Please use this identifier to cite or link to this item: http://hdl.handle.net/123456789/2329
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKhanduja, S.K.-
dc.date.accessioned2020-11-27T08:21:14Z-
dc.date.available2020-11-27T08:21:14Z-
dc.date.issued2019-
dc.identifier.citationJournal of Pure and Applied Algebra, 224(7).en_US
dc.identifier.otherhttps://doi.org/10.1016/j.jpaa.2019.106281-
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S0022404919302944-
dc.identifier.urihttp://hdl.handle.net/123456789/2329-
dc.descriptionOnly IISERM authors are available in the record.-
dc.description.abstractLet K=Q(θ)be an algebraic number field with θin the ring AKof algebraic integers of Khaving minimal polynomial f(x)over Q. Fo r a prime number p, let ip(f)denote the highest power of pdividing the index [AK:Z[θ]]. Let ̄f(x) = ̄φ1(x)e1··· ̄φr(x)erbe the factorization of f(x) modulo pinto a product of powers of distinct irreducible polynomials over Z/pZwith φi(x) ∈Z[x]monic. Let the integer l≥1and the polynomial N(x) ∈Z[x]be defined by f(x) =r∏i=1φi(x)ei+plN(x), N(x) = ̄0. In this paper, we prove that ip(f) ≥r∑i=1uidegφi(x), where uiis a constant defined only in terms of l, eiand the highest power of the polynomial ̄φi(x)dividing N(x). Fu r t h e r a class of irreducible polynomials is described for which the above inequality becomes equality. The results of the paper quickly yield the well known Dedekind criterion which gives a necessary and sufficient condition for ip(f)to be zero. In fact, these results are proved in a more general set up replacing Zby any Dedekind domain.en_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.subjectRings of algebraic integersen_US
dc.subjectDedekind domainsen_US
dc.subjectValued fieldsen_US
dc.titleOn the index of an algebraic integer and beyonden_US
dc.typeArticleen_US
Appears in Collections:Research Articles

Files in This Item:
File Description SizeFormat 
Need to add pdf.odt8.63 kBOpenDocument TextView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.