Please use this identifier to cite or link to this item: http://hdl.handle.net/123456789/1722
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSingh, Mahender-
dc.date.accessioned2020-11-17T11:14:57Z-
dc.date.available2020-11-17T11:14:57Z-
dc.date.issued2017-
dc.identifier.citationBulletin of the Belgian Mathematical Society - Simon Stevin, 24 (4)en_US
dc.identifier.urihttps://projecteuclid.org/euclid.bbms/1515035011-
dc.identifier.urihttp://hdl.handle.net/123456789/1722-
dc.descriptionOnly IISERM authors are available in the record.-
dc.description.abstractLet G be a compact Lie group. We prove that if V and W are orthogonal G-representations such that VG=WG={0}, then a G-equivariant map S(V)→S(W) exists provided that dimVH≤dimWH for any closed subgroup H⊆G. This result is complemented by a reinterpretation in terms of divisibility of certain Euler classes when G is a torus.en_US
dc.language.isoen_USen_US
dc.publisherProject eccliden_US
dc.subjectLie groupen_US
dc.subjectVG=WG={0}en_US
dc.subjectG-equivariant map S(V)→S(W)en_US
dc.titleEquivariant maps between representation spheresen_US
dc.typeArticleen_US
Appears in Collections:Research Articles

Files in This Item:
File Description SizeFormat 
Need to add pdf.odt8.63 kBOpenDocument TextView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.