
Please use this identifier to cite or link to this item:
http://hdl.handle.net/123456789/1725
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Singh, Mahender | - |
dc.date.accessioned | 2020-11-17T11:22:33Z | - |
dc.date.available | 2020-11-17T11:22:33Z | - |
dc.date.issued | 2018 | - |
dc.identifier.citation | Topology and its Applications, 249, pp. 112-126 | en_US |
dc.identifier.other | https://doi.org/10.1016/j.topol.2018.09.010 | - |
dc.identifier.uri | https://www.sciencedirect.com/science/article/pii/S0166864118302190 | - |
dc.identifier.uri | http://hdl.handle.net/123456789/1725 | - |
dc.description | Only IISERM authors are available in the record. | - |
dc.description.abstract | We describe a unified approach to estimating the dimension of f−1(A) for any G-equivariant map f:X→Y and any closed G-invariant subset A⊆Y in terms of connectivity of X and dimension of Y, where G is either a cyclic group of order pk, a p-torus (p a prime), or a torus. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Elsevier B.V. | en_US |
dc.subject | Borsuk–Ulam theorem | en_US |
dc.subject | Bourgin–Yang theorem | en_US |
dc.subject | Cohomological length | en_US |
dc.subject | Coincidence set | en_US |
dc.subject | Equivariant map | en_US |
dc.subject | Representation sphere | en_US |
dc.title | General Bourgin–Yang theorems | en_US |
dc.type | Article | en_US |
Appears in Collections: | Research Articles |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Need to add pdf.odt | 8.04 kB | OpenDocument Text | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.