Please use this identifier to cite or link to this item: http://hdl.handle.net/123456789/2080
Full metadata record
DC FieldValueLanguage
dc.contributor.authorJakhar, A.-
dc.contributor.authorKhanduja, S.K.-
dc.contributor.authorSangwan, N.-
dc.date.accessioned2020-11-24T04:17:45Z-
dc.date.available2020-11-24T04:17:45Z-
dc.date.issued2018-
dc.identifier.citationJournal of Pure and Applied Algebra, 222(4), pp. 889-899en_US
dc.identifier.other10.1016/j.jpaa.2017.05.012-
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S0022404917301093-
dc.identifier.urihttp://hdl.handle.net/123456789/2080-
dc.description.abstractLet v be a Krull valuation of a field with valuation ring . Let θ be a root of an irreducible trinomial belonging to . In this paper, we give necessary and sufficient conditions involving only for to be integrally closed. In the particular case when v is the p-adic valuation of the field of rational numbers, and , then it is shown that these conditions lead to the characterization of primes which divide the index of the subgroup in , where is the ring of algebraic integers of K. As an application, it is deduced that for any algebraic number field K and any quadratic field L not contained in K, we have if and only if the discriminants of K and L are coprime.en_US
dc.language.isoenen_US
dc.publisherElsevier B.V.en_US
dc.subjectValuation ringen_US
dc.subjectAlgebraic integersen_US
dc.subjectTrinomialen_US
dc.titleOn integrally closed simple extensions of valuation ringsen_US
dc.typeArticleen_US
Appears in Collections:Research Articles

Files in This Item:
File Description SizeFormat 
Need to add pdf.odt8.63 kBOpenDocument TextView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.