Please use this identifier to cite or link to this item:
http://hdl.handle.net/123456789/2497
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Jakhar, A. | - |
dc.contributor.author | Khanduja, S.K. | - |
dc.contributor.author | Sangwan, N. | - |
dc.date.accessioned | 2020-12-02T08:35:14Z | - |
dc.date.available | 2020-12-02T08:35:14Z | - |
dc.date.issued | 2016 | - |
dc.identifier.citation | Journal of Number Theory, 166,pp.47-61. | en_US |
dc.identifier.other | https://doi.org/10.1016/j.jnt.2016.02.021 | - |
dc.identifier.uri | https://www.sciencedirect.com/science/article/pii/S0022314X16300282 | - |
dc.identifier.uri | http://hdl.handle.net/123456789/2497 | - |
dc.description.abstract | Let AKdenote the ring of algebraic integers of an algebraic number field K=Q(θ)where the algebraic integer θhas minimal polynomial F(x) =xn+axm+bover the field Qof rational numbers with n =mt +u, t ∈N, 0 ≤u ≤m −1. In this paper, we characterize those primes which divide the discriminant of F(x) but do not divide [AK:Z[θ]] when u =0or udivides m; such primes pare important for explicitly determining the decomposition of pAKinto a product of prime ideals of AKin view of the well known Dedekind theorem. As a consequence, we obtain some necessary and sufficient conditions involving only a, b, m, nfor AKto be equal to Z[θ] | en_US |
dc.language.iso | en | en_US |
dc.publisher | Elsevier | en_US |
dc.subject | Denote | en_US |
dc.subject | Algebraic | en_US |
dc.subject | Integers | en_US |
dc.title | On prime divisors of the index of an algebraic integer | en_US |
dc.type | Article | en_US |
Appears in Collections: | Research Articles |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Need to add pdf.odt | 8.63 kB | OpenDocument Text | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.