Please use this identifier to cite or link to this item: http://hdl.handle.net/123456789/2775
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDogra, S.-
dc.contributor.authorArvind-
dc.contributor.authorDorai, K.-
dc.date.accessioned2020-12-07T11:10:24Z-
dc.date.available2020-12-07T11:10:24Z-
dc.date.issued2014-
dc.identifier.citationPhysics Letters, Section A: General, Atomic and Solid State Physics, 378(46), pp.3452-3456.en_US
dc.identifier.otherhttps://doi.org/10.1016/j.physleta.2014.10.003-
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S0375960114009955?via%3Dihub-
dc.identifier.urihttp://hdl.handle.net/123456789/2775-
dc.description.abstractWe present the NMR implementation of a recently proposed quantum algorithm to find the parity of a permutation. In the usual qubit model of quantum computation, it is widely believed that computational speedup requires the presence of entanglement and thus cannot be achieved by a single qubit. On the other hand, a qutrit is qualitatively more quantum than a qubit because of the existence of quantum contextuality and a single qutrit can be used for computing. We use the deuterium nucleus oriented in a liquid crystal as the experimental qutrit. This is the first experimental exploitation of a single qutrit to carry out a computational task.en_US
dc.language.isoenen_US
dc.publisherElsevier B.V.en_US
dc.subjectNMR quantum computingen_US
dc.subjectQuditsen_US
dc.subjectQutrit computingen_US
dc.subjectParity checking algorithmen_US
dc.subjectQuantum contextualityen_US
dc.titleDetermining the parity of a permutation using an experimental NMR qutriten_US
dc.typeArticleen_US
Appears in Collections:Research Articles

Files in This Item:
File Description SizeFormat 
need to add pdf....odt8.12 kBOpenDocument TextView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.