Please use this identifier to cite or link to this item: http://hdl.handle.net/123456789/1841
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSingh, Mahender-
dc.date.accessioned2020-11-19T05:01:30Z-
dc.date.available2020-11-19T05:01:30Z-
dc.date.issued2017-
dc.identifier.citationJournal of Algebra and its Applications, 16 (9)en_US
dc.identifier.other10.1142/S0219498817501626-
dc.identifier.urihttps://arxiv.org/abs/1508.01850-
dc.identifier.urihttp://hdl.handle.net/123456789/1841-
dc.description.abstractLet 0→A→L→B→0 be a short exact sequence of Lie algebras over a field F, where A is abelian. We show that the obstruction for a pair of automorphisms in $\Aut(A) \times \Aut(B)$ to be induced by an automorphism in $\Aut(L)$ lies in the Lie algebra cohomology $\Ha^2(B;A)$. As a consequence, we obtain a four term exact sequence relating automorphisms, derivations and cohomology of Lie algebras. We also obtain a more explicit necessary and sufficient condition for a pair of automorphisms in $\Aut\big(L_{n,2}^{(1)}\big) \times \Aut\big(L_{n,2}^{ab}\big)$ to be induced by an automorphism in $\Aut\big(L_{n,2}\big)$, where Ln,2 is a free nilpotent Lie algebra of rank n and step 2.en_US
dc.language.isoen_USen_US
dc.publisherWorld Scientific Publishing Co. Pte Ltden_US
dc.subjectautomorphismsen_US
dc.subjectLie algebrasen_US
dc.titleExtensions and automorphisms of Lie algebrasen_US
dc.typeArticleen_US
Appears in Collections:Research Articles

Files in This Item:
File Description SizeFormat 
Need to add pdf.odt8.63 kBOpenDocument TextView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.