Please use this identifier to cite or link to this item: http://hdl.handle.net/123456789/1804
Full metadata record
DC FieldValueLanguage
dc.contributor.authorJakhar, A.-
dc.contributor.authorKhanduja, S.K.-
dc.contributor.authorJhorar, B.-
dc.contributor.authorSangwan, Neeraj-
dc.date.accessioned2020-11-18T09:51:20Z-
dc.date.available2020-11-18T09:51:20Z-
dc.date.issued2017-
dc.identifier.citationJournal of Algebra and its Applications, 16 (10)en_US
dc.identifier.other10.1142/S0219498817501985-
dc.identifier.urihttps://www.worldscientific.com/doi/10.1142/S0219498817501985-
dc.identifier.urihttp://hdl.handle.net/123456789/1804-
dc.description.abstractLet 𝑅 be a discrete valuation ring with maximal ideal 𝔭 and 𝑆 be the integral closure of 𝑅 in a finite separable extension 𝐿 of 𝐾. For a maximal ideal 𝔓 of 𝑆, let 𝑅ˆ𝔭,Εœπ”“ denote respectively the valuation rings of the completions of 𝐾,𝐿 with respect to 𝔭,𝔓. The discriminant satisfies a basic equality which says that disc(𝑆/𝑅)𝑅ˆ𝔭=βˆπ”“βˆ£βˆ£π”­disc(Εœπ”“/𝑅ˆ𝔭). In this paper, we extend the above equality on replacing 𝑅 by the valuation ring of a Krull valuation of arbitrary rank and completion by henselization. In the course of proof, we prove a generalization of the well-known weak Approximation Theorem which is of independent interest as well.en_US
dc.language.isoen_USen_US
dc.publisherWorld Scientificen_US
dc.subjectDiscriminantsen_US
dc.subjectvalued fieldsen_US
dc.subjecthenselizationen_US
dc.titleDiscriminant as a product of local discriminantsen_US
dc.typeArticleen_US
Appears in Collections:Research Articles

Files in This Item:
File Description SizeFormat 
Need to add pdf.odt8.63 kBOpenDocument TextView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.