Please use this identifier to cite or link to this item: http://hdl.handle.net/123456789/2497
Full metadata record
DC FieldValueLanguage
dc.contributor.authorJakhar, A.-
dc.contributor.authorKhanduja, S.K.-
dc.contributor.authorSangwan, N.-
dc.date.accessioned2020-12-02T08:35:14Z-
dc.date.available2020-12-02T08:35:14Z-
dc.date.issued2016-
dc.identifier.citationJournal of Number Theory, 166,pp.47-61.en_US
dc.identifier.otherhttps://doi.org/10.1016/j.jnt.2016.02.021-
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S0022314X16300282-
dc.identifier.urihttp://hdl.handle.net/123456789/2497-
dc.description.abstractLet AKdenote the ring of algebraic integers of an algebraic number field K=Q(θ)where the algebraic integer θhas minimal polynomial F(x) =xn+axm+bover the field Qof rational numbers with n =mt +u, t ∈N, 0 ≤u ≤m −1. In this paper, we characterize those primes which divide the discriminant of F(x) but do not divide [AK:Z[θ]] when u =0or udivides m; such primes pare important for explicitly determining the decomposition of pAKinto a product of prime ideals of AKin view of the well known Dedekind theorem. As a consequence, we obtain some necessary and sufficient conditions involving only a, b, m, nfor AKto be equal to Z[θ]en_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.subjectDenoteen_US
dc.subjectAlgebraicen_US
dc.subjectIntegersen_US
dc.titleOn prime divisors of the index of an algebraic integeren_US
dc.typeArticleen_US
Appears in Collections:Research Articles

Files in This Item:
File Description SizeFormat 
Need to add pdf.odt8.63 kBOpenDocument TextView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.