
Please use this identifier to cite or link to this item:
http://hdl.handle.net/123456789/2150
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Kumar, Chanchal | - |
dc.date.accessioned | 2020-11-25T04:13:14Z | - |
dc.date.available | 2020-11-25T04:13:14Z | - |
dc.date.issued | 2018 | - |
dc.identifier.citation | Journal of Algebra and its Applications, 17(2) | en_US |
dc.identifier.other | https://doi.org/10.1142/S0219498818500378 | - |
dc.identifier.uri | https://www.worldscientific.com/doi/10.1142/S0219498818500378 | - |
dc.identifier.uri | http://hdl.handle.net/123456789/2150 | - |
dc.description | Only IISERM authors are available in the record. | - |
dc.description.abstract | For an (oriented) graph G on the vertex set {0, 1, . . . ,n} (rooted at 0), Postnikov and Shapiro (Trans. Amer. Math. Soc. 356 (2004) 3109-3142) associated a monomial ideal MG in the polynomial ring R = k[x1, . . . ,xn] over a field k such that the number of standard monomials of R M G equals the number of (oriented) spanning trees of G and hence, dimk( R MG ) = det(LG), where LG is the truncated Laplace matrix of G. The standard monomials of R M G correspond bijectively to the G-parking functions. In this paper, we study a monomial ideal Jn in R having rich combinatorial properties. We show that the minimal free resolution of the monomial ideal Jn is the cellular resolution supported on a subcomplex of the first barycentric subdivision Bd(n-1) of an n - 1 simplex n-1. The integer sequence {dimk( R Jn )}n=1 has many interesting properties. In particular, we obtain a formula, dimk( R Jn ) = det([mij ]n-n), with mij = 1 for i > j, mii = i and mij = i - j for i < j, similar to dimk( R MG ) = det(LG) . | en_US |
dc.language.iso | en | en_US |
dc.publisher | World Scientific Publishing Co. Pte Ltd | en_US |
dc.subject | Cellular resolution | en_US |
dc.subject | Betti numbers | en_US |
dc.subject | standard monomials | en_US |
dc.title | An integer sequence and standard monomials | en_US |
dc.type | Article | en_US |
Appears in Collections: | Research Articles |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Need to add pdf.odt | 8.63 kB | OpenDocument Text | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.