
Please use this identifier to cite or link to this item:
http://hdl.handle.net/123456789/110
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Khurana, Dinesh | - |
dc.date.accessioned | 2013-05-01T04:44:38Z | - |
dc.date.available | 2013-05-01T04:44:38Z | - |
dc.date.issued | 2011 | - |
dc.identifier.citation | Algebras and Representation Theory., 15,(1) pp 195-200 | en_US |
dc.identifier.uri | http://link.springer.com/article/10.1007%2Fs10468-011-9276-4 | en_US |
dc.description | Only IISERM authors are available in the record. | - |
dc.description.abstract | We show that in a ring of stable range 1, any (von Neumann) regular element is clean. Our main results also imply that any unit-regular ring has idempotent stable range 1 (and is therefore clean), and that a semilocal ring has idempotent stable range 1 if and only if it is semiperfect. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Springer | en_US |
dc.subject | Idempotent stable range one | en_US |
dc.subject | Stable range one | en_US |
dc.subject | Regular elements | en_US |
dc.title | Rings of Idem- potent Stable Range One | en_US |
dc.type | Article | en_US |
Appears in Collections: | Research Articles |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Need to add pdf.odt | 8.63 kB | OpenDocument Text | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.