Please use this identifier to cite or link to this item: http://hdl.handle.net/123456789/239
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKhanduja, S.K.-
dc.date.accessioned2013-05-14T07:42:05Z-
dc.date.available2013-05-14T07:42:05Z-
dc.date.issued2012-
dc.identifier.citationJournal of Pure and Applied Algebra, 216 (12), 2648-2656.en_US
dc.identifier.urihttp://www.sciencedirect.com/science/article/pii/S0022404912001223en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.jpaa.2012.03.034,en_US
dc.descriptionOnly IISERM authors are available in the record.-
dc.description.abstractLet v be a real valuation of a field K with valuation ring Rv. Let K(θ) be a finite separable extension of K with θ integral over Rv and F(x) be the minimal polynomial of θ over K. Using Newton polygons and residually transcendental prolongations of v to a simple transcendental extension K(x) of K together with liftings with respect to such prolongations, we describe a method to determine all prolongations of v to K(θ) along with their residual degrees and ramification indices over v. We give an analogue of Ore's Theorem when the base field is an arbitrary rank-1 valued field which extends the main result of [Mathematika, 47 (2000), 173--196].en_US
dc.language.isoenen_US
dc.publisherElsevier B.Ven_US
dc.subjectValued fieldsen_US
dc.subjectNon-Archimedean valued fieldsen_US
dc.titleOn prolongations of valuations via newton polygons and liftings of polynomialsen_US
dc.typeArticleen_US
Appears in Collections:Research Articles

Files in This Item:
File Description SizeFormat 
Need to add pdf.odt8.63 kBOpenDocument TextView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.