Please use this identifier to cite or link to this item: http://hdl.handle.net/123456789/2751
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSengupta, R.-
dc.contributor.authorArvind-
dc.date.accessioned2020-12-07T08:56:33Z-
dc.date.available2020-12-07T08:56:33Z-
dc.date.issued2014-
dc.identifier.citationPhysical Review A - Atomic, Molecular, and Optical Physics, 90(6)en_US
dc.identifier.otherhttps://doi.org/10.1103/PhysRevA.90.062323-
dc.identifier.urihttps://journals.aps.org/pra/abstract/10.1103/PhysRevA.90.062323-
dc.identifier.urihttp://hdl.handle.net/123456789/2751-
dc.descriptionOnly IISERM authors are available in the record.-
dc.description.abstractWe prove that the projection on a completely entangled subspace S of maximum dimension obtained by Parthasarathy [K. R. Parthasarathy, Proc. Indian Acad. Sci. Math. Sci. 114, 365 (2004)PIAMDO0253-414210.1007/BF02829441] in a multipartite quantum system is not positive under partial transpose. We next show that a large number of positive operators with a range in S also have the same property. In this process we construct an orthonormal basis for S and provide a theorem to link the constructions of completely entangled subspaces due to Parthasarathy (as cited above), Bhat [B. V. R. Bhat, Int. J. Quantum Inf. 4, 325 (2006)0219-749910.1142/S0219749906001797], and Johnston [N. Johnston, Phys. Rev. A 87, 064302 (2013)PLRAAN1050-294710.1103/PhysRevA.87.064302].en_US
dc.language.isoenen_US
dc.publisherAmerican Physical Societyen_US
dc.subjectOrthonormal Basisen_US
dc.subjectQuantum Opticsen_US
dc.subjectEntanglementen_US
dc.titleEntanglement properties of positive operators with ranges in completely entangled subspacesen_US
dc.typeArticleen_US
Appears in Collections:Research Articles

Files in This Item:
File Description SizeFormat 
need to add pdf....odt8.12 kBOpenDocument TextView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.