Please use this identifier to cite or link to this item: http://hdl.handle.net/123456789/2195
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKhanduja, S.K.-
dc.date.accessioned2020-11-25T09:20:55Z-
dc.date.available2020-11-25T09:20:55Z-
dc.date.issued2019-
dc.identifier.citationInternational Journal of Number Theory, 15(2), pp.353-360.en_US
dc.identifier.otherhttps://doi.org/10.1142/S1793042119500167-
dc.identifier.urihttps://www.worldscientific.com/doi/abs/10.1142/S1793042119500167-
dc.identifier.urihttp://hdl.handle.net/123456789/2195-
dc.description.abstractFor an algebraic number field 𝐾, let 𝑑𝐾 denote the discriminant of an algebraic number field 𝐾. It is well known that if 𝐾1,𝐾2 are algebraic number fields with coprime discriminants, then 𝐾1,𝐾2 are linearly disjoint over the field β„š of rational numbers and 𝑑𝐾1𝐾2=𝑑𝑛2𝐾1𝑑𝑛1𝐾2, 𝑛𝑖 being the degree of 𝐾𝑖 over β„š. In this paper, we prove that the converse of this result holds in relative extensions of algebraic number fields. We also give some more necessary and sufficient conditions for the analogue of the above equality to hold for algebraic number fields 𝐾1,𝐾2 linearly disjoint over 𝐾1∩𝐾2.en_US
dc.language.isoenen_US
dc.publisherWorld Scientificen_US
dc.subjectRings of algebraic integersen_US
dc.subjectDiscriminanten_US
dc.subjectRelative extensionsen_US
dc.titleThe discriminant of compositum of algebraic number fieldsen_US
dc.typeArticleen_US
Appears in Collections:Research Articles

Files in This Item:
File Description SizeFormat 
Need to add pdf.odt8.63 kBOpenDocument TextView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.