
Please use this identifier to cite or link to this item:
http://hdl.handle.net/123456789/1817
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Gongopadhyay, Krishnendu | - |
dc.date.accessioned | 2020-11-18T10:19:20Z | - |
dc.date.available | 2020-11-18T10:19:20Z | - |
dc.date.issued | 2018 | - |
dc.identifier.citation | Bulletin des Sciences Mathematiques, 148, pp. 14-32 | en_US |
dc.identifier.other | https://doi.org/10.1016/j.bulsci.2018.06.004 | - |
dc.identifier.uri | https://www.sciencedirect.com/science/article/pii/S0007449718300630?via%3Dihub | - |
dc.identifier.uri | http://hdl.handle.net/123456789/1817 | - |
dc.description | Only IISERM authors are available in the record. | - |
dc.description.abstract | Let HC n be the n-dimensional complex hyperbolic space and SU(n,1) be the (holomorphic) isometry group. An element g in SU(n,1) is called loxodromic or hyperbolic if it has exactly two fixed points on the boundary ∂HC n. We classify SU(n,1) conjugation orbits of pairs of loxodromic elements in SU(n,1). | en_US |
dc.language.iso | en | en_US |
dc.publisher | Elsevier Masson SAS | en_US |
dc.subject | Complex hyperbolic space | en_US |
dc.subject | Surface group representations | en_US |
dc.subject | Traces | en_US |
dc.title | Conjugation orbits of loxodromic pairs in SU(n,1) | en_US |
dc.type | Article | en_US |
Appears in Collections: | Research Articles |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Need to add pdf.odt | 8.04 kB | OpenDocument Text | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.