
Please use this identifier to cite or link to this item:
http://hdl.handle.net/123456789/2267
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | D’mello, Shane | - |
dc.date.accessioned | 2020-11-26T08:36:22Z | - |
dc.date.available | 2020-11-26T08:36:22Z | - |
dc.date.issued | 2018 | - |
dc.identifier.citation | Journal of Singularities, 17, pp. 91-107 | en_US |
dc.identifier.other | DOI: 10.5427/jsing.2018.17f | - |
dc.identifier.uri | https://www.journalofsing.org/volume17/biswas-d'mello-mukherjee-pingali.pdf | - |
dc.identifier.uri | http://hdl.handle.net/123456789/2267 | - |
dc.description | Only IISERM authors are available in the record. | - |
dc.description.abstract | We obtain an explicit formula for the number of rational cuspidal curves of a given degree on a del-Pezzo surface that pass through an appropriate number of generic points of the surface. This enumerative problem is expressed as an Euler class computation on the moduli space of curves. A topological method is employed in computing the degenerate contribution to the Euler class. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Worldwide Center of Mathematics | en_US |
dc.subject | Cuspidal curves | en_US |
dc.subject | Del-pezzo surfaces | en_US |
dc.subject | Geometry | en_US |
dc.subject | Gonality | en_US |
dc.subject | Semiring | en_US |
dc.title | RATIONAL CUSPIDAL CURVES ON DEL-PEZZO SURFACES | en_US |
dc.type | Article | en_US |
Appears in Collections: | Research Articles |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Need to add pdf.odt | 8.63 kB | OpenDocument Text | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.