Please use this identifier to cite or link to this item: http://hdl.handle.net/123456789/103
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKhurana, Dinesh-
dc.date.accessioned2013-04-30T13:10:19Z-
dc.date.available2013-04-30T13:10:19Z-
dc.date.issued2009-
dc.identifier.citationJournal of Algebra 322,(5),, pp. 1627–1636en_US
dc.identifier.urihttp://www.sciencedirect.com/science/article/pii/S0021869309003482en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.jalgebra.2009.05.029en_US
dc.descriptionOnly IISERM authors are available in the record.-
dc.description.abstractWe prove that the transpose of every invertible square matrix over a ring R is invertible if and only if R/rad(R) is commutative. Many other characterizations are obtained for such rings R in terms of U(R) (the group of units of R), including, for instance, c+ba∈U(R)⇒c+ab∈U(R), and 1+abc−cba∈U(R) (for all a,b,c∈R). We also consider a natural weakening of these conditions, namely, 1+abc∈U(R)⇒1+cba∈U(R), and show that, for von Neumann regular rings, this is a (necessary and) sufficient condition for the commutativity of R.en_US
dc.language.isoenen_US
dc.publisherElsevier B.V.en_US
dc.subjectNoncommutative ringsen_US
dc.subjectInvertible matricesen_US
dc.subjectTransposesen_US
dc.subjectJacobson redicalen_US
dc.subjectAdditive Commutatorsen_US
dc.titleRings over which the transpose of every invertible matrix is invertibleen_US
dc.typeArticleen_US
Appears in Collections:Research Articles

Files in This Item:
File Description SizeFormat 
Need to add pdf.odt8.63 kBOpenDocument TextView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.