
Please use this identifier to cite or link to this item:
http://hdl.handle.net/123456789/2023
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Gongopadhyay, Krishnendu | - |
dc.date.accessioned | 2020-11-21T06:51:38Z | - |
dc.date.available | 2020-11-21T06:51:38Z | - |
dc.date.issued | 2018 | - |
dc.identifier.citation | Proceedings of the Indian Academy of Sciences: Mathematical Sciences, 128(3) | en_US |
dc.identifier.other | DOI: 10.1007/s12044-018-0412-5 | - |
dc.identifier.uri | https://www.scopus.com/record/display.uri?eid=2-s2.0-85048668788&doi=10.1007%2fs12044-018-0412-5&origin=inward&txGid=a0486467b535f4c18844c3fdaf4fe3d1 | - |
dc.identifier.uri | http://hdl.handle.net/123456789/2023 | - |
dc.description | Only IISERM authors are available in the record. | - |
dc.description.abstract | Two elements in a group G are said to be z-equivalent or to be in the same z-class if their centralizers are conjugate in G. In a recent work, Kulkarni et al. (J. Algebra Appl., 15 (2016) 1650131) proved that a non-abelian p-group G can have at most pk-1p-1+1 number of z-classes, where | G/ Z(G) | = pk. Here, we characterize the p-groups of conjugate type (n, 1) attaining this maximal number. As a corollary, we characterize p-groups having prime order commutator subgroup and maximal number of z-classes. | en_US |
dc.language.iso | en | en_US |
dc.subject | Conjugacy classes of centralizers | en_US |
dc.subject | Extraspecial groups | en_US |
dc.subject | P-groups | en_US |
dc.subject | Z-classes | en_US |
dc.title | z -Classes in finite groups of conjugate type (n,1) | en_US |
dc.type | Article | en_US |
Appears in Collections: | Research Articles |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Need to add pdf.odt | 7.99 kB | OpenDocument Text | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.