
Please use this identifier to cite or link to this item:
http://hdl.handle.net/123456789/2664
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Balwe, Chetan T. | - |
dc.date.accessioned | 2020-12-04T06:39:38Z | - |
dc.date.available | 2020-12-04T06:39:38Z | - |
dc.date.issued | 2017 | - |
dc.identifier.citation | Transactions of the American Mathematical Society, 369(98), pp. 5999-6015 | en_US |
dc.identifier.other | https://doi.org/10.1090/tran/7090 | - |
dc.identifier.uri | https://www.ams.org/journals/tran/2017-369-08/S0002-9947-2017-07090-2/ | - |
dc.identifier.uri | http://hdl.handle.net/123456789/2664 | - |
dc.description | Only IISERM authors are available in the record. | - |
dc.description.abstract | Using sheaves of $ \mathbb{A}^1$-connected components, we prove that the Morel-Voevodsky singular construction on a reductive algebraic group fails to be $ \mathbb{A}^1$-local if the group does not satisfy suitable isotropy hypotheses. As a consequence, we show the failure of $ \mathbb{A}^1$-invariance of torsors for such groups on smooth affine schemes over infinite perfect fields. We also characterize $ \mathbb{A}^1$-connected reductive algebraic groups over a field of characteristic 0. | en_US |
dc.language.iso | en | en_US |
dc.publisher | American Mathematical Society | en_US |
dc.subject | Algebraic groups | en_US |
dc.subject | Connectedness | en_US |
dc.subject | Hypotheses. | en_US |
dc.title | A1 -connectedness in reductive algebraic groups | en_US |
dc.type | Article | en_US |
Appears in Collections: | Research Articles |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Need to add pdf.odt | 7.9 kB | OpenDocument Text | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.