Please use this identifier to cite or link to this item: http://hdl.handle.net/123456789/2664
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBalwe, Chetan T.-
dc.date.accessioned2020-12-04T06:39:38Z-
dc.date.available2020-12-04T06:39:38Z-
dc.date.issued2017-
dc.identifier.citationTransactions of the American Mathematical Society, 369(98), pp. 5999-6015en_US
dc.identifier.otherhttps://doi.org/10.1090/tran/7090-
dc.identifier.urihttps://www.ams.org/journals/tran/2017-369-08/S0002-9947-2017-07090-2/-
dc.identifier.urihttp://hdl.handle.net/123456789/2664-
dc.descriptionOnly IISERM authors are available in the record.-
dc.description.abstractUsing sheaves of $ \mathbb{A}^1$-connected components, we prove that the Morel-Voevodsky singular construction on a reductive algebraic group fails to be $ \mathbb{A}^1$-local if the group does not satisfy suitable isotropy hypotheses. As a consequence, we show the failure of $ \mathbb{A}^1$-invariance of torsors for such groups on smooth affine schemes over infinite perfect fields. We also characterize $ \mathbb{A}^1$-connected reductive algebraic groups over a field of characteristic 0.en_US
dc.language.isoenen_US
dc.publisherAmerican Mathematical Societyen_US
dc.subjectAlgebraic groupsen_US
dc.subjectConnectednessen_US
dc.subjectHypotheses.en_US
dc.titleA1 -connectedness in reductive algebraic groupsen_US
dc.typeArticleen_US
Appears in Collections:Research Articles

Files in This Item:
File Description SizeFormat 
Need to add pdf.odt7.9 kBOpenDocument TextView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.