Please use this identifier to cite or link to this item: http://hdl.handle.net/123456789/1725
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSingh, Mahender-
dc.date.accessioned2020-11-17T11:22:33Z-
dc.date.available2020-11-17T11:22:33Z-
dc.date.issued2018-
dc.identifier.citationTopology and its Applications, 249, pp. 112-126en_US
dc.identifier.otherhttps://doi.org/10.1016/j.topol.2018.09.010-
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S0166864118302190-
dc.identifier.urihttp://hdl.handle.net/123456789/1725-
dc.descriptionOnly IISERM authors are available in the record.-
dc.description.abstractWe describe a unified approach to estimating the dimension of f−1(A) for any G-equivariant map f:X→Y and any closed G-invariant subset A⊆Y in terms of connectivity of X and dimension of Y, where G is either a cyclic group of order pk, a p-torus (p a prime), or a torus.en_US
dc.language.isoenen_US
dc.publisherElsevier B.V.en_US
dc.subjectBorsuk–Ulam theoremen_US
dc.subjectBourgin–Yang theoremen_US
dc.subjectCohomological lengthen_US
dc.subjectCoincidence seten_US
dc.subjectEquivariant mapen_US
dc.subjectRepresentation sphereen_US
dc.titleGeneral Bourgin–Yang theoremsen_US
dc.typeArticleen_US
Appears in Collections:Research Articles

Files in This Item:
File Description SizeFormat 
Need to add pdf.odt8.04 kBOpenDocument TextView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.