Please use this identifier to cite or link to this item: http://hdl.handle.net/123456789/1745
Full metadata record
DC FieldValueLanguage
dc.contributor.authorJakhar, A.-
dc.contributor.authorSangwan, N.-
dc.date.accessioned2020-11-18T05:16:06Z-
dc.date.available2020-11-18T05:16:06Z-
dc.date.issued2018-
dc.identifier.citationJournal of Number Theory, 192, pp. 143-149en_US
dc.identifier.otherhttps://doi.org/10.1016/j.jnt.2018.04.001-
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S0022314X18301203-
dc.identifier.urihttp://hdl.handle.net/123456789/1745-
dc.description.abstractFor positive integers k and n with k⩽n−1, let Pn,k(x) denote the polynomial ∑j=0k(nj)xj, where (nj)=[Formula presented]. In 2011, Khanduja, Khassa and Laishram proved the irreducibility of Pn,k(x) over the field Q of rational numbers for those n,k for which 2≤2k≤n<(k+1)3. In this paper, we extend the above result and prove that if 2≤2k≤n<(k+1)e+1 for some positive integer e and the smallest prime factor of k is greater than e, then there exists an explicitly constructible constant Ce depending only on e such that the polynomial Pn,k(x) is irreducible over Q for k≥Ce.en_US
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.subjectIrreducible polynomialsen_US
dc.subjectTruncated binomialen_US
dc.subjectbinomial expansionsen_US
dc.subjectirreducibilityen_US
dc.subjecttruncateden_US
dc.titleSome results for the irreducibility of truncated binomial expansionsen_US
dc.typeArticleen_US
Appears in Collections:Research Articles

Files in This Item:
File Description SizeFormat 
Need to add pdf.odt8.04 kBOpenDocument TextView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.