Please use this identifier to cite or link to this item: http://hdl.handle.net/123456789/2185
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSardar, Pranab-
dc.date.accessioned2020-11-25T06:50:57Z-
dc.date.available2020-11-25T06:50:57Z-
dc.date.issued2018-
dc.identifier.citationProceedings of the American Mathematical Society, 146(5), pp. 1859-1871en_US
dc.identifier.otherhttps://doi.org/10.1090/proc/13871-
dc.identifier.urihttps://www.ams.org/journals/proc/2018-146-05/S0002-9939-2017-13871-4/home.html-
dc.identifier.urihttp://hdl.handle.net/123456789/2185-
dc.description.abstractWe define the notion of limit set intersection property for a collection of subgroups of a hyperbolic group; namely, for a hyperbolic group G and a collection of subgroups S we say that S satisfies the limit set intersection property if for all H,K ε S we have Λ(H)n∩(K) = Λ(Hn∩K). Given a hyperbolic group admitting a decomposition into a finite graph of hyperbolic groups structure with QI embedded condition, we show that the set of conjugates of all the vertex and edge groups satisfies the limit set intersection property.en_US
dc.language.isoenen_US
dc.publisherAmerican Mathematical Societyen_US
dc.subjectHyperbolic groupsen_US
dc.subjectBass-Serre theoryen_US
dc.subjectLimit setsen_US
dc.titleGraphs of hyperbolic groups and a limit set intersection theoremen_US
dc.typeArticleen_US
Appears in Collections:Research Articles

Files in This Item:
File Description SizeFormat 
Need to add pdf.odt8.63 kBOpenDocument TextView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.