Please use this identifier to cite or link to this item: http://hdl.handle.net/123456789/1805
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKhandai, Tanusree-
dc.date.accessioned2020-11-18T09:59:21Z-
dc.date.available2020-11-18T09:59:21Z-
dc.date.issued2019-
dc.identifier.citationAlgebras and Representation Theory, 22(05), pp.1149-1181.en_US
dc.identifier.other10.1007/s10468-018-9816-2-
dc.identifier.urihttps://link.springer.com/article/10.1007/s10468-018-9816-2-
dc.identifier.urihttp://hdl.handle.net/123456789/1805-
dc.description.abstractIn this paper we study the subcategory of finite-length objects of the category of positive level integrable representations of a toroidal Lie algebra. The main goal is to characterize the blocks of the category. In the cases when the underlying finite type Lie algebra associated with the toroidal Lie algebra is simply-laced, we are able to give a parametrization for the blocks.en_US
dc.language.isoenen_US
dc.publisherSpringer Linken_US
dc.subjectBlock decompositionen_US
dc.subjectCenter acting nontriviallyen_US
dc.subjectIntegrable representations of finite-lengthen_US
dc.subjectSpectral characteren_US
dc.subjectToroidal Lie algebraen_US
dc.titleSpectral Characters of a Class of Integrable Representations of Toroidal Lie Algebrasen_US
dc.typeArticleen_US
Appears in Collections:Research Articles

Files in This Item:
File Description SizeFormat 
Need to add pdf.odt8.63 kBOpenDocument TextView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.