Please use this identifier to cite or link to this item: http://hdl.handle.net/123456789/2635
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGanguli, Abhik-
dc.date.accessioned2020-12-04T04:56:59Z-
dc.date.available2020-12-04T04:56:59Z-
dc.date.issued2017-
dc.identifier.citationJournal of Number Theory, 172en_US
dc.identifier.other10.1016/j.jnt.2016.09.003-
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S0022314X16302372-
dc.identifier.urihttp://hdl.handle.net/123456789/2635-
dc.description.abstractWe determine the possible Serre weights associated to certain Hilbert modular forms when the rational prime p is totally ramified in the totally real field F. Our weight lowering method for arbitrarily large weight is applicable when the slope is sufficiently small, enabling us to compute the mod p reduction at inertia from the known results in the small weight range. In the case of elliptic modular forms (and for certain Hilbert modular forms in the p totally split case) we obtain a unique mod p reduction when the slope is in .en_US
dc.language.isoen_USen_US
dc.publisherElsevieren_US
dc.subjectGalois representationsen_US
dc.subjectModular formsen_US
dc.subjectHilbert modular formsen_US
dc.subjectModular Galois representationsen_US
dc.titleOn the reduction modulo p of certain modular p-adic Galois representationsen_US
dc.typeArticleen_US
Appears in Collections:Dr. Abhik Ganguli
Research Articles

Files in This Item:
File Description SizeFormat 
Need to add pdf.odt8.63 kBOpenDocument TextView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.