Please use this identifier to cite or link to this item: http://hdl.handle.net/123456789/2267
Full metadata record
DC FieldValueLanguage
dc.contributor.authorD’mello, Shane-
dc.date.accessioned2020-11-26T08:36:22Z-
dc.date.available2020-11-26T08:36:22Z-
dc.date.issued2018-
dc.identifier.citationJournal of Singularities, 17, pp. 91-107en_US
dc.identifier.otherDOI: 10.5427/jsing.2018.17f-
dc.identifier.urihttps://www.journalofsing.org/volume17/biswas-d'mello-mukherjee-pingali.pdf-
dc.identifier.urihttp://hdl.handle.net/123456789/2267-
dc.descriptionOnly IISERM authors are available in the record.-
dc.description.abstractWe obtain an explicit formula for the number of rational cuspidal curves of a given degree on a del-Pezzo surface that pass through an appropriate number of generic points of the surface. This enumerative problem is expressed as an Euler class computation on the moduli space of curves. A topological method is employed in computing the degenerate contribution to the Euler class.en_US
dc.language.isoenen_US
dc.publisherWorldwide Center of Mathematicsen_US
dc.subjectCuspidal curvesen_US
dc.subjectDel-pezzo surfacesen_US
dc.subjectGeometryen_US
dc.subjectGonalityen_US
dc.subjectSemiringen_US
dc.titleRATIONAL CUSPIDAL CURVES ON DEL-PEZZO SURFACESen_US
dc.typeArticleen_US
Appears in Collections:Research Articles

Files in This Item:
File Description SizeFormat 
Need to add pdf.odt8.63 kBOpenDocument TextView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.