Please use this identifier to cite or link to this item:
http://hdl.handle.net/123456789/2657
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Passi, I.B.S. | - |
dc.contributor.author | Sicking, T. | - |
dc.date.accessioned | 2020-12-04T06:16:07Z | - |
dc.date.available | 2020-12-04T06:16:07Z | - |
dc.date.issued | 2017 | - |
dc.identifier.citation | International Journal of Algebra and Computation, 27(2) | en_US |
dc.identifier.other | 10.1142/S0218196717500114 | - |
dc.identifier.uri | https://www.worldscientific.com/doi/abs/10.1142/S0218196717500114 | - |
dc.identifier.uri | http://hdl.handle.net/123456789/2657 | - |
dc.description.abstract | For a Lie ring L over the ring of integers, we compare its lower central series {γn(L)}n≥1 and its dimension series {δn (L)}n≥1 defined by setting δn (L) = L ∩ ωn(L), where ω(L) is the augmentation ideal of the universal enveloping algebra of L. While γn (L) ⊆ δn (L) for all n ≥ 1, the two series can differ. In this paper, it is proved that if L is a metabelian Lie ring, then 2δn (L) ⊆ γn (L), and [δn (L),L] = γn+1(L), for all n ≥ 1. © 2017 World Scientific Publishing Company. | en_US |
dc.language.iso | en_US | en_US |
dc.publisher | World Scientific Publishing Co. Pte Ltd | en_US |
dc.subject | central series | en_US |
dc.subject | Lie dimension subrings | en_US |
dc.subject | Lie rings | en_US |
dc.title | Dimension quotients of metabelian Lie rings | en_US |
dc.type | Article | en_US |
Appears in Collections: | Research Articles |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Need to add pdf.odt | 8.63 kB | OpenDocument Text | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.