Please use this identifier to cite or link to this item: http://hdl.handle.net/123456789/2430
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGhosh, P.-
dc.date.accessioned2020-12-01T08:32:58Z-
dc.date.available2020-12-01T08:32:58Z-
dc.date.issued2016-
dc.identifier.citationGeometriae Dedicata, 181(1)en_US
dc.identifier.otherhttps://doi.org/10.1007/s10711-015-0109-1-
dc.identifier.urihttps://link.springer.com/article/10.1007/s10711-015-0109-1#Abs1-
dc.identifier.urihttp://hdl.handle.net/123456789/2430-
dc.description.abstractGiven a finite rank free group 𝔽𝑁 of rank ≥3 and two exponentially growing outer automorphisms 𝜓 and 𝜙 with dual lamination pairs 𝛬±𝜓 and 𝛬±𝜙 associated to them, which satisfy a notion of independence described in this paper, we will use the pingpong techniques developed by Handel and Mosher (Subgroup decomposition in Out(F_n), part III: weak attraction theory, 2013) to show that there exists an integer 𝑀>0, such that for every 𝑚,𝑛≥𝑀, the group 𝐺=⟨𝜓𝑚,𝜙𝑛⟩ will be a free group of rank two and every element of this free group which is not conjugate to a power of the generators will be fully irreducible and hyperbolic.en_US
dc.language.isoenen_US
dc.publisherSpringer Netherlandsen_US
dc.subjectFree groupsen_US
dc.subjectOuter automorphismsen_US
dc.subjectTrain tracken_US
dc.titleApplications of weak attraction theory in Out(𝔽𝑁)en_US
dc.typeArticleen_US
Appears in Collections:Research Articles

Files in This Item:
File Description SizeFormat 
Need to add pdf.odt7.9 kBOpenDocument TextView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.