Please use this identifier to cite or link to this item: http://hdl.handle.net/123456789/1661
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSingh, Mahender-
dc.date.accessioned2020-11-17T04:33:50Z-
dc.date.available2020-11-17T04:33:50Z-
dc.date.issued2019-
dc.identifier.citationGeometriae Dedicata, 203(1), pp.135-154.en_US
dc.identifier.other10.1007/s10711-019-00429-1-
dc.identifier.urihttps://link.springer.com/article/10.1007/s10711-019-00429-1?shared-article-renderer-
dc.identifier.urihttp://hdl.handle.net/123456789/1661-
dc.descriptionOnly IISERM authors are available in the record.-
dc.description.abstractThe twin group Tn is a Coxeter group generated by n−1 involutions and the pure twin group PTn is the kernel of the natural surjection of Tn onto the symmetric group on n letters. In this paper, we investigate structural aspects of twin and pure twin groups. We prove that the twin group Tn decomposes into a free product with amalgamation for n>4. It is shown that the pure twin group PTn is free for n=3,4, and not free for n≥6. We determine a generating set for PTn, and give an upper bound for its rank. We also construct a natural faithful representation of T4 into Aut(F7). In the end, we propose virtual and welded analogues of these groups and some directions for future work.en_US
dc.language.isoenen_US
dc.publisherSpringer Linken_US
dc.subjectPure twin groupsen_US
dc.subjectTwin Groupsen_US
dc.subjectCoxeter groupen_US
dc.titleStructural aspects of twin and pure twin groupsen_US
dc.typeArticleen_US
Appears in Collections:Research Articles

Files in This Item:
File Description SizeFormat 
Need to add pdf.odt8.63 kBOpenDocument TextView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.