Please use this identifier to cite or link to this item: http://hdl.handle.net/123456789/2716
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSingh, Mahender-
dc.date.accessioned2020-12-07T05:57:05Z-
dc.date.available2020-12-07T05:57:05Z-
dc.date.issued2013-
dc.identifier.citationJournal of the Mathematical Society of Japan, 65(4), pp.1055-1078.en_US
dc.identifier.otherdoi:10.2969/jmsj/06541055-
dc.identifier.urihttps://projecteuclid.org/euclid.jmsj/1382620185-
dc.identifier.urihttp://hdl.handle.net/123456789/2716-
dc.description.abstractLet G be a group acting continuously on a space X and let X/G be its orbit space. Determining the topological or cohomological type of the orbit space X/G is a classical problem in the theory of transformation groups. In this paper, we consider this problem for cohomology lens spaces. Let X be a finitistic space having the mod 2 cohomology algebra of the lens space L2m−1p (q1,…,qm). Then we classify completely the possible mod 2 cohomology algebra of orbit spaces of arbitrary free involutions on X. We also give examples of spaces realizing the possible cohomology algebras. In the end, we give an application of our results to non-existence of Z2-equivariant maps Sn→X.en_US
dc.language.isoenen_US
dc.publisherProject Eucliden_US
dc.subjectIndex of involutionen_US
dc.subjectCohomology algebraen_US
dc.subjectLeray spectral sequenceen_US
dc.subjectFinitistic spaceen_US
dc.titleCohomology algebra of orbit spaces of free involutions on lens spacesen_US
dc.typeArticleen_US
Appears in Collections:Research Articles

Files in This Item:
File Description SizeFormat 
Need to add pdf.odt8.63 kBOpenDocument TextView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.