
Please use this identifier to cite or link to this item:
http://hdl.handle.net/123456789/2751
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Sengupta, R. | - |
dc.contributor.author | Arvind | - |
dc.date.accessioned | 2020-12-07T08:56:33Z | - |
dc.date.available | 2020-12-07T08:56:33Z | - |
dc.date.issued | 2014 | - |
dc.identifier.citation | Physical Review A - Atomic, Molecular, and Optical Physics, 90(6) | en_US |
dc.identifier.other | https://doi.org/10.1103/PhysRevA.90.062323 | - |
dc.identifier.uri | https://journals.aps.org/pra/abstract/10.1103/PhysRevA.90.062323 | - |
dc.identifier.uri | http://hdl.handle.net/123456789/2751 | - |
dc.description | Only IISERM authors are available in the record. | - |
dc.description.abstract | We prove that the projection on a completely entangled subspace S of maximum dimension obtained by Parthasarathy [K. R. Parthasarathy, Proc. Indian Acad. Sci. Math. Sci. 114, 365 (2004)PIAMDO0253-414210.1007/BF02829441] in a multipartite quantum system is not positive under partial transpose. We next show that a large number of positive operators with a range in S also have the same property. In this process we construct an orthonormal basis for S and provide a theorem to link the constructions of completely entangled subspaces due to Parthasarathy (as cited above), Bhat [B. V. R. Bhat, Int. J. Quantum Inf. 4, 325 (2006)0219-749910.1142/S0219749906001797], and Johnston [N. Johnston, Phys. Rev. A 87, 064302 (2013)PLRAAN1050-294710.1103/PhysRevA.87.064302]. | en_US |
dc.language.iso | en | en_US |
dc.publisher | American Physical Society | en_US |
dc.subject | Orthonormal Basis | en_US |
dc.subject | Quantum Optics | en_US |
dc.subject | Entanglement | en_US |
dc.title | Entanglement properties of positive operators with ranges in completely entangled subspaces | en_US |
dc.type | Article | en_US |
Appears in Collections: | Research Articles |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
need to add pdf....odt | 8.12 kB | OpenDocument Text | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.