Please use this identifier to cite or link to this item: http://hdl.handle.net/123456789/2422
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSingh, Mahender-
dc.date.accessioned2020-12-01T06:46:33Z-
dc.date.available2020-12-01T06:46:33Z-
dc.date.issued2016-
dc.identifier.citationJournal of Knot Theory and its Ramifications,25(13).en_US
dc.identifier.otherhttps://doi.org/10.1142/S0218216516500711-
dc.identifier.urihttps://www.worldscientific.com/doi/10.1142/S0218216516500711-
dc.identifier.urihttp://hdl.handle.net/123456789/2422-
dc.description.abstractLet A be an additive abelian group. Then the binary operation a∗b=2b−a gives a quandle structure on A, denoted by T(A), and called the Takasaki quandle of A. Viewing quandles as generalization of Riemannian symmetric spaces, Ishihara and Tamaru [Flat connected finite quandles, to appear in Proc. Amer. Math. Soc. (2016)] introduced flat quandles, and classified quandles which are finite, flat and connected. In this note, we classify all flat connected quandles. More precisely, we prove that a quandle X is flat and connected if and only if X≅T(A), where A is a 2-divisible group.en_US
dc.language.isoenen_US
dc.publisherWorld Scientificen_US
dc.subjectAutomorphism of quandleen_US
dc.subjectCentral automorphismen_US
dc.subjectConnected quandleen_US
dc.subjectFlat quandleen_US
dc.titleClassification of flat connected quandlesen_US
dc.typeArticleen_US
Appears in Collections:Research Articles

Files in This Item:
File Description SizeFormat 
Need to add pdf.odt8.63 kBOpenDocument TextView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.