
Please use this identifier to cite or link to this item:
http://hdl.handle.net/123456789/1881
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Kaur, Yashpreet | - |
dc.contributor.author | Srinivasan, V.R. | - |
dc.date.accessioned | 2020-11-19T07:22:28Z | - |
dc.date.available | 2020-11-19T07:22:28Z | - |
dc.date.issued | 2019 | - |
dc.identifier.citation | Journal of Symbolic Computation, 94, pp. 210-233. | en_US |
dc.identifier.other | https://doi.org/10.1016/j.jsc.2018.08.004 | - |
dc.identifier.uri | https://www.sciencedirect.com/science/article/pii/S0747717118300956 | - |
dc.identifier.uri | http://hdl.handle.net/123456789/1881 | - |
dc.description.abstract | We extend the theorem of Liouville on integration in finite terms to include dilogarithmic integrals, logarithmic integrals and error functions along with transcendental elementary functions. We also generalise a result of Baddoura on integration in finite terms with dilogarithmic integrals. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Elsevier | en_US |
dc.subject | Differential fields | en_US |
dc.subject | Differential algebra | en_US |
dc.subject | Integration in finite terms | en_US |
dc.subject | Elementary functions | en_US |
dc.subject | Liouville's Theorem | en_US |
dc.title | Integration in finite terms with dilogarithmic integrals, logarithmic integrals and error functions | en_US |
dc.type | Article | en_US |
Appears in Collections: | Research Articles |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Need to add pdf.odt | 8.63 kB | OpenDocument Text | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.