preliminaries

This section contains lemmas and statements which are used to prove Cordoba’s

result.

Definition 3.1. A ring of sets is a family of sets closed under unions and set

theoretic differences. That is, a family of sets R is said to be a ring if

1. geR
2.ifA)BeRthen AUBeR

3. if A, BeR then A\Be R.

One of the most important lemma that will be used in the proof of Cordoba
is by P. Cohen for idempotent measures on a group G. The lemma is stated below

without the proof.

Lemma 3.2. On locally compact abelian groups G
W = p <= supp(fi) € coset ring of dual group of G.

i.e. supp(fi) is the finite union of sets of the form (x + H)\(x3 + Hy)\(xo +
Ho)\ ... \(xs + Hg) where x,x1,...,Xs € G and H,H,,...,H, < C.

Before we go to the next lemma let us look into a definition which will be
needed in the next chapter also. Observe that any ball of radius 1.5 in R it

intersects the lattice Z. Such a set is called relatively dense set.

Definition 3.3. A set S ¢ R" is said to be relatively dense if there is R > 0

such that every ball of radius R in R” intersects S.

Any lattice is a relatively dense set.

Lemma 3.4. Let {z;} < R" be a discrete subset which is not relatively dense, and
suppose that p = Y a;0,; is a tempered distribution whose Fourier transform [i

can be expressed in the form ji = Y byd,, and satisfies the condition

Z |bo| < C < 0, for every unit cube @ € R" (*)
Ya€Q

Then p = 0.
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Proof. A set S is not relatively dense if for every positive number ¢ one can find a

ball B(z;t) which is disjoint with the set S.

Let 1 € S(R™) be a Schwartz function whose supp(¢)) € B(0; 1) and 12(0) =1
We can choose 1 to be a bump function which has the above mentioned properties.

Now, for a fixed y; consider the function

P(z) = emivro)y) <—x - Zt>

t

where ¢ > 0 and 2 is such that B(z;t) n {x;} = ¢. Since |[*7=| > 1V z; and
supp() € B(0; 1), we have that

which gives

0= thba‘i’(t(ya — ) )e2miz(Wa=yr))

«

which implies that

be = 3 bal(t(ya — yo))elmim o)
a#k
This yields,
1Ok < > 1bal ¥ (#(ga — wa))] -

a#k

Take the limit when t goes to infinity and use the condition (*) to get by = 0.
Now, we have that i = 0 and therefore, u = 0. |

Before going to the next lemma, recall that the only discrete subgroups of
R™ are lattices. Also, a subgroup H of R™ is not discrete if and only if each

neighbourhood of 0 in R™ contains infinitely many elements of H.

Lemma 3.5. If A = (x+ H)\(z1+ Hy)\(za+ Ha) ... \(x, + H,) # @, is a uniformly
discrete set, where x,x1,...,x, € R" and H,Hy,...,H, < R"™. Then H 1is a

discrete group.

Proof. We will prove this by induction on r.
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Let r = 1. If (t + H) n (21 + H;) = 0 then A = (x + H) and H has to be

uniformly discrete if A is uniformly discrete.

If (x+ H)n (x; + Hy) # ¢, then there exists elements h € H,hy € H; such
that x + h = 21 + h;. We have

(x+H)n (1 +H)=x+h+HnH

and

A=uz+ (H\(h+ H n Hy))
Since H is a disjoint union of cosets of H n Hy, we have that A is uniformly
discrete implies that H n H; is discrete.

We claim that H is discrete. If not, then each open ball B(0;s) in R™ must
contain infinite number of points in H. Since h + H n H; is discrete, B(0,s) N
(h+ H n H,) is finite. Therefore, (A — z) n B(0;s) is an infinite set. This is a

contradiction since A is a uniformly discrete set.

If r > 1, then we have that
A=@+H\x1+H)n...oo(e+H\ .+ H,) #0

A is uniformly discrete implies that at least one of the set (x + H \ x; + H;) # ¢
is uniformly discrete. Therefore, by the case r = 1 we get that H is a discrete

subgroup. [

Lemma 3.6. Suppose B = {eq,...,e,} are linearly independent vectors in R™.

Then for every r > 0 the set
D, ={v="Fke +...+kpen | dv,Z") <r; kjeZ,j=1,...,m}

cannot be contained in a finite union of (m — 1) dimensional planes.

Proof. The lemma says that the set of all points of the lattice generated by B
which is at a distance of less than r from the lattice Z™ cannot be contained in

finite union of (m — 1) dimensional planes of R™. Proof is by induction on m
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and using the theorem of Hermann Weyl stating that (k6, ..., kf;) is uniformly

distributed modulo 1 if {1,6y,...,60,} are linearly independent over the rationals.

Case : m = 1. If e; has all rational coordinates, then consider k € Z such that
ke, has all integer coordinates and belong to Z". Hence, for any » > 0, D, has
infinitely many points. If e; has s > 1 distinct irrational coordinates, by Weyl’s
theorem (k6y, ..., k0;) is equidistributed modulo 1 and hence dense in [0,1]°. By

this we can conclude that D, has infinitely many points.

Case: m > 1. Let it be true for m —1 . Fix k,,, then {v = kie; +... + kpen}
is contained in an m — 1 dimensional plane. Now, by the first case there are
infinitely many k,, such that d(k,,, Z") < r for each r > 0. This concludes that

D, cannot be contained in a finite union of (m — 1) dimensional planes. |

3.3 Cordoba’s Result

Definition 3.7. Let R" be the dual of the group R"” with compact open topology.
Consider the space R" with discrete topology and call it @. The dual of H/RE‘ is
called Bohr compactification of R" and denoted by bR".

Note that the bR™ is compact with respect to compact open topology and R"™
is dense bR™. Recall Banach- Alaoglu theorem and Riesz representation theorem

which are stated below.

Theorem 3.8 (Banach- Alaoglu). The closed unit ball with respect weak* topology

15 compact for a Banach space B.

Theorem 3.9 (Riesz representation theorem). Let X be a compact hausdorff
space. Let C(X) be a linear space of all continuous real valued functions X with
supremum norm and Radon(X) be a linear space of signed Radon measures on
X with total variation as its norm. Then (C(X))* = Radon(X), where = is an

isometric isomorphism of linear spaces.

Cordoba’s result has been introduced earlier in this chapter. Now we will

state and prove the result.

Theorem 3.10. Let the set A = 61/&]- be a finite disjoint union of subsets of R"
Jj=

such that A is a uniformly discrete set
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Given distinct complex numbers {a;};—1,. N consider the tempered distribution
N
=200
j=1 CEGA]'

Assume that the Fourier transform [i can also be expressed in the form of

= Zba‘sya

and satisfies the property

Z |bo| < C < 00, for every unit cube Q € R". (*)

Ya€Q

Then we have that each set A; is a finite disjoint union of translates of n— dimen-

stonal lattices.

Proof. We will prove this theorem for the case when N = 2.

Let W be the function which was chosen in lemma 3.4. For each positive

integer M, consider the measure,

=it S ()

The condition (*) implies that for each M, v, is a measure of finite total variation

and is bounded uniformly on M: ||v,|| < ¢ < 0.

There is a natural extension of v,, as a finite measure v in bR" i.e. the
restriction of 7,, to R" is same as v,,. By Riesz representation theorem and
Banach Alaoglu’s theorem, there is a subsequence which we shall also denote by

{Vm}, which converges to a finite measure v in weak* topology.

We have that

>

(¢) = lim var(C) = lim U(M-) = pu(C)

= lim [ay DIU(M(C—2) +az Y, U(M(C—x))].

xeA xeAo
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Therefore by Riemann-Lebesgue lemma we get

ai, lfCEA]_
v(C) =X ay, ifCeA,
0, if¢¢A.

As a next step, we claim that for each A;, there is a finite measure p; on bR"

satisfying
() =1, if Ce Ay p;(Q) =0, if (¢ A
To prove this, consider 1h = U * U — aqD.

. ai — ajay, ifC ey

0, i ¢ Ay

Therefore the measure py = — 1

v satisfies the above mentioned properties for
az—aiaz

As. Similarly, take 75 = U« v — asv and the measure pu; = Uy for Ay

a%—alag

Observe that pq and pse both are idempotent measure whose supports are A4
and A, respectively. Therefore we can apply P. Cohen’s theorem to conclude that
A1 and A; belong to the coset ring of R™ with discrete topology which is the dual
group of bR™.

That is, each A; is of the form

A= (z+ H\(z1 + H)\(@s + Hy) .. \(z, + H,) # 0

and by 24 4.1, H is a discrete subgroup of R" (with usual topology), which is a

lattice. Furthermore, 3 elements h; € H; such that

A=x+{H\(h1 + Hn H)\...\(h, + Hn H,)}.

Note the fact that if G; < G5 where Gy is a discrete and if G; and Gy have

same dimension as lattices then G5 = finite union of cosets of (.
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Using this fact we can write
A=l’+{(y1+K1)U...U(ys+Ks)}\A1

where K ... K, are subgroups of H having same lattice dimension as H and A;

is contained finite union of hyperplanes.

Consider the identity: for any sets Xi, X5, Y7, Y5
(X1\Y1)u(Xo\Ys) = X1 uXo\ [(Xon XinY)u(Xi°nXonYsy)u(YiInYs)]. (%)
(*) yields that each A; can be written in the form
Aj = (x1+Hy)...(x + H) v B\ By

where H; are n-dimensional lattices of R™ and the discrete sets By, By are contained

in finite union of hyperplanes.
Let us express each A; as disjoint union of translated lattices.

Suppose that (z;+ H;) N (zx+ Hy) # 0, then there exists elements h; € Hy, hy, €
H,. such that x; + h; = x;, + hy, that is:

(x;+ H)) n (g + Hy) = + hy + Hy n Hy,

(:L‘l-i-Hl)U(ZEk—i-Hk):Jil—i-hl-i-Hlqu

We claim that ; is uniformly discrete implies that H; n Hj, has dimension n. If it
is not so, we can assume that H; = Z" after an application of an invertible linear
transformation 7.

Hy = {mje; + ... + mye, | m; € Z}

where e; = (0,...,60%) and at least one of the 49;» is not rational. If all them are

rationals, then Hp n Z" is n dimensional which is contrary to our assumption.

But, an application of 24 4.2 yields that the set
{reH,|Iye H, 0<d(x,y) <r}

cannot be contained in finite union of hyperplanes. Therefore, H; U Hj\B cannot

be a uniformly discrete set for any set B which is contained in a finite union of
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hyperplanes. This is a contradiction, since it tells us that A; is not uniformly

discrete.

Further, if H; n H; # ¢ and has dimension n, then H; u H; = finite disjoint
union of cosets of H; n H;, # ¢. After a finite applications of this procedure we

can write each A; as
Aj=(z+Y)u...u(zm+Y,) vl \ Cy

where the n dimensional lattices (zx + Y%) are disjoint and the discrete sets C, Cy

are contained in finite union of hyperplanes.

Now, consider the sets
A=(zn+Y)u...U(zm+Yn)

Define the measure pu; = ay Y, 6, + ag Y, 6, . By using the Poisson summation
IEA’Ik xe/\;<

for lattices mentioned in previous chapter, we have that i is a measure satisfying
the condition (*). In that case p — p; is also a measure whose Fourier transform
satisfies (*). The support of y — py is contained in a finite union of hyperplanes
and hence is not relatively dense. By lemma 3.4 conclude that 4 = p; and we

must have A; = A} for j = 1,2. This concludes the proof. [ |

For the case when N > 2 the same steps can be followed for the proof.

As shown in the example 2.1, since A; U Ay is a uniformly discrete set we
were able to write it as union of cosets of a common lattice. But is it true in
general. Cordoba’s theorem only concludes that each A; is a finite disjoint union

of translates of n—dimensional lattices. But J.C. Lagarias says something more.

He remarks that since A is a uniformly discrete set then there is a common
lattice L such that each of the A; is a union of cosets of common lattice L. Indeed,
since disjoint union of such translates (L; 4+ a1) U (Lg + az) cannot be uniformly
discrete unless both can be written as a finite union of cosets of a common full

rank L. This follows from Kronecker’s theorem in Diophantine approximation.

Let us look at it in the dimension 1 case. Kronecker’s theorem says that given

any real x, any irrational # and any € > 0, there exists integers h and k > 0 such
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that
k0 — h — x| <e.

Without loss of generality assume that Ly = Z and let Ly = SZ. If 5 = p/q, a
rational number, then L; and Ly can be written as a union of cosets of a common
lattice, i.e. Ly =pZu...u((p—1)+pZ) and Ly = pZ v (p/q+pZ) U ... v ((g —
1/q)p + pZ). Hence nothing to prove.

Let 8 be an irrational then (L; + a;) U (Lg 4+ ag) cannot be written as union
of cosets of a common lattice. Let x = a1 —a; and # = 5. By Kronecker’s lemma,

for every € > 0 there exists h, k € Z and k > 0 such that
kB —h—a; +as| <e = |(kf+a2) — (h+a1)| <e

where (k5 + ay) € (ag + L) and (h+ aq) € (a; + L1). This proves that (L +ay) U

(L2 + ag) is not uniformly discrete.

What happens if we relax all the conditions on Dirac masses. Nir Lev and
Olevskii have ivestigated this hypothesis. We will see their result in the next
chapter. [ |



Chapter 4

Quasicrystals and Poisson

summation formula

4.1 Introduction

In 2014 Nir Lev and Alexander Olevskii characterized the measures on R for
which both their support and spectrum are uniformly discrete. A similar result
was obtained for positive measures in R”. But we will only understand the former

characterization. We will also study an important object known as “Meyer sets”.

Definition 4.1. Spectrum of a tempered distribution p denoted by spec(p) is the

support of its Fourier transform.

Let A < R" be a uniformly discrete set. Consider a complex measure p on

R™ supported on A:

=" 1(N)dx, p(A) # 0, d(A) > 0. (4.1)

Assume that p is a tempered distribution and its Fourier transform is also a

measure supported by a uniformly discrete set S:

n= Zﬁ(s)és (4.2)

seS

The set S is the spectrum of the measure p.

24
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Theorem 4.2. Let p be a measure on R satisfying 4.1 and 4.2. Then the support
A is contained in a finite union of translates of a certain lattice. The same is true
for the dual lattice S.

Before we proceed we will need some preliminaries.

Notation: Denote B,(z) := {y € R" : |y| < r. And for B,.(0) we simply
denote it by B,.

By a “distribution” we mean a tempered distribution on R". By a “measure”

we mean a complex, locally finite measure which is also a tempered distribution.

Lemma 4.3. Let p be a measure in R™ supported by a uniformly discrete set A.

Then p is a tempered distribution if and only if
] < C(1+ [AY), Ae A
for some positive constants C' and N .

Proof. Let ¢ be a Schwartz function such that supp(¢) < Bs where § = d(A) and
¢(0) = 1. Let u be a tempered distribution. Then there exists constants B, N > 0
and N € Z such that |u(¢)| < B||¢||y, V¢ € S(R™). Let ¢ = ¢p(x — X). Then we
get that

loally < C"(1+ AN @llx-

And we also have that (1 + [A\)Y < O(1 + |A\|Y). Therefore, combining all these
we get

)] = (@)l < BC'(1+ A)Ylly < C1+ [N,

Conversely, let [u(\)| < C(1 + [AN), A e A. Let ¢, — ¢ in Schwartz space.
Then,

< D rM)ln(A) = ¢(V)]

AeA
<CY 1+ AM6n(N) = 6]
AEA
< C/Z‘|¢n - (bHN
AeA

As n — o the R.H.S of the above inequality tends to zero. Hence p is a tempered

distribution. [}
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Lemma 4.4. Let i be a measure in R™ satisfying 4.1 and 4.2. Then

sup|p(N)] < 0. (4.3)
AEA

Proof. Let ¢ be a Schwartz function such that (g(O) =1 and supp(gg) < Bs, where
d =d(A) > 0. Then

O] = ()] = ()] < D))

seS

By Lemma 4.3 there are constants C, N such that |fi(s)| < C(1 + |s|"). Then

seS

] < Y le)ICA + |s]Y) < JW(%)IC(l + |2|™)dz (4.4)

Since ¢ is a Schwartz function the R.H.S of 4.4 converges.Thus proving the lemma.

Definition 4.5. Let A < R™. Then the upper and lower uniform densities are

defined respectively to be

AnB

D*(A) := lim sup sup #(A 0 Br(z))
R—w  xeR® | Bg|
AnB

D7 (A) :=lim inf inf #(A 0 Br(x))
R—o0  zeR™ ’BR‘

The following version of density is also needed.

Dy(A) := llfr%rlglf B

Clearly we have that D~ (A) < D#(A) < DT(A). If A is a uniformly discrete
set then the above densities are finite. Let d(A) = ¢. Then the open balls of radius
d/2 around each A € A n Bg(z) are all disjoint for any x € R™ and for any R > 0.
They lie inside the ball of radius R + 6/2 around x. This gives us the volume
bound #A N Bg(z) < (22 + 1) uniformly for all 2. Thus

Ssu
o |Bal

S \0 R
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for some constant C' > 0. Hence,

AnB 2\"
lim sup Sup#m—R(x) < C’<—> < o0.
R—ow  zeRn | BR| 0

Threfore, all the other densities will also be finite.

Also Dy and D~ are super additive because lim inf is super additive and D™

is sub additive because lim sup is sub additive.

Clearly we have that all the above mentioned densities are translation invari-

ant.

4.2 Delone and Meyer sets

Recall the definition of relatively dense set from the previous chapter.

Definition 4.6. A < R" is called Delone set if A is a uniformly discrete set and

relatively dense set.

This means that the atoms of a Delone should not be too close to each other
as well as they cant be too far from others. For example any lattice is a Delone

set since it is uniformly discrete as well as relatively dense set.

Definition 4.7. A < R" is called a Meyer set if A is a Delone set and there is a
finite set F' such that A — A c A+ F.

Meyer has termed the set A with the above defined property as ‘Quasicrystals’,
but other mathematicians use the term ‘Meyer sets’ itself. Any lattice I' is also a

Meyer set since I' —I" = I'. For a lattice we can take F' = 0.

Lagarias has proved that A is a Meyer set if and only if A — A is a uniformly

discrete set. Nir Lev and Olevskii prove a stronger result stated below:

Lemma 4.8. Let A < R" be a delone set, such that D" (A — A) < o . Then A is
a Meyer set.

Proof. Without loss of generality we may assume that 0 € A. Since by translating
A to A — z leaves A — A unchanged and F' is replaced by F + x, for any = € R".
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Since A is a Delone set and D" (A — A) < o0, we can fix R > 0 such that every

ball of radius R intersects A and for all » > R we have,

sup #(A — A) n B,(x) < M. (%)
zeR"
Let he A—Aie. h =y—x for some x,y € A. Choose a sequence xg, x1,...,Ts

such that xy = z,z, = 0, |x; — x;41| < R. Let y; = x; + h, then we have that
Yo =1Y,Ys = h, |yi — yis1| < R. Choose p;, q; € A such that |p; — ;| < R, |q; — yi| <
R(0 < i <'s). We can always find such p;, ¢; since A is a relatively dense set. Let
us take pp = x,qy = y and p; = 0. Consider the set F} = (A — A) n Bsg. We have
that
[pi — piga| < |pi — @il + |2 — 21| + [piy1 — 1| < 3R

Similarly, |¢; — ¢i+1| < 3R. Therefore, p; — pit1,¢ — giv1 € F1(0 < i < s). We see
that Fy is a finite set by (x).

Set hl =d{q; — P;- Then

hi — his1 = (¢ — qiv1) — (pi — piv1) € F1 — F1
Also
|hi — R = [(qi —yi) — (pi — )| < 2R,

hence
h,l' € V(h) = (A — A) N (h + B2R).

Again by (%), we obtain #V(h) < M. Thus the sequence hg, hy,...,hs has at
most M distinct values. Hence the sum

ho —hs = (ho —h1) + (b1 — he) + ... 4+ (hs—1 — hs)

can be expressed as a sum of at most M — 1 terms. Each of the term (h; — hiy1)
is an element of F; — F;. And hg — h, € F' where

N
F:={>wlvje = F;, N <M -1}
j=1

Hence
h =hy=ho+ (¢s— hs) =qs + (ho — hs) € A+ F.
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This proves that A — A < A+ F, so A is a Meyer set. [ |

Remark 4.9. The similar arguments can be used to prove the Lagarias’ result.
Instead of bounding the number of atoms in V' (h) using density we can use the
fact the A — A is a Delone set. That is, let " = d(A — A) then the open balls of
radius % around each w € V(h) are all disjoint and lie inside the ball of radius
2R + %/ around h. This gives us the volume bound #V (k) < (22 +1)". Rest of

the arguments are same as the above.

The key concept in the proof of theorem 4.2 is “model sets”. Meyer introduced

model sets in 1972, constructed using “cut and project” method.

Let T' be a lattice in R™™™ = R™ x R™ (m > 0). Let py,p> denote the
projections onto R™ R™ respectively. Choose I' such that p; restricted to I' is
injective and po(T") is dense in R™. Let € be a bounded set in R™.

Definition 4.10. Under the above assumption, the model set M defined by T"
and €2 is the set

MR™ x R™, T, Q) := {p1(7) : v e [, p2(y) € Q.

Note that in the case when m = 0, R™ is taken to be {0} and the model set

we get is just a lattice in R™.

Lemma 4.11. A ¢ R" is a relatively dense set if and only if there exists a compact
set K such that A + K = R™.

Proof. This is easy to see. If A is a relatively dense set then there exists R > 0
such that for any x € R", Bg(x)n = ¢. Let K = By and let y € R”. Then there

exists a A € A such that |y — A| < R. Hence y € Bg(\).

Conversely, there exists an R > 0 such that K cp (z) for some z € R". Hence
for any y € R™, there exists A € A such that y € A + K. Thus, A € Bg(y) and the

lemma is proved L

Next, we can ask questions about the structure of Model sets. Are atoms
of models sets spaced very closely or are sparsely spread. The next proposition

addresses this.

Proposition 4.12. Any model set M = IM(R™ x R™, T, ) is a Delone set.
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Proof. Consider the set M, := (M — M) n B,, where r > 0. To prove that M is
a uniformly discrete set, it is enough to show that M, = {0}, for small enough 7.
Indeed since, M, = {0} for small r implies that 0 is not a limit point in A—A. This
tells us that there does not exist any distinct Ay, Ay € M such that [\ — Ao| < 7.

For each r > 0, K, := B, xQ— is a compact set in R” xR™. For small enough
r, K, nT' = {0}. Otherwise, 0 would be limit point in I which is not possible.
For such r, if A\j, \p € M (there exists unique A}, A such that (Ay, \}), (Mg, A) € T
and A}, N, € Q) is such that |[A\; — Xg| < 7, then (A} — A, A} — Ay) € K. nT'. So,
A1 = A9, which proves that M, = {0}. Thus, M is a uniformly discrete set.

Let us prove that M is a relatively dense set. All we need to find is a compact
set C such that C'+ A = R". Let C; and (5 be compact subset of R” and R™
respectively such that, I' + C; x Cy = R™ x R™. Since po(I') is dense in R™,
pa(I") + (=) = R™ and this forms a cover for the compact set Cy. Hence there
exists a finite set F' < I' such that Cy < | J (p2(f)+(—)). Let C = C1—py(F). We

feF
have R" xR"™ = I'+Cy x (po(F)+ (=) = '+ (C1—p1(F)) x (=Q) = '+ C x (—0Q).
Now each (z,0) € R" x R™ can be written as

(,0) =7+ (¢,~w), veTl,ceC,—we .

Hence, (x — ¢,w) = v and = € ¢ + A, since pi(y) € A. Therefore, C + A =R". R

It turns out that model sets are Meyer set, proof of which is skipped. But let

us understand this from an example in dimension 1.

Example 4.1. Let «, 8 be distinct irrational numbers. Consider the invertible

()

The image of Z? under this linear transformation is the lattice I' which has the

linear transformation A, where

property that p; restricted to I' is one-one and the po(I") is dense in R,

Let us take o such that =~ < o < 1 where k € N and 8 = %1 Now let us

k1 k
take @ = [0,1]. And let
M = MR x R,T,Q).
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By Proposition 4.12, we have that M is a Delone set. Let us prove that its a
Meyer set, i.e. we need to find a finite set F' such that M — M < M + F.

Let us look at the elements of M. We have that n +ma € M where n,m € Z,
if n +mp e Q. That is, for n € Z and m € Z such that (n — 1)a < m < na, we

have n + ma € M. That is

M = {n+ |naja: (n—1)a < |nal}

Let us look at the each interval (i,i + 1), i € Z. Observe that there are at
least k integers and at most k + 1 consecutive integers such that na € (4,7 + 1).
Hence every integer i will occur as the coefficient of o such that ¢ = |la| and
(I = 1)a < |la] for some | € Z. Hence Vi € Z there exists [ € Z such that
[ +ice M.

Also, if | + |laja € M, then the next succeeding element of M is either
I+ k+ (la+Daor l+k+ 14 ([la] +1)a.

Now let us look at the elements of M — M. Let z€ M — M then z = x —y
where z = n+|naja and y = m+|maja be elements on M. Look at the coefficient
of a in x — y. Hence there exists an integer [ such that |na] — |ma| = |la]. By

using the following inequalities

we have that

l—k—-1<n—-m<Il+k+1

Now we take cases where n —m =10+ j and —k —1 < j < k+ 1. Then we have
that
l+7+|laja=75+((+|la]Ja)e M + F

where

Fi={—k—1—k—k+1,...,0,... kk+1)

Hence M — M < M + F and M is a Meyer set.
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R. V. Moody has characterized Meyer sets in his paper “Meyer sets and their
duals”. The following theorem gives a characterization of Meyer sets, proof of

which can be referred from Moody’s paper.

Theorem 4.13. Let A be a Delone set in R™. Then the following are equivalent:
(i) A is a Meyer set;
(ii) There ezists a model set M and a finite set F' such that A < M + F.

The next lemma is also stated without proof.

Lemma 4.14. Let M = M(R™ x R™, T, Q) be a model set in R™, and suppose that

the boundary of ) is a set of lebesque measure zero in R™. Then

mes(€2)
det(T")

D~(M) = D*(M) =

Lemma 4.15. Let M = 9M(R" x R™, ", Q) be a model set and F be a finite set in
R™. Then there is another model set M' = 9M(R™ x R™, IV, Y) and a finite set F’
such that

M+FcM+F, pI)nZ[F]={0}, T'cl

where Z|F'| is the additive group generated by the elements of F'.

Proof. Let fi,..., fs be the elements of F'. The vector space V = Q[F'| generated
by elements of F' is of finite dimension over Q. Let U := V n Q[p:(I")], a linear
subspace of V. Let W be any linear subspace of V' such that V = U + W. Then

each f; has a unique representation as f; = u; + w;, where u; € U,w; € W.

Since U < Q[p:(I')] we have f; = (Z)pi(7;*), where &t € Q, v+ € T' for

1 <i < s. Let g be the largest among ¢y, . .., ¢s. Then we can write f; = p1(7:/q).
Define,

Dim (Ul @ [ JQ@+ /e, F = ..o
i=1
We see that I is a lattice in R™™™ the restriction of p; to I is injective (if

p1(z/q) = p1(y/q) then pi(x) = p1(y) which implies x = y), and po(I”) is dense in
R™. The set €’ is bounded in R™ and F” is a finite set in R™. Also, clearly I' = T".

Let M’ be the model set defined by I'" and '. We need to show that M + F
M+ F. If \e M+ F then A = pi(y) + f;, v € I and ps(y) € Q. Further,
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A =pi(y +7;/q) + w;. We get this because f; = p1(7y;/q) + w;. Set v/ =~ +~,/q,
then 7/ € IV and po(') € €. Hence

A=p(Y)+wje M+ F.

Finally, observe that the set p;(I') N Z[F'] < Z[wy, ..., ws] € W. Also, if y is an
element of p;(I') N Z[F'], then clearly y € Q(p1(I')) and

y= Eniwi = an(fz —u) el
i=1 i=1
. Therefore, p;(I'") n Z[F'] = {0} and the lemma is proved. |

For the case when m = 0 the above lemma reduces to:

Lemma 4.16. Let L be a lattice in R™. Then there is another lattice L' and a
finite set F' such that

L+FcL +F, LnZ[F]={0}, Lcl

4.3 Proof of Theorem 4.2

Step 1 :

Our first step is to prove that A is a Delone set. We already assumed that A
is a uniformly discrete set. All we have to prove is that it is a relatively dense set.

For this we will need a lemma which will be stated without the proof.

Lemma 4.17. Given a > 0 there is an R depending on a such that, if a measure
v is supported by a uniformly discrete set Q in R, d(Q) > a, and if U vanishes on
a ball of radius R, then v = 0.

Let a = d(S). If A is not a relatively dense set, then 3z € R, ¥r > 0 such
that B,(z) n A = ¢. By applying the previous lemma to Q = S, v = [i we get that

i = 0, which implies © = 0. We arrive at a contradiction.
Thus, A is a Delone set.

Step 2 :
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Next, we will prove that A is a Meyer set.

Notation. For h = A\ — A\ € A — A, denote
Ap:=An(A=h)={ e A: X+heA}

Clearly A, is a non-empty subset of A since Ay € Ay,.

Let 1 be a measure in R satisfying the conditions 4.1 and 4.2. For each € A

define a new measure

o, o= Z,u (A + h)d (4.5)
AeA

Observe that it is a non-zero measure with supp(un) = Ap. Hence 4.5 becomes

iy 1= 2 (A (A + h)dy. (4.6)

)\EAh

By Lemma 4.4, sup |u(A)p(A + h)| < C for some constant C' > 0. Hence by
/\GAh

Lemma 4.3 puy, is a tempered distribution.

Lemma 4.18. Let a := d(S) > 0. Then we have spec(un) N B, < {0}.
Proof. Let ¢ € S(R) such that supp(¢) < B,\{0}. Now consider the measure
v=(6+0) B

Then the supp(v) < (S + (Ba\{0})) (S which is an empty set. Hence v = 0. Now

consider U
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It follows that for every h € A — A we have

fin(¢) = 0.

Thus spec(uy) is disjoint from B,\{0}. |

The above Lemma implies that i, vanishes on the open interval (0,a). This

is called a spectral gap.

Definition 4.19. A measure p is said to have a spectral gap of size a > 0 if the

Fourier transform [i vanishes on a ball of radius a.

The following proposition gives a necessary condition for which a uniformly

discrete set A to support a measure has a spectral gap in dimension 1.

Proposition 4.20. Let A = R be a uniformly discrete set, d(A) = 6 > 0. Assume
that A supports a non-zero measure u, such that i vanishes on an open interval

(0,a) for some a > 0. Then
Dy(A) = c(a,d),

where c(a,d) > 0 depends only on a and §.

To prove this we need the next lemma.

Lemma 4.21. Let A be a finite set contained in (—R, R)\(—0,0), where d(A) =
>0, R>1, and let a > 0. There is c(a,d) > 0 such that if (#A)/2R < c(a,?)

then one can find a Schwartz function ¢ with the following properties:

¢(0) =1, &(A) =0, spec(¢) = (0,a), supp(z)| < 1.

|z|>R

Proof. Assume that the number of points in A is even. Let n = # and € = n/R.

Define the polynomial
_ eiTr)\/R

z
P(z) = 1_[1 _ oitA/R

AeA
Then P(1) = 1. Using the fact that for |z| < 1

. X . X
sin(Z0)] = sin] 2 > [
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we have

2 R
max|P(z)| < — < | |~
|2=1] E\Zsm|ﬁ’; H])\]

If A is the set {jo : 1 < [j| < n} then right hand side is maximized. And also

using the fact that n! > (2)" we get

R2n R mn e 2eR
PRlssmrm<\5,) —\5) -
llfl;jfli\ (2)] §52n(nl)? ((5n> (55)

Given a > 0, we choose a Schwartz function 1 satisfying

spec(y) < (0,a), (0) =1, n:= |Sl‘1p1|1/)(><)| <L
x|=
Let ¢ be a Schwartz function such that such that spec(¢) < (0,a), ¢(0) = 1 and
let r be such that sup|¢(z)| < 1. Hence take 1) = ¢(rz) which has all the required

|z|=r

properties. Set
p(a) == P(™2) (¢ (x/R))I*L. (4.7)

Then ¢ is a Schwartz function, ¢(0) = 1, ¢(A) = 0 for A € A. In terms of tempered

—_—

distribution we have that $ = P(e"™/2) «1)(x/R) =. ..« (x/R) (|[R] + 1 times).We

can write
P(ei”ﬂ) = (9,2 4 qon — 1P Vim/ R L g
If ¢ € S(R) then
P(¢) = P(§) = azad(n/R) + az_16((2n — 1)n/2R) + ... + age(0).

Hence, the spectrum of P(e™/2) is contained in [0,e]. While the spectrum of
second factor of 4.7 is contained in (0, a/2), since spectrum of convolution is added.

Hence, if £ < a/2 then spec(y) < (0, a). Finally, we have

2¢e1 R
sup |¢(7)] < lv(i) ]
le|=R oe

If € is sufficiently small depending on a,d then the expression inside the square

brackets is smaller than one. Hence the lemma is proved.
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Let us now prove proposition 4.20

Proof. We will prove this by contradiction. Assume that Dg(A) < ¢(a,d), where
c¢(a, ) is given by Lemma 4.21. We will show this implies u = 0.

It will be enough to prove the claim for finite measures. The general case
can be reduced to this one by multiplying p with a Schwartz function ¢, such
that |¢| > 0 and spec(¢) < (—a/2,0). Consider a Schwartz function ¢ such that
supp(v) < (—a/4,0). Let ¢ = w/;/), which gives the required properties. Then
¢p is a non-zero, finite measure (by Lemma 4.3) supported by A. Since @ = ngS* m
and support of convolution is added up and thus has a spectral gap (0,a/2).

It will be enough to consider the case when 0 € A and to prove p(0) = 0 by
translating of p and A, since Dy (A — X) = Dg(A).

Let A; := An(—R;, R;)\{0}. Choose a sequence R; — oo such that (#A;)/(2R;) <
c(a,d). Such a sequence can be chosen since lim inf is limit of a non-decreasing
sequence. Let ¢, be the function given by the Lemma 4.21 with A = A; and

R = R;. Since [i vanishes on (0, a) we have
ji(g;) =0

We also have that

~

f(d5) = u(@;) = m(0) + > ;(N)p(N).

‘)\|2Rj

It follows that

) < 3 (V)|

[A=R;
The right hand side of the above inequality tends to 0 as j — 0 since p is a finite
measure. Hence ;4(0) = 0 which concludes that pu = 0. [

Since py, has a spectral gap on (0,a), by above proposition we have that
D#(Ah) = c, heA— A, (48)

where the constant ¢ > 0 depends on a = d(S) and § = d(A).
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Now let us prove that DT (A — A) < co. If we establish this then by Lemma
4.8, we get that A is a Meyer set.

Lemma 4.22. Let A be a uniformly discrete set in R. Suppose there is ¢ = ¢(A) >
0 such that Dy(Ay) > ¢ for every he A — A. Then D (A —A) < 0.

Proof. Let x € R. Suppose that hq, hs, ..., h, are distinct vectors belonging to the
set A — A n Bs(z), where 0 = d(A)/2. We claim that Ay, 0 A, = ¢, (i # j). Let

A € Ay, 0 Ay, and since A is a uniformly discrete set
hi—hj = ()\—Fhl)—()\—Fh])e (A—A)ﬁngZ {O}

which is not possible. Hence Ay, ..., Ay, are pairwise disjoint subsets of A. Since

D, is super additive, it follows that
N
D#(A) = ED#(Ah]) = CN.
j=1

This shows that
sup #(A — A) n Bs(z) < Dy(A)/c

zeR

Since lim sup is the limit of non-increasing sequence. Hence,

Dy(A)

DT (A—A) <
( ) o\ By

< Q0.

Thus by applying Lemma 4.8 gives that A is a Meyer set.
Step 3 :

All there is left to show is that A is contained in a finite union of translates

of some lattice.

Since A is a Meyer set, by Theorem 4.13 there is a model set M = M(R x
R™ T",Q) and a finite set I’ such that A © M + F. Then we would be done if we
show that M is a lattice in R, i.e. m = 0.

Lemma 4.23. Let A be a Meyer set in R. Suppose there is ¢ = ¢(\) such that

D*(Ay) > ¢ (4.9)
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for every h e A — A. Then A is contained in a finite union of translates of some

lattice.

Proof. (i) Let M = OM(R x R™ T, Q) and a finite set F be such that A < M + F.
By Lemma 4.16 we may suppose that

m(T) nZ[F] = {0}. (4.10)
Let X € A is such that
A=pi(v(A1) +0(A1) = pi(v(A2)) + 0(A2)

where v(A1),v(A2) € T, pa(v(A\1)), p2(v(A2)) € Q, 6(N\1),0(N2) € F. Since the

restriction of p; to I is injective and by condition 4.10 it follows that
Y(A) =7(A2),  O(A1) = O0(As).
Hence A admits a unique representation as

A=pi(Y(A) +0(A),  v(A) e T,p2(v(X) € Q,0(N) € F (4.11)

(ii) Let h e A — A, and suppose that A;, Ao € A;. Denote
)\; =X +h, Jj=12
Then from 4.11 we have that

hi= X=X = p(v(A) —v(N) + (0(A) = 0(%;)), 7 =1,2.

By the condition 4.10 and since the restriction of p; to I' is injective, we must

have
YD) = 7(A1) = v(A) = (M)

Thus we obtain that to each h € A — A there corresponds an element H(h) € T’

such that
YA+ h) —~v(\) = H(h), VYXeA,. (4.12)
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(iii) Let E := {pa(y(N\)) : A € A}. The FE is a bounded set in R™ since E < ().
Given any 6 > 0, we can choose a vector ( € E— E such that |(|* > diam(FE)*— 2.
Observe that

E—E = {p(H(h) he A A}

hence ¢ = po(H(h)) for some h € A — A. Let us fix such an h.

Now suppose that A\;, \s € A,. By 4.12 we have that
H(h) =~(A; + h) =~(¥;), j=1,2

This yields
C=p2(H(h)) =p2(v(A; + h) = (X)) j =12

By the parallelogram law we have that

[C1* + [p2(y(A2) = v(A))[* = %(Ipz(v(& +h) =) + (v + k) =7 (X))

< (diam(E))%.

This yields us that
p2(v(A2) = v(M)) P < 0.

Denote E(h) := {p2(v(N)) : A € Ap}. We conclude that for any given § > 0 one
can find h € A — A such that diam(E(h)) < J.

(iv) Let h e A — A and 6 > 0 be such that diam(E(h)) < . We may find an
open ball Bs(z) such that F(h) < Bs(z). Consider the model set

M’ = M(R x R™.T, Bs()).

Then we have that A, < M’ + F. Since D7 is sub-additive and invariant under

translations, this yields that
D (Ap) < (#F)(D* (M)
By applying Lemma 4.14 we get

D*(Ap) < (#F) (W>

det(T")
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If m > 1, then we may find elements h € A — A with D" (A},) arbitrarily small,
which is a contradiction to 4.9. Therefore m has to be 0 and hence M a lattice.
Since A € M + F, this concludes the proof. [ |



Further remarks

Cordoba, Nir Lev and Olevskii have assumed in the hypothesis that both support
and spectrum of a tempered distribution p are uniformly discrete sets. But Nir
Lev and Olevskii have further investigated the case when support is uniformly
discrete but the spectrum is just a discrete closed set and the case when both of

them are just discrete closed sets.

In the former case they proved that the spectrum also has to be uniformly discrete.
In the latter case, it turns out the support contains only finitely many elements of

any arithmetic progression.

It is also interesting to know that an Israeli scientist named Dan Shechtman re-
cieved Nobel prize for the discovery of Quasicrystals in chemistry. But in mathe-
matical terms, it was already discovered by Yves Meyer in 1970’s known as Meyer

sets.
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