Please use this identifier to cite or link to this item: http://hdl.handle.net/123456789/2018
Full metadata record
DC FieldValueLanguage
dc.contributor.authorJakhar, A.-
dc.contributor.authorSangwan, N.-
dc.date.accessioned2020-11-21T06:30:01Z-
dc.date.available2020-11-21T06:30:01Z-
dc.date.issued2019-
dc.identifier.citationIndian Journal of Pure and Applied Mathematics, 50(2),pp. 309-314.en_US
dc.identifier.other10.1007/s13226-019-0326-7-
dc.identifier.urihttps://link.springer.com/article/10.1007/s13226-019-0326-7-
dc.identifier.urihttp://hdl.handle.net/123456789/2018-
dc.description.abstractLet K = ℚ(θ) be an extension of the field ℚ of rational numbers where θ satisfies an irreducible polynomial xp − a of prime degree belonging to ℤ[x]. In this paper, we give explicilty an integral basis for K using only elementary algebraic number theory. Though an integral basis for such fields is already known (see [Trans. Amer. Math. Soc., 11 (1910), 388–392)], our description of integral basis is different and slightly simpler. We also give a short proof of the formula for discriminant of such fields.en_US
dc.language.isoenen_US
dc.publisherSpringer Linken_US
dc.subjectAlgebraic number theoryen_US
dc.subjectThoughen_US
dc.subjectIntegralen_US
dc.titleIntegral basis of pure prime degree number fieldsen_US
dc.typeArticleen_US
Appears in Collections:Research Articles

Files in This Item:
File Description SizeFormat 
Need to add pdf.odt8.63 kBOpenDocument TextView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.