Please use this identifier to cite or link to this item: http://hdl.handle.net/123456789/2030
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMikhailov, R.-
dc.contributor.authorPassi, I.B.S.-
dc.date.accessioned2020-11-23T04:17:48Z-
dc.date.available2020-11-23T04:17:48Z-
dc.date.issued2019-
dc.identifier.citationJournal of Algebra, 526,pp.243-265.en_US
dc.identifier.otherhttps://doi.org/10.1016/j.jalgebra.2019.02.007-
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S0021869319300900-
dc.identifier.urihttp://hdl.handle.net/123456789/2030-
dc.description.abstractThis paper is about application of various homological methods to classical problems in the theory of group rings. It is shown that the third homology of groups plays a key role in Narain Gupta’s three normal subgroup problem. Fo r a free group Fand its normal subgroups R, S, T, and the corresponding ideals in the integral group ring Z[F], r =(R−1)Z[F], s =(S−1)Z[F], t =(T−1)Z[F], acomplete description of the normal subgroup F∩(1 +rst)is given, provided R⊆Tand the third, fourth and fifth homology groups of R/R∩Sare torsion groups.en_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.subjectGroup ringen_US
dc.subjectHomology of groupsen_US
dc.subjectDerived functors of non-additive functorsen_US
dc.subjectFree group ringen_US
dc.titleNarain Gupta's three normal subgroup problem and group homologyen_US
dc.typeArticleen_US
Appears in Collections:Research Articles

Files in This Item:
File Description SizeFormat 
Need to add pdf.odt8.63 kBOpenDocument TextView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.