Please use this identifier to cite or link to this item: http://hdl.handle.net/123456789/2434
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSingh, Mahender-
dc.date.accessioned2020-12-01T08:44:15Z-
dc.date.available2020-12-01T08:44:15Z-
dc.date.issued2016-
dc.identifier.citationTopology and its Applications, 202, pp. 7-20en_US
dc.identifier.otherhttps://doi.org/10.1016/j.topol.2015.12.063-
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S0166864115005969-
dc.identifier.urihttp://hdl.handle.net/123456789/2434-
dc.descriptionOnly IISERM authors are available in the record.-
dc.description.abstractLet E→B be a fiber bundle and E'→B be a vector bundle. Let G be a compact group acting fiber preservingly and freely on both E and E'-0, where 0 is the zero section of E'→B. Let f:E→E' be a fiber preserving G-equivariant map, and let Zf={x∈E | f(x)=0} be the zero set of f. It is an interesting problem to estimate the dimension of the set Zf. In 1988, Dold [5] obtained a lower bound for the cohomological dimension of the zero set Zf when E→B is the sphere bundle associated with a vector bundle which is equipped with the antipodal action of G=Z/2. In this paper, we generalize this result to products of finitely many spheres equipped with the diagonal antipodal action of Z/2. We also prove a Bourgin-Yang type theorem for products of spheres equipped with the diagonal antipodal action of Z/2.en_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.subjectAntipodal mapen_US
dc.subjectCohomological dimensionen_US
dc.subjectContinuous cohomologyen_US
dc.subjectEquivariant mapen_US
dc.titleZero sets of equivariant maps from products of spheres to Euclidean spacesen_US
dc.typeArticleen_US
Appears in Collections:Research Articles

Files in This Item:
File Description SizeFormat 
Need to add pdf.odt7.9 kBOpenDocument TextView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.