Please use this identifier to cite or link to this item: http://hdl.handle.net/123456789/1841
Title: Extensions and automorphisms of Lie algebras
Authors: Singh, Mahender
Keywords: automorphisms
Lie algebras
Issue Date: 2017
Publisher: World Scientific Publishing Co. Pte Ltd
Citation: Journal of Algebra and its Applications, 16 (9)
Abstract: Let 0→A→L→B→0 be a short exact sequence of Lie algebras over a field F, where A is abelian. We show that the obstruction for a pair of automorphisms in $\Aut(A) \times \Aut(B)$ to be induced by an automorphism in $\Aut(L)$ lies in the Lie algebra cohomology $\Ha^2(B;A)$. As a consequence, we obtain a four term exact sequence relating automorphisms, derivations and cohomology of Lie algebras. We also obtain a more explicit necessary and sufficient condition for a pair of automorphisms in $\Aut\big(L_{n,2}^{(1)}\big) \times \Aut\big(L_{n,2}^{ab}\big)$ to be induced by an automorphism in $\Aut\big(L_{n,2}\big)$, where Ln,2 is a free nilpotent Lie algebra of rank n and step 2.
URI: https://arxiv.org/abs/1508.01850
http://hdl.handle.net/123456789/1841
Appears in Collections:Research Articles

Files in This Item:
File Description SizeFormat 
Need to add pdf.odt8.63 kBOpenDocument TextView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.