Please use this identifier to cite or link to this item: http://hdl.handle.net/123456789/2483
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSingh, Harpreet-
dc.contributor.authorArvind-
dc.contributor.authorDorai, K.-
dc.date.accessioned2020-12-02T06:50:32Z-
dc.date.available2020-12-02T06:50:32Z-
dc.date.issued2016-
dc.identifier.citationPhysics Letters, Section A: General, Atomic and Solid State Physics, 380(38),pp. 3051-3056.en_US
dc.identifier.otherhttps://doi.org/10.1016/j.physleta.2016.07.046-
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S0375960116304698-
dc.identifier.urihttp://hdl.handle.net/123456789/2483-
dc.description.abstractEstimation of quantum states is an important step in any quantum information processing experiment. A naive reconstruction of the density matrix from experimental measurements can often give density matrices which are not positive, and hence not physically acceptable. How do we ensure that at all stages of reconstruction, we keep the density matrix positive? Recently a method has been suggested based on maximum likelihood estimation, wherein the density matrix is guaranteed to be positive definite. We experimentally implement this protocol on an NMR quantum information processor. We discuss several examples and compare with the standard method of state estimation.en_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.subjectQuantum information processingen_US
dc.subjectState estimationen_US
dc.subjectNuclear magnetic resonanceen_US
dc.titleConstructing valid density matrices on an NMR quantum information processor via maximum likelihood estimationen_US
dc.typeArticleen_US
Appears in Collections:Research Articles

Files in This Item:
File Description SizeFormat 
Need to add pdf.odt8.63 kBOpenDocument TextView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.