Please use this identifier to cite or link to this item: http://hdl.handle.net/123456789/2686
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPandey, Yashonidhi-
dc.date.accessioned2020-12-04T09:04:08Z-
dc.date.available2020-12-04T09:04:08Z-
dc.date.issued2017-
dc.identifier.citationPublications of the Research Institute for Mathematical Sciences, 53(4), pp. 551-585en_US
dc.identifier.otherDOI: 10.4171/PRIMS/53-4-3 Published online: 2017-10-18-
dc.identifier.urihttps://www.ems-ph.org/journals/show_abstract.php?issn=0034-5318&vol=53&iss=4&rank=3-
dc.identifier.urihttp://hdl.handle.net/123456789/2686-
dc.descriptionOnly IISERM authors are available in the record.-
dc.description.abstractWe define parahoric g-torsors for a certain class of Bruhat-Tits group schemes g on a smooth complex projective curve X when the weights are real, and also define connections on them. We prove that a g-torsor is given by a homomorphism from π1(X\D) to a maximal compact subgroup of G, where the finite subset D ⊂ X is the parabolic divisor, if and only if the G-torsor is polystable.en_US
dc.language.isoenen_US
dc.publisherEuropean Mathematical Society Publishing Houseen_US
dc.subjectBruhat-Tits group schemeen_US
dc.subjectParahoric torsoren_US
dc.subjectPolystabilityen_US
dc.titleConnections on Parahoric Torsors over Curvesen_US
dc.typeArticleen_US
Appears in Collections:Research Articles

Files in This Item:
File Description SizeFormat 
Need to add pdf.odt7.9 kBOpenDocument TextView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.