Please use this identifier to cite or link to this item:
http://hdl.handle.net/123456789/1745
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Jakhar, A. | - |
dc.contributor.author | Sangwan, N. | - |
dc.date.accessioned | 2020-11-18T05:16:06Z | - |
dc.date.available | 2020-11-18T05:16:06Z | - |
dc.date.issued | 2018 | - |
dc.identifier.citation | Journal of Number Theory, 192, pp. 143-149 | en_US |
dc.identifier.other | https://doi.org/10.1016/j.jnt.2018.04.001 | - |
dc.identifier.uri | https://www.sciencedirect.com/science/article/pii/S0022314X18301203 | - |
dc.identifier.uri | http://hdl.handle.net/123456789/1745 | - |
dc.description.abstract | For positive integers k and n with k⩽n−1, let Pn,k(x) denote the polynomial ∑j=0k(nj)xj, where (nj)=[Formula presented]. In 2011, Khanduja, Khassa and Laishram proved the irreducibility of Pn,k(x) over the field Q of rational numbers for those n,k for which 2≤2k≤n<(k+1)3. In this paper, we extend the above result and prove that if 2≤2k≤n<(k+1)e+1 for some positive integer e and the smallest prime factor of k is greater than e, then there exists an explicitly constructible constant Ce depending only on e such that the polynomial Pn,k(x) is irreducible over Q for k≥Ce. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Elsevier Ltd | en_US |
dc.subject | Irreducible polynomials | en_US |
dc.subject | Truncated binomial | en_US |
dc.subject | binomial expansions | en_US |
dc.subject | irreducibility | en_US |
dc.subject | truncated | en_US |
dc.title | Some results for the irreducibility of truncated binomial expansions | en_US |
dc.type | Article | en_US |
Appears in Collections: | Research Articles |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Need to add pdf.odt | 8.04 kB | OpenDocument Text | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.