Please use this identifier to cite or link to this item: http://hdl.handle.net/123456789/2657
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPassi, I.B.S.-
dc.contributor.authorSicking, T.-
dc.date.accessioned2020-12-04T06:16:07Z-
dc.date.available2020-12-04T06:16:07Z-
dc.date.issued2017-
dc.identifier.citationInternational Journal of Algebra and Computation, 27(2)en_US
dc.identifier.other10.1142/S0218196717500114-
dc.identifier.urihttps://www.worldscientific.com/doi/abs/10.1142/S0218196717500114-
dc.identifier.urihttp://hdl.handle.net/123456789/2657-
dc.description.abstractFor a Lie ring L over the ring of integers, we compare its lower central series {γn(L)}n≥1 and its dimension series {δn (L)}n≥1 defined by setting δn (L) = L ∩ ωn(L), where ω(L) is the augmentation ideal of the universal enveloping algebra of L. While γn (L) ⊆ δn (L) for all n ≥ 1, the two series can differ. In this paper, it is proved that if L is a metabelian Lie ring, then 2δn (L) ⊆ γn (L), and [δn (L),L] = γn+1(L), for all n ≥ 1. © 2017 World Scientific Publishing Company.en_US
dc.language.isoen_USen_US
dc.publisherWorld Scientific Publishing Co. Pte Ltden_US
dc.subjectcentral seriesen_US
dc.subjectLie dimension subringsen_US
dc.subjectLie ringsen_US
dc.titleDimension quotients of metabelian Lie ringsen_US
dc.typeArticleen_US
Appears in Collections:Research Articles

Files in This Item:
File Description SizeFormat 
Need to add pdf.odt8.63 kBOpenDocument TextView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.