
Please use this identifier to cite or link to this item:
http://hdl.handle.net/123456789/2698
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Singh, Mahender | - |
dc.date.accessioned | 2020-12-04T11:05:11Z | - |
dc.date.available | 2020-12-04T11:05:11Z | - |
dc.date.issued | 2017 | - |
dc.identifier.citation | Proceedings of the Edinburgh Mathematical Society, 60(1.) | en_US |
dc.identifier.other | 10.1017/S0013091515000541 | - |
dc.identifier.uri | https://www.cambridge.org/core/journals/proceedings-of-the-edinburgh-mathematical-society/article/abs/equivariant-maps-from-stiefel-bundles-to-vector-bundles/B9BDB3DA405422AB7D2437D1385E2550 | - |
dc.identifier.uri | http://hdl.handle.net/123456789/2698 | - |
dc.description.abstract | Let E → B be a fibre bundle and let Eʹ → B be a vector bundle. Let G be a compact Lie group acting fibre preservingly and freely on both E and Eʹ – 0, where 0 is the zero section of Eʹ → B. Let f : E → Eʹ be a fibre-preserving G-equivariant map and let Zf = {x ∈ E | f(x) = 0} be the zero set of f. In this paper we give a lower bound for the cohomological dimension of the zero set Zf when a fibre of E → B is a real Stiefel manifold with a free ℤ/2-action or a complex Stiefel manifold with a free 𝕊1-action. This generalizes a well-known result of Dold for sphere bundles equipped with free involutions. | en_US |
dc.language.iso | en_US | en_US |
dc.publisher | Cambridge University Press | en_US |
dc.subject | projective Stiefel manifold | en_US |
dc.subject | continuous cohomology | en_US |
dc.subject | cohomological dimension | en_US |
dc.subject | equivariant map | en_US |
dc.title | Equivariant maps from stiefel bundles to vector bundles | en_US |
dc.type | Article | en_US |
Appears in Collections: | Research Articles |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Need to add pdf.odt | 8.63 kB | OpenDocument Text | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.