
Please use this identifier to cite or link to this item:
http://hdl.handle.net/123456789/1722
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Singh, Mahender | - |
dc.date.accessioned | 2020-11-17T11:14:57Z | - |
dc.date.available | 2020-11-17T11:14:57Z | - |
dc.date.issued | 2017 | - |
dc.identifier.citation | Bulletin of the Belgian Mathematical Society - Simon Stevin, 24 (4) | en_US |
dc.identifier.uri | https://projecteuclid.org/euclid.bbms/1515035011 | - |
dc.identifier.uri | http://hdl.handle.net/123456789/1722 | - |
dc.description | Only IISERM authors are available in the record. | - |
dc.description.abstract | Let G be a compact Lie group. We prove that if V and W are orthogonal G-representations such that VG=WG={0}, then a G-equivariant map S(V)→S(W) exists provided that dimVH≤dimWH for any closed subgroup H⊆G. This result is complemented by a reinterpretation in terms of divisibility of certain Euler classes when G is a torus. | en_US |
dc.language.iso | en_US | en_US |
dc.publisher | Project ecclid | en_US |
dc.subject | Lie group | en_US |
dc.subject | VG=WG={0} | en_US |
dc.subject | G-equivariant map S(V)→S(W) | en_US |
dc.title | Equivariant maps between representation spheres | en_US |
dc.type | Article | en_US |
Appears in Collections: | Research Articles |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Need to add pdf.odt | 8.63 kB | OpenDocument Text | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.