
Please use this identifier to cite or link to this item:
http://hdl.handle.net/123456789/2081
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Gongopadhyay, Krishnendu | - |
dc.date.accessioned | 2020-11-24T04:20:52Z | - |
dc.date.available | 2020-11-24T04:20:52Z | - |
dc.date.issued | 2019 | - |
dc.identifier.citation | International Journal of Algebra and Computation, 29(3),pp. 507-533. | en_US |
dc.identifier.other | https://doi.org/10.1142/S0218196719500127 | - |
dc.identifier.uri | https://www.worldscientific.com/doi/abs/10.1142/S0218196719500127 | - |
dc.identifier.uri | http://hdl.handle.net/123456789/2081 | - |
dc.description | Only IISERM authors are available in the record. | - |
dc.description.abstract | Let VB𝑛, respectively WB𝑛 denote the virtual, respectively welded, braid group on 𝑛-strands. We study their commutator subgroups VB′𝑛=[VB𝑛,VB𝑛] and, WB′𝑛=[WB𝑛,WB𝑛], respectively. We obtain a set of generators and defining relations for these commutator subgroups. In particular, we prove that VB′𝑛 is finitely generated if and only if 𝑛≥4, and WB′𝑛 is finitely generated for 𝑛≥3. Also, we prove that VB′3/VB″3=ℤ3⊕ℤ3⊕ℤ3⊕ℤ∞,VB′4/VB″4=ℤ3⊕ℤ3⊕ℤ3,WB′3/WB″3=ℤ3⊕ℤ3⊕ℤ3⊕ℤ,WB′4/WB″4=ℤ3, and for 𝑛≥5 the commutator subgroups VB′𝑛 and WB′𝑛 are perfect, i.e. the commutator subgroup is equal to the second commutator subgroup. | en_US |
dc.language.iso | en | en_US |
dc.publisher | World Scientific | en_US |
dc.subject | Virtual braid | en_US |
dc.subject | Welded braid | en_US |
dc.subject | Commutator subgroup | en_US |
dc.subject | Perfect group | en_US |
dc.title | Commutator subgroups of virtual and welded braid groups | en_US |
dc.type | Article | en_US |
Appears in Collections: | Research Articles |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Need to add pdf.odt | 8.63 kB | OpenDocument Text | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.