Please use this identifier to cite or link to this item:
http://hdl.handle.net/123456789/2018
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Jakhar, A. | - |
dc.contributor.author | Sangwan, N. | - |
dc.date.accessioned | 2020-11-21T06:30:01Z | - |
dc.date.available | 2020-11-21T06:30:01Z | - |
dc.date.issued | 2019 | - |
dc.identifier.citation | Indian Journal of Pure and Applied Mathematics, 50(2),pp. 309-314. | en_US |
dc.identifier.other | 10.1007/s13226-019-0326-7 | - |
dc.identifier.uri | https://link.springer.com/article/10.1007/s13226-019-0326-7 | - |
dc.identifier.uri | http://hdl.handle.net/123456789/2018 | - |
dc.description.abstract | Let K = ℚ(θ) be an extension of the field ℚ of rational numbers where θ satisfies an irreducible polynomial xp − a of prime degree belonging to ℤ[x]. In this paper, we give explicilty an integral basis for K using only elementary algebraic number theory. Though an integral basis for such fields is already known (see [Trans. Amer. Math. Soc., 11 (1910), 388–392)], our description of integral basis is different and slightly simpler. We also give a short proof of the formula for discriminant of such fields. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Springer Link | en_US |
dc.subject | Algebraic number theory | en_US |
dc.subject | Though | en_US |
dc.subject | Integral | en_US |
dc.title | Integral basis of pure prime degree number fields | en_US |
dc.type | Article | en_US |
Appears in Collections: | Research Articles |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Need to add pdf.odt | 8.63 kB | OpenDocument Text | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.